

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

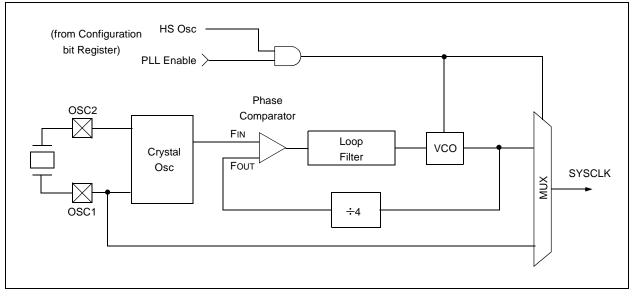
Details

201010	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	24KB (12K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1408 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4539-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pi	Pin Number			Buffer	Description			
Fin Name	DIP	QFN	TQFP	Туре	Туре	Description			
						PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.			
RB0/INT0 RB0 INT0	33	9	8	I/O I	TTL ST	Digital I/O. External interrupt 0.			
RB1/INT1 RB1 INT1	34	10	9	I/O I	TTL ST	Digital I/O. External interrupt 1.			
RB2/INT2 RB2 INT2	35	11	10	I/O I	TTL ST	Digital I/O. External interrupt 2.			
RB3	36	12	11	I/O	TTL	Digital I/O.			
RB4	37	14	14	I/O	TTL	Digital I/O. Interrupt-on-change pin.			
RB5/PGM RB5 PGM	38	15	15	I/O I/O	TTL ST	Digital I/O. Interrupt-on-change pin. Low Voltage ICSP programming enable pin.			
RB6/PGC RB6 PGC	39	16	16	I/O I/O	TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.			
RB7/PGD RB7 PGD	40	17	17	I/O I/O	TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.			
Legend: TTL = TTL ST = Sch O = Out	mitt Trig			MOS le	evels l	CMOS = CMOS compatible input or output = Input P = Power			


PIC18F4X39 PINOUT I/O DESCRIPTIONS (CONTINUED) **TABLE 1-3:**

O = Output

OD = Open Drain (no P diode to VDD)

© 2002-2013 Microchip Technology Inc.

2.5 Effects of SLEEP Mode on the On-Chip Oscillator

When the device executes a SLEEP instruction, the oscillator is turned off and the device is held at the beginning of an instruction cycle (Q1 state). With the oscillator off, the OSC1 and OSC2 signals will stop oscillating. Since all the transistor switching currents have been removed, SLEEP mode achieves the lowest current consumption of the device (only leakage currents). Enabling any on-chip feature that will operate during SLEEP will increase the current consumed during SLEEP. The user can wake from SLEEP through external RESET, Watchdog Timer Reset, or through an interrupt.

2.6 Power-up Delays

Power-up delays are controlled by two timers, so that no external RESET circuitry is required for most applications. The delays ensure that the device is kept in RESET, until the device power supply and clock are stable. For additional information on RESET operation, see Section 3.0. The first timer is the Power-up Timer (PWRT), which optionally provides a fixed delay of 72 ms (nominal) on power-up only (POR and BOR). The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable.

With the PLL enabled (HS/PLL Oscillator mode), the time-out sequence following a Power-on Reset is different from other Oscillator modes. The time-out sequence is as follows:

- 1. The PWRT time-out is invoked after a POR time delay has expired.
- 2. The Oscillator Start-up Timer (OST) is invoked. However, this is still not a sufficient amount of time to allow the PLL to lock at high frequencies.
- 3. The PWRT timer is used to provide an additional fixed 2 ms (nominal) time-out to allow the PLL ample time to lock to the incoming clock frequency.

TABLE 2-2: OSC1 AND OSC2 PIN STATES IN SLEEP MODE

OSC Mode	OSC1 Pin	OSC2 Pin
ECIO	Floating	Configured as PORTA, bit 6
EC	Floating	At logic low
HS	Feedback inverter disabled, at quiescent voltage level	Feedback inverter disabled, at quiescent voltage level

Note: See Table 3-1 in the "**Reset**" section, for time-outs due to SLEEP and MCLR Reset.

^{© 2002-2013} Microchip Technology Inc.

Applicable Devices		Applicable Devices Power-on Reset, Brown-out Reset		MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt	
2439	4439	2539	4539	XXXX XXXX	uuuu uuuu	uuuu uuuu
2439	4439	2539	4539	XXXX XXXX	uuuu uuuu	uuuu uuuu
2439	4439	2539	4539	0000 00-0	0000 00-0	uuuu uu-u
2439	4439	2539	4539	00 0000	00 0000	uu uuuu
2439	4439	2539	4539	XXXX XXXX	սսսս սսսս	սսսս սսսս
2439	4439	2539	4539	XXXX XXXX	սսսս սսսս	սսսս սսսս
2439	4439	2539	4539	00 0000	00 0000	uu uuuu
2439	4439	2539	4539	XXXX XXXX	uuuu uuuu	uuuu uuuu
2439	4439	2539	4539	XXXX XXXX	uuuu uuuu	uuuu uuuu
2439	4439	2539	4539	00 0000	00 0000	uu uuuu
2439	4439	2539	4539	XXXX XXXX	uuuu uuuu	uuuu uuuu
2439	4439	2539	4539	XXXX XXXX	սսսս սսսս	սսսս սսսս
2439	4439	2539	4539	0000 0000	սսսս սսսս	սսսս սսսս
2439	4439	2539	4539	0000 0000	0000 0000	uuuu uuuu
2439	4439	2539	4539	0000 0000	0000 0000	սսսս սսսս
2439	4439	2539	4539	0000 0000	0000 0000	uuuu uuuu
2439	4439	2539	4539	0000 -010	0000 -010	uuuu -uuu
2439	4439	2539	4539	0000 000x	0000 000x	սսսս սսսս
2439	4439	2539	4539	0000 0000	0000 0000	սսսս սսսս
2439	4439	2539	4539	0000 0000	0000 0000	սսսս սսսս
2439	4439	2539	4539	xx-0 x000	uu-0 u000	uu-0 u000
2439	4439	2539	4539			
	2439 2439 2439 2439 2439 2439 2439 2439	24394439	24394439253924394	243944392539453924394439	Applicable DevicesBrown-out Reset2439443925394539xxxxxxxx2439443925394539000000-02439443925394539000000-024394439253945390000000243944392539453900000002439443925394539xxxxxxxx2439443925394539xxxxxxxx2439443925394539xxxxxxxx2439443925394539xxxxxxxx2439443925394539xxxxxxxx2439443925394539xxxxxxxx2439443925394539xxxxxxxx2439443925394539xxxxxxxx243944392539453900000000243944392539453900000000243944392539453900000000243944392539453900000000243944392539453900000000243944392539453900000000243944392539453900000000243944392539453900000000243944392539453900000000243944392539453900	Applicable Devices Power-on Reset, Brown-out Reset WDT Reset 2439 4439 2539 4539 xxxx xxxx uuuu uuuu 2439 4439 2539 4539 xxxx xxxx uuuu uuuu 2439 4439 2539 4539 xxxx xxxx uuuu uuuu 2439 4439 2539 4539 0000 00-0 0000 00-0 2439 4439 2539 4539 000- 0000 00 0000 2439 4439 2539 4539 xxxx xxxx uuuu uuuu 2439 4439 2539 4539 xxxx xxxx uuuu uuu 2439 4439 2539 4539 0000 0000

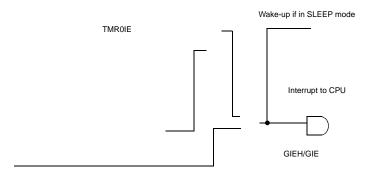
TABLE 3-3:	INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)	١
IADEL J-J.		,

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

* These registers are retained to maintain compatibility with PIC18FXX2 devices; however, one or more bits are reserved. Users should not modify the value of these bits. See Section 4.9.2 for details.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).


3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

4: See Table 3-2 for RESET value for specific condition.

5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other Oscillator modes, they are disabled and read '0'.

6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read '0'.

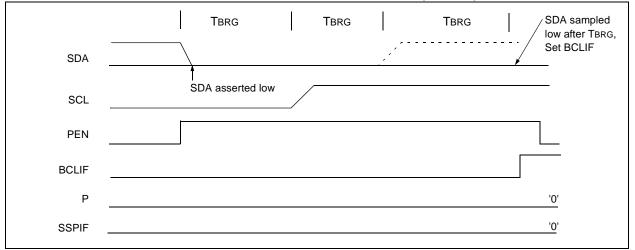
FIGURE 8-1: INTERRUPT LOGIC

13.2 Timer3 Interrupt

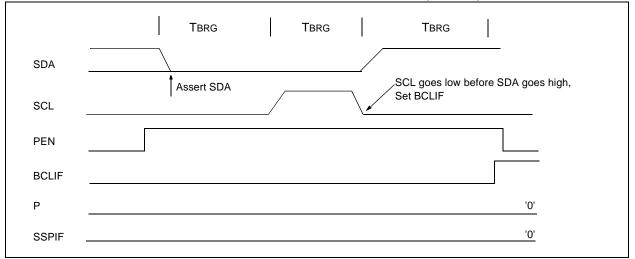
The TMR3 Register pair (TMR3H:TMR3L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR3 Interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit, TMR3IF (PIR2<1>). This interrupt can be enabled/disabled by setting/clearing TMR3 interrupt enable bit, TMR3IE (PIE2<1>).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR2	—	_	_	EEIF	BCLIF	LVDIF	TMR3IF	—	0 0000	0 0000
PIE2	—	—	—	EEIE	BCLIE	LVDIE	TMR3IE	_	0 0000	0 0000
IPR2	_	_	_	EEIP	BCLIP	LVDIP	TMR3IP	_	1 1111	1 1111
TMR3L	Holding Re	egister for the	e Least Sigr	nificant Byte	of the 16-b	it TMR3 Re	gister		xxxx xxxx	uuuu uuuu
TMR3H	Holding Re	egister for the	e Most Sign	ificant Byte	of the 16-bi	t TMR3 Reg	gister		xxxx xxxx	uuuu uuuu
T1CON	RD16	_	T1CKPS1	T1CKPS0		T1SYNC	TMR1CS	TMR10N	0-00 0000	u-uu uuuu
T3CON	RD16	_	T3CKPS1	T3CKPS0		T3SYNC	TMR3CS	TMR3ON	0000 0000	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.


16.4.17.3 Bus Collision During a STOP Condition

Bus collision occurs during a STOP condition if:


- a) After the SDA pin has been de-asserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is de-asserted, SCL is sampled low before SDA goes high.

The STOP condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the baud rate generator is loaded with SSPADD<6:0> and counts down to '0'. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 16-31). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 16-32).

FIGURE 16-31: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 16-32: BUS COLLISION DURING A STOP CONDITION (CASE 2)

17.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

17.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical, except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR, I	-		e on)ther ETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	—	TMR2IF	TMR1IF	0000	0000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	—	TMR2IE	TMR1IE	0000	0000	0000	0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	—	TMR2IP	TMR1IP	0000	0000	0000	0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000	-00x	0000	-00x
TXREG	USART TI	ransmit F	Register						0000	0000	0000	0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000	-010	0000	-010
SPBRG	Baud Rate	e Genera	tor Regist	er					0000	0000	0000	0000

TABLE 17-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'.

Shaded cells are not used for Synchronous Slave Transmission.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X39 devices; always maintain these bits clear.

1ER 20-4.	CONFIG4L	CONFIG	URATION	REGISTER	(4LOW (B	TIEADD	XE33 3000	0011)
	R/P-1	U-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1
	DEBUG	_	—	—		LVP	—	STVREN
	bit 7							bit 0
bit 7	1 = Backgr	ound Debu		nable bit d. RB6 and d. RB6 and I	•	•	• •	
bit 6-3	Unimplem	ented: Rea	d as '0'					
bit 2	LVP: Low \	/oltage ICS	P Enable bit					
	1 = Low Vo 0 = Low Vo	0						
bit 1	Unimplem	ented: Rea	d as '0'					
bit 0	STVREN: S	Stack Full/U	nderflow Re	set Enable I	oit			
			w will cause w will not ca	e RESET ause RESET	-			
	Legend:							
	R = Readat	ole bit	C = Cleara	able bit	U = Unin	nplemented	bit, read as	'O'

REGISTER 20-4:	CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)
----------------	---

- n = Value when device is unprogrammed

u = Unchanged from programmed state

20.3 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared, but keeps running, the \overline{PD} bit (RCON<3>) is cleared, the \overline{TO} (RCON<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D and disable external clocks. Pull all I/O pins that are hi-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

20.3.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on MCLR pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change or a Peripheral Interrupt.

The following peripheral interrupts can wake the device from SLEEP:

- 1. PSP read or write.
- 2. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 3. TMR3 interrupt. Timer3 must be operating as an asynchronous counter.
- 4. CCP Capture mode interrupt.
- 5. Special event trigger (Timer1 in Asynchronous mode using an external clock).
- 6. MSSP (START/STOP) bit detect interrupt.
- MSSP transmit or receive in Slave mode (SPI/I²C).
- 8. USART RX or TX (Synchronous Slave mode).
- 9. A/D conversion (when A/D clock source is RC).
- 10. EEPROM write operation complete.
- 11. LVD interrupt.

Other peripherals cannot generate interrupts, since during SLEEP, no on-chip clocks are present.

External MCLR Reset will cause a device RESET. All other events are considered a continuation of program execution and will cause a "wake-up". The TO and PD bits in the RCON register can be used to determine the cause of the device RESET. The PD bit, which is set on power-up, is cleared when SLEEP is invoked. The TO bit is cleared, if a WDT time-out occurred (and caused wake-up).

When the SLEEP instruction is being executed, the next instruction (PC + 2) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

20.3.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If an interrupt condition (interrupt flag bit and interrupt enable bits are set) occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt condition occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from SLEEP. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

BNC	v	Branch if	Branch if Not Overflow						
Synt	ax:	[<i>label</i>] B	NOV n						
Ope	rands:	-128 ≤ n ≤ 127							
Ope	ration:		if overflow bit is '0' (PC) + 2 + 2n \rightarrow PC						
Statu	us Affected:	None							
Enco	oding:	1110	1110 0101 nnnn nnnn						
Des	cription:	program w The 2's co added to t have incre instruction PC+2+2n.	If the Overflow bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then a two-cycle instruction.						
Wor	ds:	1							
Cycl	es:	1(2)	1(2)						
	Cycle Activity: ump:		00	04					
	Q1	Q2	Q3	Q4					
	Decode	Read literal 'n'	Process Data	Write to PC					
	No	No	No	No					
	operation	operation	operation	operation					
lf N	o Jump:								
	Q1	Q2	Q3	Q4					
	Decode	Read literal 'n'	Process Data	No operation					
			Dala	operation					
<u>Exar</u>	<u>mple</u> :	HERE	BNOV Jump						
<u>Exar</u>	<u>mple</u> : Before Instru PC	uction	BNOV Jump dress (HERE						

BNZ	Branch if	Not Zer	0				
Syntax:	[<i>label</i>] B	NZ n					
Operands:	-128 ≤ n ≤	127					
Operation:		if zero bit is '0' (PC) + 2 + 2n \rightarrow PC					
Status Affected	: None						
Encoding:	1110	0001	nnnn	nnnn			
	program v The 2's cc added to t have incre instruction PC+2+2n. a two-cycl	ompleme he PC. emented n, the nev . This in	ent nun Since to feto w addr structi	the PC wi ch the nex ress will be			
Words:	1						
Cycles:	1(2)						
Q Cycle Activit If Jump:	y:						
	00	Q3		. .			
Q1	Q2	43		Q4			
Q1 Decode	Read literal	Proces	ss V	Q4 Vrite to PC			
	Read literal	Proces	ss V	~ .			
Decode	Read literal 'n' No	Proces Data No	ss V	Write to PC			
Decode No operation	Read literal 'n' No	Proces Data No	on	Vrite to PC			
Decode No operation If No Jump:	Read literal 'n' No operation	Proces Data No operati	on Ss	Write to PC No operation			
If No Jump: Q1	Read literal 'n' No operation Q2 Read literal	Proces Data No operati Q3 Proces Data	on Ss	Vrite to PC No operation Q4 No			

After Instruction If Zero = 0; PC = address (Jump) If Zero = 1; PC = address (HERE+2)

DS30485B-page 222

LFS	R	Load FSF	ł		MOVF	Move f			
Synt	ax:	[label]	LFSR f,k		Syntax:	[label]	MOVF f	[,d [,a]	
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 40 \end{array}$	95		Operands:	$0 \le f \le 255$ $d \in [0,1]$			
Ope	ration:	$k \rightarrow FSRf$				a ∈ [0,1]			
Status Affected:		None			Operation:	$f \rightarrow dest$			
Enco	oding:	1110 1111		ff k ₁₁ kkk kkk kkkk	Status Affected: Encoding:	Status Affected: N, Z Encoding: 0101 00da ffff		ffff	
Description: The 12-bit literal 'k' is loaded into the file select register pointed to by 'f'. The contents of register pointed to the status of the select register pointed to the status of the select register pointed to the status of the s					ents of registation	ster 'f' on dep	are pendent		
Wor	Words: 2						laced in W		
Cycles: 2					result is placed back in register 'f' (default). Location 'f' can be any- where in the 256 byte bank. If 'a' is 0, the Access Bank will be				
QC	Q Cycle Activity:								
	Q1 Q2 Q3 Q4								
	Decode	Read literal 'k' MSB	Process Data	Write literal 'k' MSB to FSRfH		selected, overriding the BSR If 'a' = 1, then the bank will b selected as per the BSR val (default).			
	Decode	Read literal	Process	Write literal	Words:	1			
		'k' LSB	Data	'k' to FSRfL	Cycles:	1			
Exar	<u>mple</u> :	LFSR 2,	0x3AB		Q Cycle Activity:				
	After Instruc				Q1	Q2	Q3		Q4
	FSR2H = 0x03 FSR2L = 0xAB				Decode	Process Data	V	/rite W	
					Example:	MOVF R	EG, 0, 0		
					Before Instru REG W	= 0x	22 FF		
					After Instruct	ion			

REG =

W

0x22

0x22

=

MULLW	Multiply I	Literal with	N	MULWF	Multiply \	N with f		
Syntax:	[label]	MULLW k		Syntax:	[label]	MULWF f	[,a]	
Operands:	$0 \le k \le 25$	5		Operands:	$0 \le f \le 25$	5		
Operation:	(W) x k \rightarrow PRODH:PRODL			a ∈ [0,1]				
Status Affected:	None			Operation:	(W) x (f) –	(W) x (f) \rightarrow PRODH:PRODL		
Encoding:	0000	1101 kk	kk kkkk	Status Affected	I: None			
Description:	An unsign	ed multiplica	tion is car-	Encoding:	0000	001a ff	ff ffff	
	W and the 16-bit rest PRODH:F PRODH c W is unch None of th affected. Note that carry is po	ne status flag neither overf ossible in this ro result is po	k'. The in ter pair. high byte. gs are flow nor s opera-	Description:	ried out be W and the The 16-bi PRODH:F PRODH c Both W ar None of th affected. Note that carry is po tion. A zer	ed multiplica etween the of register file t result is sto PRODL registontains the on 'f' are uno ne status flag neither over possible in thi ro result is p	contents of location 'f'. ored in the ster pair. high byte. changed. gs are flow nor s opera- ossible but	
Words:	1					not detected. If 'a' is 0, the Access Bank will be selected,		
Cycles:	1					ank will be s ⊨the BSR va	,	
Q Cycle Activity:					-	en the bank		
Q1	Q2	Q3	Q4			as per the B	SR value	
Decode	Read literal 'k'	Process	Write	10/	(default).			
	illeral K	Data	registers PRODH:	Words:	1			
			PRODL	Cycles:	1			
				Q Cycle Activi Q1	ty: Q2	Q3	Q4	
Example:		0xC4		Decode	Read	Process	Q4 Write	
Before Instru W PRODH PRODL		E2			register 'f'	Data	registers PRODH: PRODL	
After Instruct								
W	-	E2		Example:		REG, 1		
PRODH PRODL	-	AD 08		Before Ins				
				W REG PROD PROD	= 0x H = ?	C4 B5		
				After Instru	uction			
						-		

W	=	0xC4
REG	=	0xB5
PRODH	=	0x8A
PRODL	=	0x94

SUBWFB	Subtract	W from f witl	h Borrow					
Syntax:	[label]	SUBWFB f[,d [,a]					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$							
Operation:	(f) – (W) -	$(f)-(W)-(\overline{C})\to dest$						
Status Affected:	N, OV, C, DC, Z							
Encoding:	0101	10da fff	f ffff					
Description:	row) from method). I in W. If 'd' back in re- the Acces overriding then the b	V and the carn register 'f' (2's f 'd' is 0, the re- is 1, the result gister 'f' (defau s Bank will be the BSR value ank will be sel- value (default).	complement sult is stored is stored lt). If 'a' is 0, selected, e. If 'a' is 1,					
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read register 'f'	Process Data	Write to destination					
Example 1:	SUBWFB	REG, 1, 0						
Before Instru								
REG w	= 0x19 = 0x0D)1))1)						
С	= 1	(0000 110	/_/					
After Instruct REG	= 0x0C	(0000 101	1)					
W	= 0x0D	(0000 110						
C Z N	= 1 = 0							
	= 0	; result is positive REG, 0, 0						
Example 2: Before Instru	SUBWFB	REG, 0, 0						
REG	= 0x1B	(0001 101	1)					
W C	= 0x1A = 0	(0001 101	.0)					
After Instruct	-							
REG W	= 0x1B = 0x00	(0001 101	.1)					
C	= 1							
Z N	= 1 = 0	; result is zero						
Example 3:	SUBWFB	REG, 1, 0						
Before Instru			-					
REG w	= 0x03 = 0x0E	(0000 001)						
C After Instruct	= 1							
After Instruct REG	ion = 0xF5	(1111 010						
W	= 0x0E	; [2's comp] (0000 110						
C Z	= 0	(0000 110	· - /					
Z N	= 0 = 1	; result is ne	egative					

Syntax:[label] SWAPF f [,d [,a]Operands: $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ Operation: $(f < 3:0 >) \rightarrow dest < 7:4 >,$ $(f < 7:4 >) \rightarrow dest < 3:0 >$ Status Affected:NoneEncoding: 0011 $10da$ Description:The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).Words:1Quice Activity:Q1Q2Q3Q1Q2Q3Q4DecodeRead register 'f'ProcessWrite to destinationExample:SWAPFREG, 1, 0Before Instruction REG= 0x350x35	Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	$0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$ $a \in [0,1]$ (f<3:0>) - (f<7:4>) - None 1 None 1 None 1 None 0011 The upper ister 'f' are result is p (default). Bank will the BSR value 1	5 → dest<7: → dest<3: 10da ar and low e exchange blaced in r blaced in r If 'a' is 0, be select value. If 'a be select	4>, 0> ffff er nibble ged. If 'd' N. If 'd' i register ' the Acc ed, over a' is 1, th ed as pe	ffff es of reg is 0, the is 1, the if ress rriding nen the
$d \in [0,1] \\ a \in [0,1]$ $a \in [0,1]$ $Q = [0,1]$ $Coperation: (f<3:0>) \rightarrow dest<7:4>, (f<7:4>) \rightarrow dest<3:0>$ Status Affected: None Encoding: $0011 10da ffff ffff$ Description: The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W. If 'd' is 1, the result is placed in W. If 'd' is 1, the result is placed in W. If 'd' is 1, the result is placed in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default). Words: 1 Cycles: 1 Q Cycle Activity: $Q1 Q2 Q3 Q4$ $\boxed{Decode Read Process Write to \ register 'f' Data destination}$ Example: SWAPF REG, 1, 0 Before Instruction REG = 0x53 After Instruction	Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	$d \in [0,1]$ $a \in [0,1]$ (f<3:0>) - (f<7:4>) - None $\boxed{0011}$ The upperister 'f' are result is provide (default). Bank will the BSR value (default). Bank will BSR value (default). 1	→ dest<7: → dest<3: 10da Ir and low e exchange placed in N placed in r If 'a' is 0, be select value. If 'a be selected	0> ffff er nibble ged. If 'd' N. If 'd' i register ' the Acc ed, over a' is 1, th ed as pe	es of reg is 0, the is 1, the f' cess rriding nen the
(f<7:4>) → dest<3:0> Status Affected: None Encoding: 0011 10da ffff ffff Description: The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default). Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to destination Example: SWAPF REG, 1, 0 Before Instruction REG = 0x53 After Instruction REG 1, 0	Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	(f<7:4>) - None 0011 The uppe ister 'f' are result is p (default). Bank will the BSR v bank will BSR valu	→ dest<3: 10da ar and low e exchang blaced in N blaced in r If 'a' is 0, be select value. If 'a be select	0> ffff er nibble ged. If 'd' N. If 'd' i register ' the Acc ed, over a' is 1, th ed as pe	es of reg is 0, the is 1, the f' cess rriding nen the
Encoding: 0011 10da ffff ffff Description: The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W. If 'd' is 1, the result is placed in W. If 'd' is 1, the result is placed in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default). Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to destination Example: SWAPF REG, 1, 0 Before Instruction REG = 0x53 After Instruction	Encoding: Description: Words: Cycles: Q Cycle Activity:	0011 The upperister 'f' are result is p (default). Bank will the BSR v bank will BSR value 1	r and low e exchang blaced in N blaced in r If 'a' is 0, be select value. If 'a be selecte	er nibble ged. If 'd' W. If 'd' i register the Acc ed, over a' is 1, th ed as pe	es of reg is 0, the is 1, the f' cess rriding nen the
Description: The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W. If 'd' is 1, the result is placed in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default). Words: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register 'f' Data Market of the bank will be selected to bank will be selected as per the BSR value (default). Words: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to destination Example: SWAPF REG, 1, 0 Before Instruction REG = 0x53 After Instruction	Description: Words: Cycles: Q Cycle Activity:	The upper ister 'f' are result is p (default). Bank will the BSR bank will BSR value 1	r and low e exchang blaced in N blaced in r If 'a' is 0, be select value. If 'a be selecte	er nibble ged. If 'd' W. If 'd' i register the Acc ed, over a' is 1, th ed as pe	es of reg is 0, the is 1, the f' cess rriding nen the
ister 'f' are exchanged. If 'd' is 0, the result is placed in W. If 'd' is 1, the result is placed in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default). Words: 1 Cycles: 1 Q Cycle Activity: Q1 $Q2$ $Q3$ $Q4Decode Read Process Write toregister 'f' Data destinationExample: SWAPF REG, 1, 0Before InstructionREG = 0x53After Instruction$	Words: Cycles: Q Cycle Activity:	ister 'f are result is p (default). Bank will the BSR bank will BSR valu 1	e exchang blaced in \ blaced in r If 'a' is 0, be select value. If 'a be selecte	ged. If 'd' N. If 'd' i register ' the Acc ed, over a' is 1, th ed as pe	' is 0, the is 1, the 'f' cess rriding nen the
Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to register 'f' Data destination Example: SWAPF REG, 1, 0 Before Instruction REG = 0x53 After Instruction	Cycles: Q Cycle Activity:	-			
Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to register 'f' Data destination Example: SWAPF REG, 1, 0 Before Instruction REG = 0x53 After Instruction	Q Cycle Activity:	1			
Q1 Q2 Q3 Q4 Decode Read register 'f' Process Data Write to destination Example: SWAPF REG, 1, 0 Before Instruction REG = 0x53 After Instruction					
Q1 Q2 Q3 Q4 Decode Read register 'f' Process Data Write to destination Example: SWAPF REG, 1, 0 Before Instruction REG = 0x53 After Instruction					
register f' Data destination Example: SWAPF REG, 1, 0 Before Instruction REG = 0x53 After Instruction		Q2	Q3		Q4
Before Instruction REG = 0x53 After Instruction				-	
Before Instruction REG = 0x53 After Instruction	Example:	SWAPF	REG, 1,	0	
	REG = After Instruction	= 0x53			

TSTFSZ Test f, skip if 0								
Synt	ax:	[label] T	[label] TSTFSZ f[,a]					
Ope	rands:	0 ≤ f ≤ 255 a ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$					
Ope	ration:	skip if f = ()					
Statu	us Affected:	None						
Enco	oding:	0110	011a d	fff	ffff			
Desc	cription:	If 'f' = 0, th fetched du tion execu NOP is exe cycle instr Access Ba riding the l then the b per the BS	rring the co tion, is dis ocuted, ma uction. If 'a ank will be BSR value ank will be	urrent carded king th a' is 0, select e. If 'a' e selec	instruc- d and a nis a two- the ed, over- is 1, tted as			
Wor	ds:	1						
Cycl	es:	-	1(2) Note: 3 cycles if skip and followed by a 2-word instruction.					
Q Cycle Activity:								
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Process Data	op	No peration			
lf sk	kip:							
	Q1	Q2	Q3		Q4			
	No operation	No operation	No operation		No peration			
lfel	kip and follow				oration			
II Sr	Q1	Q2	Q3	л .	Q4			
	No	No	No		No			
	operation	operation	operation	op	peration			
	No operation	No operation	No operation		No peration			
Example: HERE TSTFSZ (NZERO : ZERO :								
	Before Instru PC = Ado	iction dress (HERE)						
	After Instruct If CNT PC If CNT PC	= 0x0 = Ad ≠ 0x0	dress (ZE	-				

XORLW	Exclusiv	e OR lit	eral wit	h W
Syntax:	[label] 〉	KORLW	k	
Operands:	$0 \le k \le 25$	55		
Operation:	(W) .XOF	$R.k\toW$	1	
Status Affected:	N, Z			
Encoding:	0000	1010	kkkk	kkkk
Description:	The contone with the 8 is placed	B-bit liter		
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q Cycle Activity: Q1	Q2	Q3		Q4

Example: XORLW 0xAF

Before Instruction W = 0xB5 After Instruction

W = 0x1A

22.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.

The MPLINK object linker features include:

- Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- Allows all memory areas to be defined as sections to provide link-time flexibility.

The MPLIB object librarian features include:

- Easier linking because single libraries can be included instead of many smaller files.
- Helps keep code maintainable by grouping related modules together.
- Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted.

22.5 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PIC series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multiproject software development tool.

22.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment.

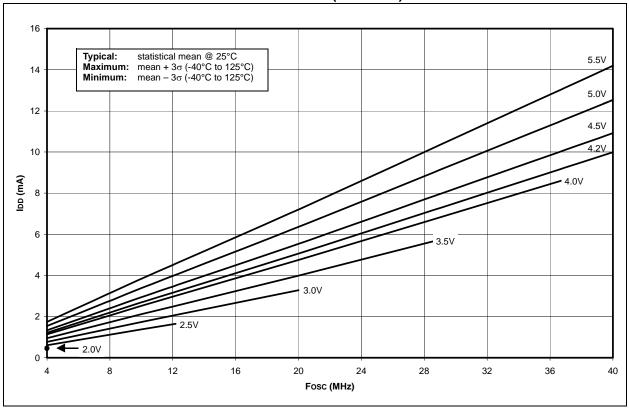
The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PIC microcontrollers.

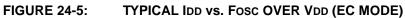
The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows environment were chosen to best make these features available to you, the end user.

22.7 ICEPIC In-Circuit Emulator

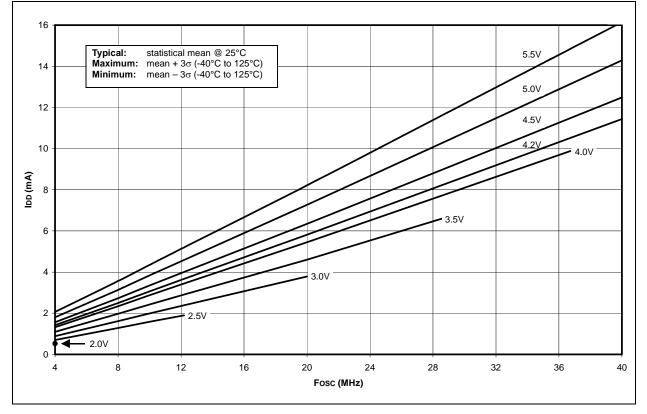
The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.

TABLE 23-22: A/D CONVERSION REQUIREMENTS

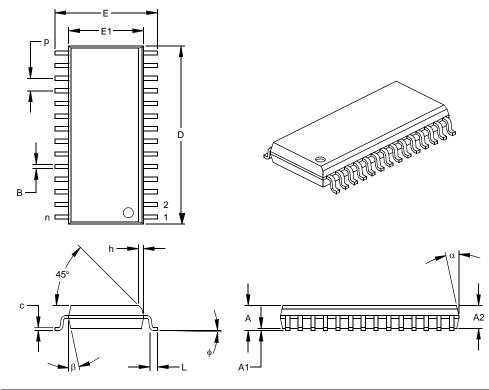

Param No.	Symbol	Charac	Min	Max	Units	Conditions	
130	Tad	A/D clock period PIC18 F XXXX		1.6	20 ⁽⁴⁾	μS	Tosc based
		PIC18LFXXXX		2.0	6.0	μS	A/D RC mode
131	TCNV	Conversion time (not including acquisit	11	12	Tad		
132	TACQ	Acquisition time (Note 2)		5 10	_	μs μs	VREF = VDD = 5.0V VREF = VDD = 2.5V
135	Tswc	Switching Time from a	convert \rightarrow sample	—	(Note 3)		


Note 1: ADRES register may be read on the following TCY cycle.

2: The time for the holding capacitor to acquire the "New" input voltage, when the new input value has not changed by more than 1 LSB from the last sampled voltage. The source impedance (*Rs*) on the input channels is 50Ω. See Section 18.0 for more information on acquisition time consideration.


3: On the next Q4 cycle of the device clock.

4: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.



28-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		INCHES*		MILLIMETERS			
Dimensior	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59
Overall Length	D	.695	.704	.712	17.65	17.87	18.08
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle Top	¢	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-013

Drawing No. C04-052