

innin receive

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	24KB (12K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1408 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4539-e-pt

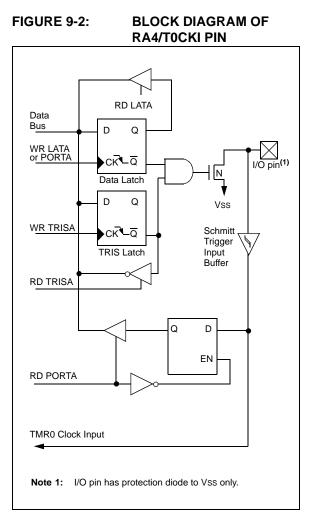
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

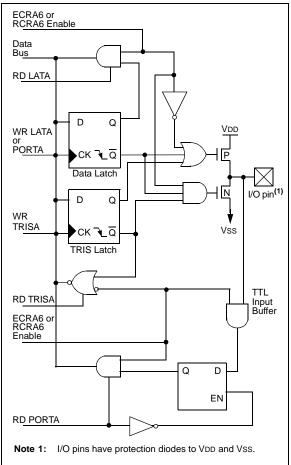
Table of Contents

1.0	Device Overview	7
2.0	Oscillator Configurations	19
3.0	Reset	23
4.0	Memory Organization	33
5.0	FLASH Program Memory	51
6.0	Data EEPROM Memory	61
7.0	8 X 8 Hardware Multiplier	67
8.0	Interrupts	69
9.0	I/O Ports	83
10.0	Timer0 Module	99
11.0	Timer1 Module	103
12.0	Timer2 Module	107
13.0	Timer3 Module	109
14.0	Single Phase Induction Motor Control Kernel	113
15.0	Pulse Width Modulation (PWM) Modules	123
16.0	Master Synchronous Serial Port (MSSP) Module	
17.0	Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART)	165
18.0	Compatible 10-bit Analog-to-Digital Converter (A/D) Module	
19.0	Low Voltage Detect	189
20.0	Special Features of the CPU	195
21.0	Instruction Set Summary	211
22.0	Development Support	253
23.0	Electrical Characteristics	259
24.0	DC and AC Characteristics Graphs and Tables	287
25.0	Packaging Information	297
Appe	ndix A: Revision History	305
Appe	ndix B: Device Differences	305
	ndix C: Conversion Considerations	
Appe	ndix D: Migration from High-End to Enhanced Devices	307
Index		309
	ne Support	
Syste	ms Information and Upgrade Hot Line	317
	er Response	
PIC1	3FXX39 Product Identification System	319

TABLE 1-2:	PIC18F2X39 PINOUT I/O DESCRIPTIONS (CONTINUED))
------------	--	---


Pin Name	Pin Number Pin Buffer DIP SOIC Type Buffer		er Pin Bu		Description
Pin Name			Description		
					PORTB is a bi-directional I/O port. PORTB can be software
					programmed for internal weak pull-ups on all inputs.
RB0/INT0	21	21			
RB0			I/O	TTL	Digital I/O.
INT0			I	ST	External interrupt 0.
RB1/INT1	22	22			
RB1			I/O	TTL	Digital I/O.
INT1			I	ST	External interrupt 1.
RB2/INT2	23	23			
RB2			I/O	TTL	Digital I/O.
INT2			I	ST	External interrupt 2.
RB3	24	24	I/O	TTL	Digital I/O.
RB4	25	25	I/O	TTL	Digital I/O.
					Interrupt-on-change pin.
RB5/PGM	26	26			
RB5			I/O	TTL	Digital I/O. Interrupt-on-change pin.
PGM			I/O	ST	Low Voltage ICSP programming enable pin.
RB6/PGC	27	27			
RB6			I/O	TTL	Digital I/O. Interrupt-on-change pin.
PGC			I/O	ST	In-Circuit Debugger and ICSP programming clock pin.
RB7/PGD	28	28			
RB7			I/O	TTL	Digital I/O. Interrupt-on-change pin.
PGD			I/O	ST	In-Circuit Debugger and ICSP programming data pin.
Legend: TTL = TT	L compat	tible inp	ut		CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels O = Output OD = Open Drain (no P diode to VDD)


= Input

Р = Power

L

FIGURE 9-3: BLOCK DIAGRAM OF RA6 PIN

11.0 TIMER1 MODULE

The Timer1 module timer/counter has the following features:

- 16-bit timer/counter (two 8-bit registers, TMR1H and TMR1L)
- Readable and writable (both registers)
- Internal or external clock select
- Interrupt-on-overflow from FFFFh to 0000h

Figure 11-1 is a simplified block diagram of the Timer1 module.

Register 11-1 details the Timer1 control register, which sets the Operating mode of the Timer1 module. Timer1 can be enabled or disabled by setting or clearing control bit TMR1ON (T1CON<0>).

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
	RD16	_	T1CKPS1	T1CKPS0	_	T1SYNC	TMR1CS	TMR10N			
	bit 7					I		bit 0			
bit 7	RD16: 16-	bit Read/W	/rite Mode Er	nable bit							
		1 = Enables register read/write of Timer1 in one 16-bit operation									
	0 = Enable	es register	read/write of	Timer1 in two	o 8-bit opera	tions					
bit 6	Unimplen	nented: Re	ad as '0'								
bit 5-4	T1CKPS1	:T1CKPS0	: Timer1 Inpu	ut Clock Pres	cale Select I	bits					
	-	rescale va									
		Prescale val Prescale val									
		rescale val Prescale val									
bit 3			intain as '0'								
bit 2				nput Synchro	nization Sal	oct hit					
DILZ	When TMI			nput Synchic		ect bit					
			ze external c	lock input							
			rnal clock inp								
	When TMI	R1CS = 0:									
	This bit is	ignored. Tii	mer1 uses th	e internal clo	ck when TM	R1CS = 0.					
bit 1	TMR1CS:	Timer1 Clo	ock Source S	elect bit							
	1 = Extern	al clock fro	m pin RC0/T	13CKI (on th	e rising edge	e)					
	0 = Interna	al clock (Fo	sc/4)								
bit 0	TMR10N:	Timer1 Or	ı bit								
	1 = Enable										
	0 = Stops	Timer1									
	r										
	Legend:										

R = Readable bit

- n = Value at POR

W = Writable bit

'1' = Bit is set

x = Bit is unknown

15.1.2 PWM DUTY CYCLE

The PWM duty cycle is set by the Motor Control module when it writes a 10-bit value to the CCPR1L and CCP1CON registers, where CCPR1L contains the eight Most Significant bits and CCP1CON<5:4> contains the two Least Significant bits. The duty cycle time is given by the equation:

PWM duty cycle = (10-bit CCP register value) • Tosc • (TMR2 prescale value)

where Tosc and the duty cycle are in the same unit of time.

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This buffering is essential for glitchless PWM operation. At the same time, the value of TMR2 is concatenated with either an internal 2-bit Q clock, or 2 bits of the TMR2 prescaler. When the CCPR1H:latch pair value matches that of the TMR2:latch pair, the PWM1 pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the equation:

PWM Resolution (max) =
$$\frac{\log(\frac{FOSC}{FPWM})}{\log(2)}$$
 bits

where FPWM is the PWM frequency, or (1/PWM period).

Note: If the PWM duty cycle value is longer than the PWM period, the PWM1 pin will not be cleared.

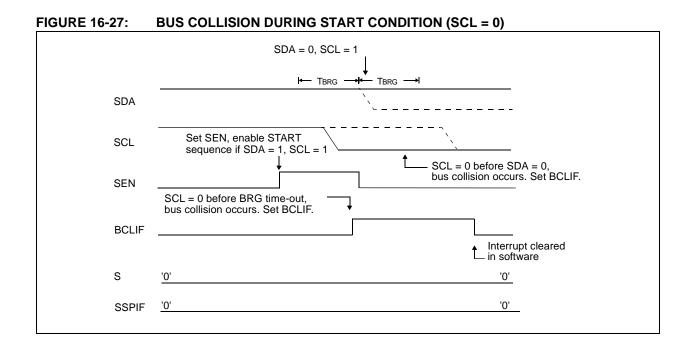
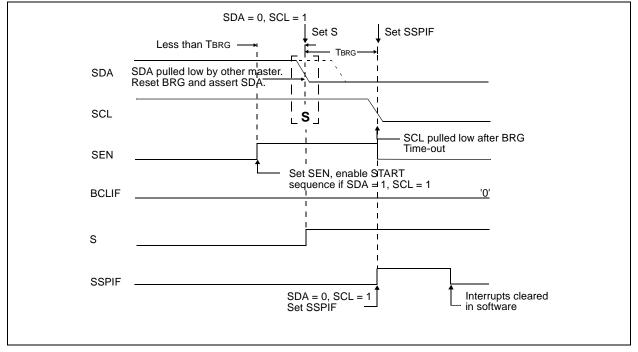

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	—	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	—	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	_	TMR2IP	TMR1IP	0000 0000	0000 0000
TMR2 [*]	*	*	*	*	*	*	*	*	0000 0000	0000 0000
PR2 [*]	*	*	*	*	*	*	*	*	1111 1111	1111 1111
T2CON [*]	*	*	*	*	*	*	*	*	-000 0000	-000 0000
CCPR1L [*]	*	*	*	*	*	*	*	*	xxxx xxxx	uuuu uuuu
CCPR1H	PWM Reg	ister1 (MSB)	(read-only)						xxxx xxxx	uuuu uuuu
CCP1CON*	—	_	*	*	*	*	*	*	00 0000	00 0000
CCPR2L [*]	*	*	*	*	*	*	*	*	xxxx xxxx	uuuu uuuu
CCPR2H [*]	PWM Reg	ister2 (MSB)	(read-only)						xxxx xxxx	uuuu uuuu
CCP2CON*	—	_	*	*	*	*	*	*	00 0000	00 0000
L		-			1 101					

TABLE 15-1: REGISTERS ASSOCIATED WITH PWM AND TIMER2


Legend: x = unknown, u = unchanged, - = unimplemented, read as '0' unless otherwise noted. Shaded cells are not used by PWM and Timer2.

These registers are retained to maintain compatibility with PIC18FXX2 devices; however, the indicated bits are reserved in PIC18FXX39 devices. Users should not alter the values of these bits.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X39 devices; always maintain these bits clear.

FIGURE 16-28: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION

17.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI.) The USART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers, or it can be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

The USART can be configured in the following modes:

- Asynchronous (full-duplex)
- Synchronous Master (half-duplex)
- Synchronous Slave (half-duplex)

In order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter:

- bit SPEN (RCSTA<7>) must be set (= 1),
- bit TRISC<6> must be cleared (= 0), and
- bit TRISC<7> must be set (= 1).

Register 17-1 shows the Transmit Status and Control Register (TXSTA) and Register 17-2 shows the Receive Status and Control Register (RCSTA).

20.0 SPECIAL FEATURES OF THE CPU

There are several features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving Operating modes and offer code protection. These are:

- OSC Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code Protection
- ID Locations
- In-Circuit Serial Programming

All PIC18FXX39 devices have a Watchdog Timer, which is permanently enabled via the configuration bits, or software controlled. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry.

SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. A set of configuration bits are used to select various options.

20.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 300000h.

The user will note that address 300000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (300000h - 3FFFFh), which can only be accessed using Table Reads and Table Writes.

Programming the configuration registers is done in a manner similar to programming the FLASH memory (see Section 5.5.1). The only difference is the configuration registers are written a byte at a time. The sequence of events for programming configuration registers is:

- 1. Load table pointer with address of configuration register being written.
- 2. Write a single byte using the TBLWT instruction.
- 3. Set EEPGD to point to program memory, set the CFGS bit to access configuration registers, and set WREN to enable byte writes.
- 4. Disable interrupts.
- 5. Write 55h to EECON2.
- 6. Write AAh to EECON2.
- 7. Set the WR bit. This will begin the write cycle.
- 8. CPU will stall for duration of write (approximately 2 ms using internal timer).
- 9. Execute a NOP.
- 10. Re-enable interrupts.

TABLE 21-2: PIC18FXXX INSTRUCTION SET

Mnemonic,		Description	Cycles	16	Bit Instr	uction W	ord	Status	Notes
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI		ILE REGISTER OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da0	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	0da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
	·s, ·u	f _d (destination) 2nd word	-	1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	1, 2
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	., _
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	1, 2
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	1, 2
RRNCF	, ,	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a, u	Set f	1	0110	100a	ffff	ffff	None	
SUBFWB	f, d, a	Subtract f from WREG with borrow	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	
SUBWFB	f, d, a	Subtract WREG from f with borrow	1	0101	11da 10da	ffff	ffff	C, DC, Z, OV, N C, DC, Z, OV, N	1, 2
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)	0110	100a 011a	ffff	ffff	None	4 1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1 (2 01 3)	0001	011a 10da	ffff	ffff	Z, N	1,∠
		E REGISTER OPERATIONS	1'	0001	Toda	±±±±	LLLL	<u>, 11</u>	
									4.0
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC		Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, d, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

5: If the Table Write starts the write cycle to internal memory, the write will continue until terminated.

BCF	Bit Clear	f						
Syntax:	[<i>label</i>] B	CF f,	b[,a]					
Operands:	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$							
Operation:	$0 \rightarrow f < b >$							
Status Affected:	None							
Encoding:	1001	bbba	ffff	ffff				
Description:	Bit 'b' in re is 0, the A selected, o If 'a' = 1, t selected a (default).	ccess B overridir hen the	ank will b ng the BS bank will	be R value. be				
Words:	1							
Cycles:	1	1						
Q Cycle Activity:								
Q1	Q2	Q3	3	Q4				
Decode	Read register 'f'	Proce Data		Write gister 'f'				
Example:	BCF F	LAG_RE	G, 7, (D				
After Instruct	$\Xi G = 0xC7$							

	Branch if		-				
Syntax:	[<i>label</i>] B	[<i>label</i>] BN n					
Operands:	-128 ≤ n ≤	$-128 \le n \le 127$					
Operation:	•	if negative bit is '1' (PC) + 2 + 2n \rightarrow PC					
Status Affected	: None						
Encoding:	1110	0110	nnnn	nnr			
program will branch. The 2's complement number '2n' added to the PC. Since the PC w have incremented to fetch the net instruction, the new address will b PC+2+2n. This instruction is ther a two-cycle instruction.							
	a two-cyc	le instruc	tion.				
Words:	1	ie instruc	tion.				
Words: Cycles:	•	ie instruc	tion.				
	1 1(2)	ie instruc	tion.				
Cycles: Q Cycle Activi	1 1(2)	Q3	tion.	Q4			
Cycles: Q Cycle Activi If Jump:	1 1(2) ty:			Q4 rite to F			
Cycles: Q Cycle Activi If Jump: Q1 Decode No	1 1(2) ty: 	Q3 Proces Data No	s Wi	rite to F			
Cycles: Q Cycle Activi If Jump: Q1 Decode No operation	1 1(2) ty: Q2 Read literal 'n'	Q3 Proces Data	s Wi	rite to F			
Cycles: Q Cycle Activi If Jump: Q1 Decode No operation If No Jump:	1 1(2) ty: Q2 Read literal 'n' No operation	Q3 Proces Data No	s Wi	rite to F No peratio			
Cycles: Q Cycle Activi If Jump: Q1 Decode No operation If No Jump: Q1	1 1(2) ty: Q2 Read literal 'n' No operation Q2	Q3 Proces Data No operatio	s Wi on o	rite to F No peratio Q4			
Cycles: Q Cycle Activi If Jump: Q1 Decode No operation If No Jump:	1 1(2) ty: Q2 Read literal 'n' No operation	Q3 Proces Data No operatio	s Wi on o	rite to F No peratio			

丘)
p)
-
E+2)

BRA		Unconditi	onal Brancl	h	E	BSF	Bit Set f			
Synt	ax:	[label] B	RA n		S	Syntax:	[label] B	SF f,b[,a]		
Ope	rands:	-1024 ≤ n :	≤ 1023		C	Operands:		$0 \leq f \leq 255$		
Ope	ration:	(PC) + 2 +	$2n \rightarrow PC$				0 ≤ b ≤ 7 a ∈ [0,1]			
State	us Affected:	None				Operation:	$a \in [0, 1]$ 1 \rightarrow f 			
Enco	Encoding:11010nnnnnnnnnnnDescription:Add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is a two-cycle instruction.			Status Affected:	None					
Des			E	Encoding: Description:	1000bbbaffffffffBit 'b' in register 'f' is set. If 'a' is 0Access Bank will be selected, over-riding the BSR value. If 'a' = 1, thenthe bank will be selected as per the					
Wor	ds:	1					BSR value).		
Cycl	es:	2			-	Vords:	1			
QC	ycle Activity:				C	Cycles:	1			
	Q1	Q2	Q3	Q4		Q Cycle Activity:				
	Decode No operation	Read literal 'n' No operation	Process Data No operation	Write to PC No operation		Q1 Decode	Q2 Read register 'f'	Q3 Process Data	Q4 Write register 'f'	
	operation	oporation	opolation	opolation	<u></u>	xample:	BSF F	LAG_REG, 7	, 1	
	n <u>ple</u> : Before Instru PC After Instruct PC	= add	BRA Jump dress (HERE dress (Jump			Before Instru FLAG_RI After Instruct FLAG_RI	EG = 0x0 ion			

DEC	FSZ	Decremer	Decrement f, skip if 0						
Synt	ax:	[label]	[label] DECFSZ f[,d[,a]]						
Ope	rands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$							
Ope	ration:	.,	$(f) - 1 \rightarrow dest,$ skip if result = 0						
Statu	us Affected:	None							
Enco	oding:	0010	11da ffi	f ffff					
Desc	cription:	nts of register If 'd' is 0, the <i>W</i> . If 'd' is 1, ck in register It is 0, the ne is already fr and a NOP i baking it a tw . If 'a' is 0, the perselected, alue. If 'a' = perselected a de (default).	the result is "f' (default). ext instruc- etched, is s executed o-cycle ne Access overriding 1, then the						
Wor	ds:	1							
Cycl		by	ycles if skip a a 2-word ins	and followed truction.					
QC	Sycle Activity		00	04					
	Q1 Decode	Q2 Read	Q3 Process	Q4 Write to					
	Decoue	register 'f'	Data	destination					
lf sk	kip:								
	Q1	Q2	Q3	Q4					
	No	No	No	No					
	operation	operation	operation	operation					
lf sk	-	ved by 2-word							
1	Q1	Q2	Q3	Q4					
	No operation	No operation	No operation	No operation					
	No	No	No	No					
	operation	operation	operation	operation					
Example:		HERE	GOTO LOOP						
	Before Instru								
	PC After Instruc	= Address	(HERE)						
	CNT If CNT PC	= CNT - 1 = 0; = Address	G (CONTINUE	:)					
	If CNT PC	≠ 0;	G (HERE+2)						

DCFSNZ Decrement f, skip if not 0								
Syntax:	[label]	DCFSNZ f[,d [,a]					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5						
Operation:		(f) $-1 \rightarrow \text{dest}$, skip if result $\neq 0$						
Status Affected:	None	None						
Encoding:	0100	11da fff	f ffff					
Description: The contents of register 'f' are deremented. If 'd' is 0, the result is placed in W. If 'd' is 1, the result placed back in register 'f' (defaul If the result is not 0, the next instruction, which is already fetched, is discarded, and a NOP executed instead, making it a two cycle instruction. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = then the bank will be selected as per the BSR value (default).								
Words: 1								
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction.								
Q Cycle Activity	-							
Q1	Q2	Q3	Q4					
Decode	Read register 'f'	Process Data	Write to destination					
If skip:	Tegister i	Dala	uestination					
Q1	Q2	Q3	Q4					
No	No	No	No					
operation	operation	operation	operation					
If skip and follo	-							
Q1	Q2	Q3	Q4					
No operation	No operation	No operation	No operation					
No	No	No	No					
operation	operation	operation	operation					
Example:	ZERO	DCFSNZ TEM : :	IP, 1, 0					
Before Instr TEMP	uction =	?						
After Instruc TEMP If TEMP PC If TEMP PC	= = =	TEMP - 1, 0; Address (2 0; Address (1						

Syntax:[label]IORLWkOperands: $0 \le k \le 255$ Operation:(W) .OR. k \rightarrow WStatus Affected:N, ZEncoding: 0000 1001 kkkkkkkkDescription:The contents of W are OR'ed wi the eight-bit literal 'k'. The result placed in W.Words:1						
Operation:(W) .OR. $k \rightarrow W$ Status Affected:N, ZEncoding:0000 1001 kkkk kkkDescription:The contents of W are OR'ed wi the eight-bit literal 'k'. The result placed in W.						
Status Affected: N, Z Encoding: 0000 1001 kkkk kkkk Description: The contents of W are OR'ed wi the eight-bit literal 'k'. The result placed in W.						
Encoding: 0000 1001 kkkk kkk Description: The contents of W are OR'ed wi the eight-bit literal 'k'. The result placed in W.						
Description: The contents of W are OR'ed wi the eight-bit literal 'k'. The result placed in W.						
the eight-bit literal 'k'. The result placed in W.	k					
Words: 1						
Cycles: 1	1					
Q Cycle Activity:						
Q1 Q2 Q3 Q4						
Decode Read Process Write to V literal 'k' Data	V					
Example: IORLW 0x35						
Before Instruction						
W = 0x9A						
After Instruction						
W = 0xBF						

IORWF	Inclusive	Inclusive OR W with f					
Syntax:	[label]	ORWF f	[,d [,a]				
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5					
Operation:	(W) .OR. (f) \rightarrow dest					
Status Affected:	N, Z						
Encoding:	0001	00da ff	ff ffff				
	is 1, the result is placed back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, over riding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).						
Words:	1						
Cycles:	1						
Q Cycle Activity:							
_	Q2	Q3	Q4				
Q1		Process	Write to				
Q1 Decode	Read register 'f'	Data	destination				
	register 'f'		destination				

Dororo motraotion						
RESULT	=	0x13				
W	=	0x91				
After Instruct	ion					

RESULT =	0x13
W =	0x93

LFS	R	Load FSF	ł		MOVF	Move f				
Synt	ax:	[label]	LFSR f,k		Syntax:	[label]	[<i>label</i>] MOVF f[,d[,a]			
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 40 \end{array}$	95		Operands:	$0 \le f \le 255$ d \in [0,1]	5			
Ope	ration:	$k \rightarrow FSRf$				a ∈ [0,1]				
Statu	us Affected:	: None			Operation:	$f \rightarrow dest$				
Enco	oding:	1110 1110 00ff k ₁₁ kkk 1111 0000 k ₇ kkk kkkk		Status Affected: Encoding:	N, Z	00da f	Efff	ffff		
Des	cription:	The 12-bit literal 'k' is loaded into the file select register pointed to by 'f'.			Description:	The contents of register 'f' are moved to a destination dependen upon the status of 'd'. If 'd' is 0, th			are pendent	
Wor	ds:	2					laced in W			
Cycl	es:	2					laced back Location 'f'			
QC	cycle Activity	:					he 256 byt			
	Q1	Q2	Q3	Q4			ess Bank		. .	
	Decode	Read literal 'k' MSB	Process Data	Write literal 'k' MSB to FSRfH		lf 'a' = 1, t	overriding t hen the ba as per the E	ınk will	be	
	Decode	Read literal	Process	Write literal	Words:	1				
		'k' LSB	Data	'k' to FSRfL	Cycles:	1				
Exar	<u>mple</u> :	LFSR 2,	0x3AB		Q Cycle Activity:					
	After Instruc				Q1	Q2	Q3		Q4	
	FSR2H FSR2L	= 0x = 0x			Decode	Read register 'f'	Process Data	V	/rite W	
					Example:	MOVF R	EG, 0, 0			
					Before Instru REG W	= 0x	22 FF			
					After Instruct	ion				

REG =

W

0x22

0x22

=

MULLW	Multiply Literal with W		MULWF	Multiply \	Multiply W with f				
Syntax:	[label]	MULLW k		Syntax:	[label]	[label] MULWF f [,a]			
Operands:	$0 \le k \le 25$	5		Operands:	$0 \le f \le 25$	$0 \leq f \leq 255$			
Operation:	(W) x k \rightarrow	PRODH:PR	ODL		a ∈ [0,1]				
Status Affected:	None			Operation:	(W) x (f) –	(W) x (f) \rightarrow PRODH:PRODL			
Encoding:	0000	1101 kk	kk kkkk	Status Affected	I: None				
Description:	An unsign	ed multiplica	tion is car-	Encoding:	0000	001a ff	ff ffff		
	An unsigned multiplication is car- ried out between the contents of W and the 8-bit literal 'k'. The 16-bit result is placed in PRODH:PRODL register pair. PRODH contains the high byte. W is unchanged. None of the status flags are affected. Note that neither overflow nor carry is possible in this opera- tion. A zero result is possible but not detected.		Description:	An unsigned multiplication is car- ried out between the contents of W and the register file location 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both W and 'f' are unchanged. None of the status flags are affected. Note that neither overflow nor carry is possible in this opera- tion. A zero result is possible but					
Words:	1					ed. If 'a' is 0			
Cycles:	1					ank will be s ⊨the BSR va	,		
Q Cycle Activity:					-	en the bank			
Q1	Q2	Q3	Q4			as per the B	SR value		
Decode	Read literal 'k'	Process	Write	10/	(default).				
	illeral K	Data	registers PRODH:	Words:	1				
			PRODL	Cycles:	1				
				Q Cycle Activi Q1	ty: Q2	Q3	Q4		
Example:		0xC4		Decode	Read	Process	Q4 Write		
Before Instru W PRODH PRODL		E2			register 'f'	Data	registers PRODH: PRODL		
After Instruct									
W	-	E2		Example:		REG, 1			
PRODH PRODL	-	AD 08		Before Ins					
				W REG PROD PROD	= 0x H = ?	C4 B5			
				After Instru	uction				
						-			

W	=	0xC4
REG	=	0xB5
PRODH	=	0x8A
PRODL	=	0x94

22.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK™ Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD
- Device Programmers
 - PRO MATE[®] II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

22.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®] based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- · A project manager
- Customizable toolbar and key mapping
- · A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the cost-effective simulator to a full-featured emulator with minimal retraining.

22.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

22.3 MPLAB C17 and MPLAB C18 C Compilers

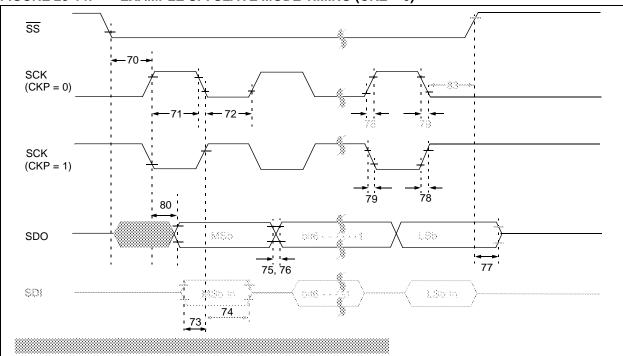
The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

23.1 DC Characteristics: PIC18FXX39 (Industrial, Extended) PIC18LFXX39 (Industrial) (Continued)

PIC18LI (Indu	F XX39 ustrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F2 (Indu	XX39 ustrial, Ex	tended)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Symbol	Characteristic	Min	Min Typ Max Units Conditions						
	Idd	DD Supply Current ⁽²⁾								
D010C		PIC18LFXX39	_	10	25	mA	EC, ECIO osc configurations VDD = 4.2V, -40°C to +85°C			
D010C		PIC18FXX39		10	25	mA	EC, ECIO osc configurations VDD = 4.2V, -40°C to +125°C			
D013		PIC18LFXX39	_	10 15	15 25	mA mA	HS osc configuration Fosc = 25 MHz, VDD = 5.5V HS + PLL osc configurations Fosc = 10 MHz, VDD = 5.5V			
D013		PIC18FXX39		10 15	15 25		HS osc configuration Fosc = 25 MHz, VDD = 5.5V HS + PLL osc configurations Fosc = 10 MHz, VDD = 5.5V			
	IPD	Power-down Current ⁽³⁾								
D020		PIC18LFXX39		0.08 0.1 3	0.9 4 10	μΑ μΑ μΑ	VDD = 2.0V, +25°C VDD = 2.0V, -40°C to +85°C VDD = 4.2V, -40°C to +85°C			
D020 D021B		PIC18FXX39		.1 3 15	.9 10 25	μΑ μΑ μΑ	VDD = 4.2V, +25°C VDD = 4.2V, -40°C to +85°C VDD = 4.2V, -40°C to +125°C			

Legend: Shading of rows is to assist in readability of the table.


Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD

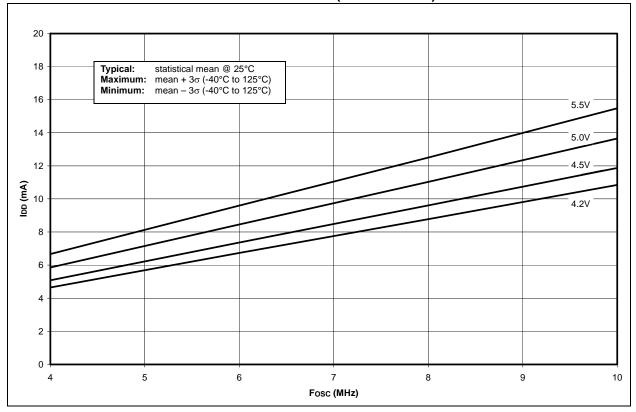
- MCLR = VDD; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).
- **4:** The LVD and BOR modules share a large portion of circuitry. The △IBOR and △ILVD currents are not additive. Once one of these modules is enabled, the other may also be enabled without further penalty.

FIGURE 23-14: EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)

TABLE 23-13: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0))

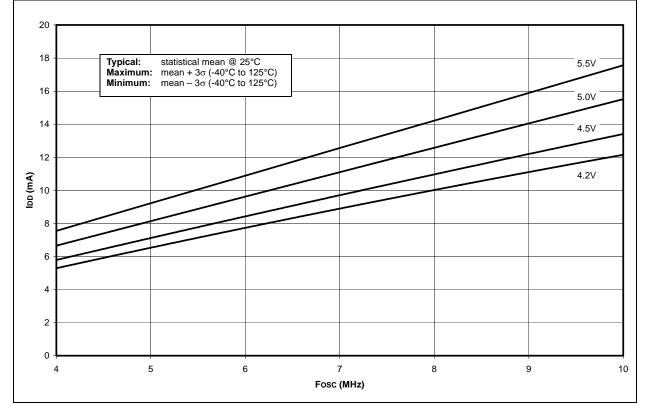
Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{\text{SS}}\downarrow$ to SCK \downarrow or SCK \uparrow input	or SCK1 input			ns	
71	TscH	SCK input high time (Slave mode)	Continuous	1.25 TCY + 30	—	ns	
71A			Single Byte	40	—	ns	(Note 1)
72	TscL	SCK input low time (Slave mode)	Continuous	1.25 TCY + 30	—	ns	
72A			Single Byte	40	—	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK ec	100	—	ns		
73A	Тв2в	Last clock edge of Byte 1 to the first clock	1.5 Tcy + 40	—	ns	(Note 2)	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edg	100	—	ns		
75	TdoR	SDO data output rise time	PIC18FXXXX	_	25	ns	
			PIC18LFXXXX	_	60	ns	Vdd = 2V
76	TdoF	SDO data output fall time	PIC18FXXXX	_	25	ns	
			PIC18LFXXXX	_	60	ns	Vdd = 2V
77	TssH2doZ	SS [↑] to SDO output hi-impedance	•	10	50	ns	
78	TscR	SCK output rise time (Master mode)	PIC18FXXXX		25	ns	
			PIC18LFXXXX		60	ns	VDD = 2V
79	TscF	SCK output fall time (Master mode)	PIC18FXXXX		25	ns	
			PIC18LFXXXX		60	ns	VDD = 2V
80	TscH2doV,	SDO data output valid after SCK edge	PIC18FXXXX		50	ns	
	TscL2doV		PIC18LFXXXX		150	ns	VDD = 2V
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1	1.5 Tcy + 40	—	ns	

Note 1: Requires the use of Parameter # 73A.


2: Only if Parameter # 71A and # 72A are used.

Param. No.	Symbol	Characte	eristic	Min	Max	Units	Conditions
100	Тнідн	Clock high time	100 kHz mode	4.0	—	μS	PIC18FXXX must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μs	PIC18FXXX must operate at a minimum of 10 MHz
			SSP Module	1.5 TCY	—		
101	TLOW	Clock low time	100 kHz mode	4.7	—	μS	PIC18FXXX must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	PIC18FXXX must operate at a minimum of 10 MHz
			SSP Module	1.5 TCY	—		
102	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
103	TF	SDA and SCL fall	100 kHz mode	—	1000	ns	$V\text{DD} \geq 4.2 V$
		time	400 kHz mode	20 + 0.1 Св	300	ns	$V\text{DD} \geq 4.2V$
90	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for Repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period, the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	100	—	ns	
92	TSU:STO	STOP condition	100 kHz mode	4.7	—	μs	
		setup time	400 kHz mode	0.6	—	μs	
109	ΤΑΑ	Output valid from	100 kHz mode		3500	ns	(Note 1)
		clock	400 kHz mode	—	—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission can start
D102	Св	Bus capacitive loading		—	400	pF	

TABLE 23-16: I²C BUS DATA REQUIREMENTS (SLAVE MODE)


Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but the requirement TSU:DAT \ge 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line. TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification) before the SCL line is released.

FIGURE 24-3: TYPICAL IDD vs. Fosc OVER VDD (HS/PLL MODE)

