

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	24KB (12K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1408 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4539-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information for the following devices:

- PIC18F2439 PIC18F4439
- PIC18F2539 PIC18F4539

This family offers the advantages of all PIC18 microcontrollers - namely, high computational performance at an economical price - with the addition of high-endurance Enhanced FLASH program memory. The PIC18FXX39 family also provides an off-the-shelf solution for simple motor control applications, allowing users to create speed control solutions with small part counts and short development times.

1.1 Key Features

1.1.1 PROGRAMMABLE MOTOR PROCESSOR TECHNOLOGY (ProMPT™) MOTOR CONTROL

The integrated motor control kernel uses on-chip Pulse Width Modulation (PWM) to provide speed control for single phase induction motors. Through a convenient set of Application Program Interfaces (APIs) and variable frequency technology for open loop control, users can develop applications with little or no previous experience in motor control techniques. ProMPT motor control provides modulated output over a range of 0 to 127 Hz, and has a pre-defined V/F curve that can be reprogrammed to suit the application.

1.1.2 OTHER PIC18FXX39 FEATURES

- **Memory Endurance:** The Enhanced FLASH cells for both program memory and data EEPROM are rated to last for many thousands of erase/write cycles - up to 100,000 for program memory, and 1,000,000 for EEPROM. Data retention without refresh is conservatively estimated to be greater than 100 years at 25°C.
- Self-programmability: These devices can write to their own program memory spaces under internal software control. By using a bootloader routine located in the protected Boot Block at the top of program memory, it becomes possible to create an application that can update itself in the field.
- Addressable USART: This serial communication module is capable of standard RS-232 operation using the internal oscillator block, removing the need for an external crystal (and its accompanying power requirement) in applications that talk to the outside world.
- **10-bit A/D Converter:** This module offers up to 8 conversion channels for flexibility in sensor monitoring and control, as well as the ability to do conversions while the device is in SLEEP mode.

1.2 Details on Individual Family Members

Devices in the PIC18FXX39 family are available in 28-pin (PIC18F2X39) and 40/44-pin (PIC18F4X39) packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2.

The devices are differentiated from each other in four ways:

- 1. FLASH program memory and data RAM (12 Kbytes and 640 bytes for PIC18FX439 devices, 24 Kbytes and 1408 bytes for PIC18FX539)
- A/D channels (5 for PIC18F2X39 devices, 8 for PIC18F4X39)
- 3. I/O ports (3 ports on PIC18F2X39, 5 ports on PIC18F4X39 devices)
- 4. Parallel Slave Port (present only on PIC18F4X39 devices)

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in Table 1-2 and Table 1-3.

FIGURE 3-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

FIGURE 5-2: TABLE WRITE OPERATION

5.2 Control Registers

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

5.2.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for memory accesses.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the memory write and erase sequences.

Control bit EEPGD determines if the access will be a program or data EEPROM memory access. When clear, any subsequent operations will operate on the data EEPROM memory. When set, any subsequent operations will operate on the program memory.

Control bit CFGS determines if the access will be to the configuration registers or to program memory/data EEPROM memory. When set, subsequent operations will operate on configuration registers, regardless of EEPGD (see Section 20.0, "Special Features of the CPU"). When clear, memory selection access is determined by EEPGD.

The FREE bit, when set, will allow a program memory erase operation. When the FREE bit is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset, during normal operation. In these situations, the user can check the WRERR bit and rewrite the location. It is necessary to reload the data and address registers (EEDATA and EEADR), due to RESET values of zero.

Control bit WR initiates write operations. This bit cannot be cleared, only set, in software. It is cleared in hardware at the completion of the write operation. The inability to clear the WR bit in software prevents the accidental or premature termination of a write operation.

Note: Interrupt flag bit, EEIF in the PIR2 register, is set when the write is complete. It must be cleared in software.

REGISTER 16-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE)

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WCOL | SSPOV | SSPEN | CKP | SSPM3 | SSPM2 | SSPM1 | SSPM0 |
| bit 7 | | | | | | | bit 0 |

bit 7 WCOL: Write Collision Detect bit (Transmit mode only)

 $0 = No \ collision$

bit 6 SSPOV: Receive Overflow Indicator bit

- SPI Slave mode:
 - 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting overflow (must be cleared in software).
 - 0 = No overflow
 - **Note:** In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.
- bit 5 SSPEN: Synchronous Serial Port Enable bit
 - 1 = Enables serial port and configures SCK, SDO, SDI, and \overline{SS} as serial port pins
 - 0 = Disables serial port and configures these pins as I/O port pins

Note: When enabled, these pins must be properly configured as input or output.

bit 4 **CKP:** Clock Polarity Select bit

- 1 = IDLE state for clock is a high level
- 0 = IDLE state for clock is a low level

bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits

- 0101 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control disabled, \overline{SS} can be used as I/O pin
- $0100 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control enabled$
- 0011 = Reserved
- 0010 = SPI Master mode, clock = FOSC/64
- 0001 = SPI Master mode, clock = FOSC/16
- 0000 = SPI Master mode, clock = Fosc/4
- **Note:** Bit combinations not specifically listed here are either reserved, or implemented in I²C mode only.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

^{1 =} The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)

FIGURE 16-28: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION

16.4.17.3 Bus Collision During a STOP Condition

Bus collision occurs during a STOP condition if:

- a) After the SDA pin has been de-asserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is de-asserted, SCL is sampled low before SDA goes high.

The STOP condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the baud rate generator is loaded with SSPADD<6:0> and counts down to '0'. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 16-31). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 16-32).

FIGURE 16-31: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 16-32: BUS COLLISION DURING A STOP CONDITION (CASE 2)

TABLE 17-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	Fosc =	40 MHz	SPBRG	33	MHz	SPBRG	25	MHz	SPBRG	20 1	MHz	SPBRG
RATE (Kbps)	KBAUD	% ERROR	value (decimal)									
0.3	NA	-	-									
1.2	NA	-	-									
2.4	NA	-	-	2.40	-0.07	214	2.40	-0.15	162	2.40	+0.16	129
9.6	9.62	+0.16	64	9.55	-0.54	53	9.53	-0.76	40	9.47	-1.36	32
19.2	18.94	-1.36	32	19.10	-0.54	26	19.53	+1.73	19	19.53	+1.73	15
76.8	78.13	+1.73	7	73.66	-4.09	6	78.13	+1.73	4	78.13	+1.73	3
96	89.29	-6.99	6	103.13	+7.42	4	97.66	+1.73	3	104.17	+8.51	2
300	312.50	+4.17	1	257.81	-14.06	1	NA	-	-	312.50	+4.17	0
500	625	+25.00	0	NA	-	-	NA	-	-	NA	-	-
HIGH	625	-	0	515.63	-	0	390.63	-	0	312.50	-	0
LOW	2.44	-	255	2.01	-	255	1.53	-	255	1.22	-	255
BAUD	Fosc =	16 MHz	SPBRG	10	MHz	SPBRG	7.1590	09 MHz	SPBRG	5.068	8 MHz	SPBRG
RATE (Kbps)	KBAUD	% ERROR	value (decimal)									
0.3	NA	-	-									
1.2	1.20	+0.16	207	1.20	+0.16	129	1.20	+0.23	92	1.20	0	65
2.4	2.40	+0.16	103	2.40	+0.16	64	2.38	-0.83	46	2.40	0	32
9.6	9.62	+0.16	25	9.77	+1.73	15	9.32	-2.90	11	9.90	+3.13	7
19.2	19.23	+0.16	12	19.53	+1.73	7	18.64	-2.90	5	19.80	+3.13	3
76.8	83.33	+8.51	2	78.13	+1.73	1	111.86	+45.65	0	79.20	+3.13	0
96	83.33	-13.19	2	78.13	-18.62	1	NA	-	-	NA	-	-
300	250	-16.67	0	156.25	-47.92	0	NA	-	-	NA	-	-
500	NA	-	-									
HIGH	250	-	0	156.25	-	0	111.86	-	0	79.20	-	0
LOW	0.98	-	255	0.61	-	255	0.44	-	255	0.31	-	255
BAUD	Fosc	= 4 MHz	SPBRG	3.5795	645 MHz	SPBRG	1	MHz	SPBRG	32.76	8 kHz	SPBRG
(Kbps)	KBAUD	% ERROR	value (decimal)									
0.3	0.30	-0.16	207	0.30	+0.23	185	0.30	+0.16	51	0.26	-14.67	1
1.2	1.20	+1.67	51	1.19	-0.83	46	1.20	+0.16	12	NA	-	-
2.4	2.40	+1.67	25	2.43	+1.32	22	2.23	-6.99	6	NA	-	-
9.6	8.93	-6.99	6	9.32	-2.90	5	7.81	-18.62	1	NA	-	-
19.2	20.83	+8.51	2	18.64	-2.90	2	15.63	-18.62	0	NA	-	-
76.8	62.50	-18.62	0	55.93	-27.17	0	NA	-	-	NA	-	-
96	NA	-	-									
300	NA	-	-									
500	NA	-	-									
HIGH	62.50	-	0	55.93	-	0	15.63	-	0	0.51	-	0
LOW	0.24	-	255	0.22	-	255	0.06	-	255	0.002	-	255

REGISTER 18-2: ADCON1 REGISTER

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	ADCS2	_	—	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. Six (6) Most Significant bits of ADRESH are read as '0'.

0 = Left justified. Six (6) Least Significant bits of ADRESL are read as '0'.

bit 6 ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in **bold**)

ADCON1 <adcs2></adcs2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion
0	0 0	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	00	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

bit 5-4 Unimplemented: Read as '0'

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits

PCFG <3:0>	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0	VREF+	VREF-	C/R
0000	Α	Α	Α	Α	А	A	Α	Α	Vdd	Vss	8/0
0001	А	Α	Α	А	VREF+	А	А	Α	AN3	Vss	7 / 1
0010	D	D	D	А	А	Α	Α	Α	Vdd	Vss	5/0
0011	D	D	D	А	VREF+	А	А	Α	AN3	Vss	4 / 1
0100	D	D	D	D	А	D	А	Α	Vdd	Vss	3/0
0101	D	D	D	D	VREF+	D	Α	Α	AN3	Vss	2/1
011x	D	D	D	D	D	D	D	D		—	0/0
1000	А	Α	Α	А	VREF+	VREF-	А	Α	AN3	AN2	6/2
1001	D	D	А	А	А	А	А	А	Vdd	Vss	6/0
1010	D	D	А	А	VREF+	А	А	А	AN3	Vss	5/1
1011	D	D	Α	А	VREF+	VREF-	А	Α	AN3	AN2	4/2
1100	D	D	D	А	VREF+	VREF-	А	А	AN3	AN2	3/2
1101	D	D	D	D	VREF+	VREF-	А	А	AN3	AN2	2/2
1110	D	D	D	D	D	D	D	A	VDD	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	A	AN3	AN2	1/2

A = Analog input D = Digital I/O

C/R = # of analog input channels / # of A/D voltage references

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: On any device RESET, the port pins that are multiplexed with analog functions (ANx) are forced to be an analog input.

REGISTER 20-9: CONFIG7L: CONFIGURATION REGISTER 7 LOW (BYTE ADDRESS 30000Ch)

	U-0	U-0	U-0	U-0	U-1	R/C-1	R/C-1	R/C-1		
	—	—	—	—	—	EBTR2 ⁽¹⁾	EBTR1	EBTR0		
	bit 7					•		bit 0		
bit 7-4	Unimplem	ented: Read	1 as '0'							
bit 3	Unimplem	ented and r	eserved: N	1aintain as '1	,					
bit 2	EBTR2: Table Read Protection bit ⁽¹⁾									
	 1 = Block 2 (004000-005FFFh) not protected from Table Reads executed in other blocks 0 = Block 2 (004000-005FFFh) protected from Table Reads executed in other blocks 									
bit 1	EBTR1: Ta	able Read Pr	otection bit							
	1 = Block 1 0 = Block 1	1 (002000-00 1 (002000-00)3FFFh) not)3FFFh) pro	t protected fr ptected from	om Table R Table Read	eads execute s executed ir	ed in other b n other block	locks (s		
bit 0	EBTR0: Ta	able Read Pr	otection bit							
	 1 = Block 0 (000200h-001FFFh) not protected from Table Reads executed in other blocks 0 = Block 0 (000200h-001FFFh) protected from Table Reads executed in other blocks 									
	Note 1:	Unimpleme	nted in PIC	18FX439 de	vices: maint	tain this bit s	et.			

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
- n = Value when devic	e is unprogrammed	u = Unchanged from programmed state

REGISTER 20-10: CONFIG7H: CONFIGURATION REGISTER 7 HIGH (BYTE ADDRESS 30000Dh)

U-0	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
—	EBTRB	—	—	—	—	—	—
bit 7							bit 0

bit 7 Unimplemented: Read as '0'

EBTRB: Boot Block Table Read Protection bit

1 = Boot block (000000-0001FFh) not protected from Table Reads executed in other blocks
 0 = Boot block (000000-0001FFh) protected from Table Reads executed in other blocks

bit 5-0 **Unimplemented:** Read as '0'

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
- n = Value when device	e is unprogrammed	u = Unchanged from programmed state

bit 6

21.0 INSTRUCTION SET SUMMARY

The PIC18FXXX instruction set adds many enhancements to the previous PIC MCU instruction sets, while maintaining an easy migration from these PIC MCU instruction sets.

Most instructions are a single program memory word (16-bits), but there are three instructions that require two program memory locations.

Each single word instruction is a 16-bit word divided into an OPCODE, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal operations
- Control operations

The PIC18FXXX instruction set summary in Table 21-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 21-1 shows the opcode field descriptions.

Most **byte-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction.

The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All **bit-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located. The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the Call or Return instructions (specified by 's')
- The mode of the Table Read and Table Write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for three double-word instructions. These three instructions were made double-word instructions, so that all the required information is available in these 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 21-1 shows the general formats that the instructions can have.

All examples use the format 'nnh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

The Instruction Set Summary, shown in Table 21-2, lists the instructions recognized by the Microchip Assembler (MPASMTM).

Section 21.1 provides a description of each instruction.

Mnemonic,		Description	Qualas	16-Bit Instruction Word				Status	Neter
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
CONTROL	OPERA	TIONS							
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	2	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	1 (2)	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	—	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	n	Go to address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	_	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation	1	1111	xxxx	xxxx	xxxx	None	4
POP	—	Pop top of return stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	—	Push top of return stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software device RESET	1	0000	0000	1111	1111	All	
RETFIE	S	Return from interrupt enable	2	0000	0000	0001	000s	GIE/GIEH,	
								PEIE/GIEL	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP	—	Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 21-2: PIC18FXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

5: If the Table Write starts the write cycle to internal memory, the write will continue until terminated.

© 2002-2013 Microchip Technology Inc.

CLF	CLRF Clear f		CLI	RWDT	Clear Wa	Clear Watchdog Timer					
Syn	tax:	[<i>label</i>] Cl	_RF f[,a]		Syr	Syntax: [/		[label] CLRWDT			
Оре	erands:	$0 \le f \le 255$	5		Ope	erands:	None				
		a ∈ [0,1]			Ope	Operation: $000h \rightarrow WDT$,					
Оре	eration:	$000h \rightarrow f$					$000h \rightarrow V$	VDT posts	caler,		
_		$1 \rightarrow Z$				$1 \rightarrow IO,$ $1 \rightarrow \overline{PD}$					
Stat	us Affected:	Z			Stor	ue Affected:					
Enc	oding:	0110	101a ff:	ff ffff		us Allecieu.	IO, FD			<u>г</u> 1	
Des	cription:	Clears the contents of the specified			Enc	oding:	0000	0000	0000	0100	
		register. If 'a' is 0, the Access Bank			Des	cription:	CLRWDT instruction resets the				
		will be sele	ected, overric	ling the BSR			Watchdog Timer. It also resets the				
		value. If 'a	value. If a = 1, then the bank will be selected as per the BSR value					\overline{TO} and \overline{PD} are set			
		(default)	u as per me	DOR Value				D ale sel.			
					Wo	rds:	1				
VVO	ds:	1			Сус	Cycles: 1					
Сус	les:	1			Q	Cycle Activity	:				
Q(Cycle Activity:					Q1	Q2	Q3		Q4	
	Q1	Q2	Q3	Q4		Decode	No	Process	5	No	
	Decode	Read	Process	Write			operation	Data	0	peration	
		register i	Dala	register i	E ve	manala i					
Eva	mole:	CLRE	FLAG PEG	1	<u> = Xa</u>	<u>mpie</u> .	CLRWDI				
	<u>Defens</u> lasta			-		Before Instr	uction	0			
		iction EG - Ov	50				unter =	ſ			
	After Instruct	10 – 01. ion	34								
	FLAG RI	EG = 0x	00			WDT Po	stscaler =	0			
						<u>TO</u> PD	=	1 1			

SUBLW	Subtract	Subtract W from literal							
Syntax: [label] SUBLW k									
Operands:	$0 \le k \le 25$	$0 \le k \le 255$							
Operation:	k – (W) –	→ W							
Status Affected:	N, OV, C	DC, Z							
Encoding:	0000	1000 kkk	k kkkk						
Description:	W is subt literal 'k'. in W.	W is subtracted from the eight-bit literal 'k'. The result is placed in W.							
Words:	1								
Cycles:	1								
Q Cycle Activity	:								
Q1	Q2	Q3	Q4						
Decode	Read literal 'k'	Process Data	Write to W						
Example 1:	SUBLW ()x02							
Before Instru	uction								
W	= 1								
C	= ?								
After Instruc	tion								
W	= 1 - 1 ·re	sult is positive							
Z	= 0								
N Everanla O	= 0								
Example 2:	SOBTM (JX02							
Before Instru	lction								
W C	= 2 = ?								
After Instruc	tion								
W	= 0								
C	= 1 ; re	esult is zero							
Ň	= 0								
Example 3:	SUBLW ()x02							
Before Instru	uction								
W	= 3								
С	= ?								
After Instruc	tion								
W	= FF ; (2	's complement	t)						
Z	= 0 ,103	suit is negative							
N	= 1								

Syntax:[label] SUBWF f [,d [,a]Operands: $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ Operation:(f) - (W) \rightarrow destStatus Affected:N, OV, C, DC, ZEncoding: 0101 $11da$ Description:Subtract W from register 'f' (2's complement method). If 'd' is 0, the result is stored back in register 'f' (default). If 'a' is 0, the result is stored back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).Words:1Cycles:1Q Cycle Activity: $Q2$ Q1Q2Q3Q4DecodeRead register 'f'ProcessWrite to destination
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{c cccc} \mbox{Operation:} & (f)-(W) \rightarrow \mbox{dest} \\ \mbox{Status Affected:} & N, OV, C, DC, Z \\ \hline \mbox{Encoding:} & \hline \mbox{0101} & \mbox{11da} & \mbox{ffff} & \mbox{ffff} \\ \hline \mbox{Description:} & \mbox{Subtract W from register 'f' (2's complement method). If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default). \\ \hline \mbox{Words:} & 1 \\ \hline \mbox{Cycles:} & 1 \\ \hline \mbox{Q Cycle Activity:} \\ \hline \mbox{Q 1} & \mbox{Q 2} & \mbox{Q 3} & \mbox{Q 4} \\ \hline \hline \mbox{Decode} & \box{Read} & \box{Process} & \box{Write to} \\ \hline \mbox{Tegister 'f'} & \box{Data} & \box{destination} \\ \hline \end{tabular}$
Status Affected:N, OV, C, DC, ZEncoding:010111daffffffffDescription:Subtract W from register 'f' (2's complement method). If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in regis- ter 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).Words:1Cycles:1Q Cycle Activity:Q1Q2Q3Q4DecodeRead register 'f'Process DataWrite to destination
Encoding:010111daffffffffDescription:Subtract W from register 'f' (2's complement method). If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in regis- ter 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).Words:1Cycles:1Q Cycle Activity:Q1Q1Q2Q3Q4DecodeRead register 'f'ProcessWrite to destination
Description: Subtract W from register 'f' (2's complement method). If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default). Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register 'f' Process Write to destination
Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to register 'f' Data destination
Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to register 'f' Data destination
Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register 'f' Process Data Write to destination
Q1Q2Q3Q4DecodeRead register 'f'Process DataWrite to destination
Decode Read Process Write to register 'f' Data destination
Example 1: SUBWF REG, 1, 0
Before Instruction
REG = 3
After Instruction
REG = 1
C = 1 ; result is positive
Z = 0
Example 2: SUBWE REG. 0. 0
Before Instruction
REG = 2
W = 2
C = ? After Instruction
REG = 2
W = 0
C = 1 ; result is zero
$\overline{N} = 0$
Example 3: SUBWF REG, 1, 0
Before Instruction
REG = 1
C = ?
After Instruction
$REG = FFh \ ; (2's \ complement)$
W = 2 C = 0 result is negative
Z = 0 N = 1

23.1 DC Characteristics: PIC18FXX39 (Industrial, Extended) PIC18LFXX39 (Industrial)

PIC18LFXX39 (Industrial)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial					
PIC18FXX39 (Industrial, Extended)			Stand a Operat	ard Ope ting tem	erating peratu	g Cond ire -	itions (unless otherwise stated) $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended		
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
	Vdd	Supply Voltage							
D001		PIC18LFXX39	2.0	_	5.5	V	HS Osc mode		
D001		PIC18FXX39	4.2	_	5.5	V			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	—	_	V			
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	—	0.7	V	See Section 3.1 (Power-on Reset) for details		
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	_	_	V/ms	See Section 3.1 (Power-on Reset) for details		
	VBOR	Brown-out Reset Voltag	je	•	•	•			
D005		PIC18LFXX39							
		BORV1:BORV0 = 11	1.98	_	2.14	V	$85^{\circ}C \ge T \ge 25^{\circ}C$		
		BORV1:BORV0 = 10	2.67	_	2.89	V			
		BORV1:BORV0 = 01	4.16	—	4.5	V			
		BORV1:BORV0 = 00	4.45	—	4.83	V			
D005		PIC18FXX39							
		BORV1:BORV0 = 1x	N.A.	—	N.A.	V	Not in operating voltage range of device		
		BORV1:BORV0 = 01	4.16	—	4.5	V			
		BORV1:BORV0 = 00	4.45	—	4.83	V			

Legend: Shading of rows is to assist in readability of the table.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).
- **4:** The LVD and BOR modules share a large portion of circuitry. The △IBOR and △ILVD currents are not additive. Once one of these modules is enabled, the other may also be enabled without further penalty.

FIGURE 23-10: PWM TIMINGS (PWM1 AND PWM2)

TABLE 23-9: PWM TIMING REQUIREMENTS (PWM1 AND PWM2)

Param. No.	Symbol	Characteristi	Min	Max	Units	Conditions	
53	TccR	PWMx Output Rise Time	PIC18FXXXX	_	25	ns	
			PIC18LFXXXX	—	60	ns	VDD = 2V
54	TccF	PWMx Output Fall Time	PIC18FXXXX	_	25	ns	
			PIC18LFXXXX	_	60	ns	VDD = 2V

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
100	Тнідн	Clock high time	100 kHz mode	4.0	—	μs	PIC18FXXX must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μs	PIC18FXXX must operate at a minimum of 10 MHz
			SSP Module	1.5 TCY	—		
101	TLOW	Clock low time	100 kHz mode	4.7	—	μs	PIC18FXXX must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μs	PIC18FXXX must operate at a minimum of 10 MHz
			SSP Module	1.5 TCY	—		
102	TR	SDA and SCL rise	100 kHz mode		1000	ns	
	time		400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
103	TF	SDA and SCL fall time	100 kHz mode	—	1000	ns	$V\text{DD} \geq 4.2 V$
	time		400 kHz mode	20 + 0.1 Св	300	ns	$V\text{DD} \geq 4.2 V$
90	TSU:STA S	START condition	100 kHz mode	4.7	—	μs	Only relevant for Repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period, the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	100	—	ns	
92	Tsu:sto	STOP condition	100 kHz mode	4.7	—	μs	
		setup time	400 kHz mode	0.6	—	μs	
109	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	(Note 1)
		clock	400 kHz mode		—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	_	μs	before a new transmission can start
D102	Св	Bus capacitive loading		—	400	pF	

TABLE 23-16: I²C BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but the requirement TSU:DAT \ge 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line. TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification) before the SCL line is released.

28-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		N	1ILLIMETERS	8
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59
Overall Length	D	.695	.704	.712	17.65	17.87	18.08
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle Top	¢	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-013

Drawing No. C04-052

44-Lead Quad Flat No Lead Package (ML) 8x8 mm Body (QFN) Land Pattern and Solder Mask

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		MILLIMETERS*			
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Pitch	р		.026 BSC			0.65 BSC		
Pad Width	В							
Pad Length	L							
Pad to Solder Mask	М	.005		.006	0.13		0.15	

*Controlling Parameter

Drawing No. C04-2103