

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	24KB (12K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1408 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4539-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.13 STATUS Register

The STATUS register, shown in Register 4-2, contains the arithmetic status of the ALU. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV, or N bits, then the write to these five bits is disabled. These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the STATUS register as destination may be different than intended. For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV, or N bits from the STATUS register. For other instructions not affecting any status bits, see Table 21-2.

Note:	The C and DC bits operate as a borrow and
	digit borrow bit respectively, in subtraction.

REGISTER 4-2: STATUS REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—	N	OV	Z	DC	С
bit 7							bit 0

bit 7-5	Unimpler	mented: Read as	s '0'	
bit 4	negative (1 = Resul		arithmetic (2's compl	ement). It indicates whether the result was
bit 3	7-bit mag 1 = Overf	used for signed nitude, which cau	uses the sign bit (bit 7	ement). It indicates an overflow of the 7) to change state. this arithmetic operation)
bit 2	Z: Zero bi	it		
			netic or logic operation netic or logic operation	
bit 1		carry/borrow bit	BLW, and SUBWF instr	uctions
			th low order bit of the	
			4th low order bit of th	
	Note:	complement of	· ·	A subtraction is executed by adding the two's For rotate (RRF, RLF) instructions, this bit is f the source register.
bit 0	C: Carry/	borrow bit		
	For ADDW	F, ADDLW, SU	BLW, and SUBWF instru	ictions
			lost Significant bit of t Most Significant bit of	
	Note:	complement of	the second operand.	A subtraction is executed by adding the two's For rotate (RRF, RLF) instructions, this bit is der bit of the source register.
	Legend:			
	R = Read	able bit	W = Writable bit	U = Unimplemented bit, read as '0'
				•

- n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

6.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit (EECON1<7>), clear the CFGS control bit

EXAMPLE 6-1: DATA EEPROM READ

MOVLW	DATA_EE_ADDR	;
MOVWF	EEADR	; Data Memory Address to read
BCF	EECON1, EEPGD	; Point to DATA memory
BCF	EECON1, CFGS	; Access program FLASH or Data EEPROM memory
BSF	EECON1, RD	; EEPROM Read
MOVF	EEDATA, W	; W = EEDATA

6.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADR register and the data written to the EEDATA register. Then, the sequence in Example 6-2 must be followed to initiate the write cycle.

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code exe-

cution (i.e., runaway programs). The WREN bit should
be kept clear at all times, except when updating the
EEPROM. The WREN bit is not cleared by hardware.

(EECON1<6>), and then set control bit RD

(EECON1<0>). The data is available for the very next

instruction cycle; therefore, the EEDATA register can

be read by the next instruction. EEDATA will hold this

value until another read operation, or until it is written to

by the user (during a write operation).

After a write sequence has been initiated, EECON1, EEADR and EDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared in hardware and the EEPROM Write Complete Interrupt Flag bit (EEIF) is set. The user may either enable this interrupt, or poll this bit. EEIF must be cleared by software.

	MOVLW MOVWF MOVLW MOVWF BCF BCF BSF	EEADR DATA_EE_DATA EEDATA EECON1, EEPGD EECON1, CFGS EECON1, WREN	; Data Memory Value to write ; Point to DATA memory ; Access program FLASH or Data EEPROM memory ; Enable writes
Required Sequence		INTCON, GIE 55h EECON2 AAh	; Disable interrupts ; ; Write 55h ;
	MOVWF BSF BSF		; Write AAh ; Set WR bit to begin write ; Enable interrupts
	• •		; user code execution
	• BCF	EECON1, WREN	; Disable writes on write complete (EEIF set)

EXAMPLE 6-2: DATA EEPROM WRITE

NOTES:

15.1.2 PWM DUTY CYCLE

The PWM duty cycle is set by the Motor Control module when it writes a 10-bit value to the CCPR1L and CCP1CON registers, where CCPR1L contains the eight Most Significant bits and CCP1CON<5:4> contains the two Least Significant bits. The duty cycle time is given by the equation:

PWM duty cycle = (10-bit CCP register value) • Tosc • (TMR2 prescale value)

where Tosc and the duty cycle are in the same unit of time.

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This buffering is essential for glitchless PWM operation. At the same time, the value of TMR2 is concatenated with either an internal 2-bit Q clock, or 2 bits of the TMR2 prescaler. When the CCPR1H:latch pair value matches that of the TMR2:latch pair, the PWM1 pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the equation:

PWM Resolution (max) =
$$\frac{\log(\frac{FOSC}{FPWM})}{\log(2)}$$
 bits

where FPWM is the PWM frequency, or (1/PWM period).

Note: If the PWM duty cycle value is longer than the PWM period, the PWM1 pin will not be cleared.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	—	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	—	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	_	TMR2IP	TMR1IP	0000 0000	0000 0000
TMR2 [*]	*	*	*	*	*	*	*	*	0000 0000	0000 0000
PR2 [*]	*	*	*	*	*	*	*	*	1111 1111	1111 1111
T2CON [*]	*	*	*	*	*	*	*	*	-000 0000	-000 0000
CCPR1L [*]	*	*	*	*	*	*	*	*	xxxx xxxx	uuuu uuuu
CCPR1H	PWM Reg	ister1 (MSB)	(read-only)						xxxx xxxx	uuuu uuuu
CCP1CON*	—	_	*	*	*	*	*	*	00 0000	00 0000
CCPR2L [*]	*	*	*	*	*	*	*	*	xxxx xxxx	uuuu uuuu
CCPR2H [*]	PWM Reg	ister2 (MSB)	(read-only)						xxxx xxxx	uuuu uuuu
CCP2CON*	—	_	*	*	*	*	*	*	00 0000	00 0000
L		-			1 101					

TABLE 15-1: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0' unless otherwise noted. Shaded cells are not used by PWM and Timer2.

These registers are retained to maintain compatibility with PIC18FXX2 devices; however, the indicated bits are reserved in PIC18FXX39 devices. Users should not alter the values of these bits.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X39 devices; always maintain these bits clear.

REGISTER 16-3: SSPSTAT: MSSP STATUS REGISTER (I²C MODE)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
	SMP	CKE	D/A	Р	S	R/W	UA	BF
	bit 7							bit
t 7	In Master of	v Rate Contr or Slave mod	<u>de:</u>	Standard Sn	aad mode (1	00 kHz and	1 M山⁊)	
		rate control e					1 IVII I <i>Z</i>)	
t 6	CKE: SME In Master of	Bus Select bi	t <u>le:</u>	5	,	,		
		e SMBus spe e SMBus spe						
t 5	—	Address bit						
		<u>ode:</u> es that the la es that the la						
t 4		es that a ST bit was not o	letected last					
	Note:		leared on RI	ESET and w	hen SSPEN	is cleared.		
3		bit es that a ST ī bit was not			ed last			
	Note:	This bit is c	leared on RI	ESET and w	hen SSPEN	is cleared.		
t 2	R/W : Read In <u>Slave m</u> 1 = Read 0 = Write	d/Write bit Ini ode:	formation (I ²	C mode only	y)			
	Note:					e last addre: bit, STOP b		
		<u>mode:</u> nit is in progi nit is not in p						
	Note:	ORing this in IDLE mo		, RSEN, PE	N, RCEN, o	r ACKEN wil	l indicate if t	he MSSP i
1	1 = Indicat	e Address (es that the u ss does not r	ser needs to	o update the	address in t	he SSPADD	register	
0		Full Status k		puatoa				
U	<u>In Transmi</u> 1 = Receiv		SSPBUF is					
	<u>In Receive</u> 1 = Data tr	<u>mode:</u> ansmit in pro	ogress (does	s not include		d STOP bits STOP bits),		
			-					
	Legend:							
	R = Reada	ble bit	W = Writab	ole bit	U = Unimp	lemented bit	, read as '0'	
	- n = Value	at POR	'1' = Bit is :	set	'0' = Bit is	cleared	x = Bit is ur	known

16.4.8 I²C MASTER MODE START CONDITION TIMING

To initiate a START condition, the user sets the START condition enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the baud rate generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low, while SCL is high, is the START condition and causes the S bit (SSPSTAT<3>) to be set. Following this, the baud rate generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the baud rate generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware, the baud rate generator is suspended, leaving the SDA line held low and the START condition is complete.

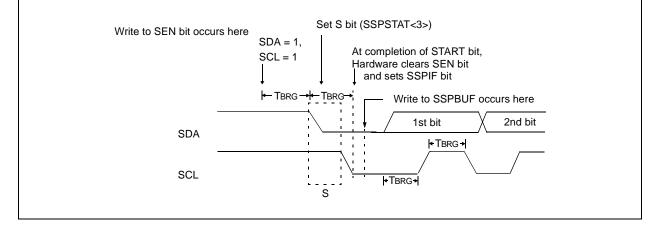
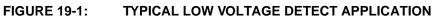

Note: If at the beginning of the START condition, the SDA and SCL pins are already sampled low, or if during the START condition the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF is set, the START condition is aborted, and the I²C module is reset into its IDLE state.

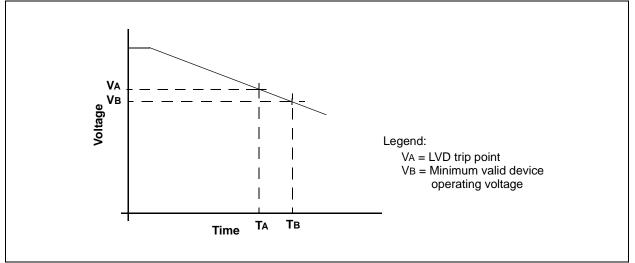
FIGURE 16-19: FIRST START BIT TIMING

16.4.8.1 WCOL Status Flag

If the user writes the SSPBUF when a START sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the START condition is complete.




19.0 LOW VOLTAGE DETECT

In many applications, the ability to determine if the device voltage (VDD) is below a specified voltage level is a desirable feature. A window of operation for the application can be created, where the application software can do "housekeeping tasks" before the device voltage exits the valid operating range. This can be done using the Low Voltage Detect module.

This module is a software programmable circuitry, where a device voltage trip point can be specified. When the voltage of the device becomes lower then the specified point, an interrupt flag is set. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to that interrupt source. The Low Voltage Detect circuitry is completely under software control. This allows the circuitry to be "turned off" by the software, which minimizes the current consumption for the device.

Figure 19-1 shows a possible application voltage curve (typically for batteries). Over time, the device voltage decreases. When the device voltage equals voltage VA, the LVD logic generates an interrupt. This occurs at time TA. The application software then has the time, until the device voltage is no longer in valid operating range, to shutdown the system. Voltage point VB is the minimum valid operating voltage specification. This occurs at time TB. The difference TB – TA is the total time for shutdown.

The block diagram for the LVD module is shown in Figure 19-2. A comparator uses an internally generated reference voltage as the set point. When the selected tap output of the device voltage crosses the set point (is lower than), the LVDIF bit is set.

Each node in the resistor divider represents a "trip point" voltage. The "trip point" voltage is the minimum supply voltage level at which the device can operate before the LVD module asserts an interrupt. When the supply voltage is equal to the trip point, the voltage tapped off of the resistor array is equal to the 1.2V internal reference voltage generated by the voltage reference module. The comparator then generates an interrupt signal setting the LVDIF bit. This voltage is software programmable to any one of 16 values (see Figure 19-2). The trip point is selected by programming the LVDL3:LVDL0 bits (LVDCON<3:0>).

1ER 20-4.	CONFIG4L	CONFIG	URATION	REGISTER	(4LOW (B	TIEADD	XE33 3000	0011)				
	R/P-1	U-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1				
	DEBUG	_	—	—		LVP	—	STVREN				
	bit 7							bit 0				
bit 7	1 = Backgr	ound Debu		nable bit d. RB6 and d. RB6 and I	•	•	• •					
bit 6-3	Unimplem	Unimplemented: Read as '0'										
bit 2	LVP: Low \	/oltage ICS	P Enable bit									
		1 = Low Voltage ICSP enabled 0 = Low Voltage ICSP disabled										
bit 1	Unimplem	Unimplemented: Read as '0'										
bit 0	STVREN: S	STVREN: Stack Full/Underflow Reset Enable bit										
		1 = Stack Full/Underflow will cause RESET 0 = Stack Full/Underflow will not cause RESET										
	Legend:											
	R = Readat	ole bit	C = Cleara	able bit	U = Unin	nplemented	bit, read as	'O'				

REGISTER 20-4:	CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)
----------------	---

- n = Value when device is unprogrammed

u = Unchanged from programmed state

	R	R	R	R	R	R	R	R
	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
	bit 7							bit 0
bit 7-5 bit 4-0	DEV2:DEV0: Device ID bits 000 = PIC18F2539 001 = PIC18F4539 100 = PIC18F2439 101 = PIC18F4439 REV4:REV0: Revision ID bits These bits are used to indicate the device revision.							
	Legend: R = Readable bit P = Programmable bit U = Unimplemented bit, read as '0'							
	- n = Value when device is unprogrammed				u = Uncł	nanged from	programme	ed state

RE

REGISTER 20-12: DEVID2: DEVICE ID REGISTER 2 FOR PIC18FXX39 (BYTE ADDRESS 3FFFFFh)

R	R	R	R	R	R	R	R
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

bit 7-0 DEV10:DEV3: Device ID bits These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the part number.

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when devic	e is unprogrammed	u = Unchanged from programmed state

21 22 23 س osc1 /	Q4;Q1 Q2 Q3 Q4;Q1 ~_/~_/~_/~_/~			; Q1 Q2 Q3 Q4 ;/~_/~_/~_	Q1 Q2 Q3 Q4;	Q1 Q2 Q3 Q4; /~_/~_/
CLKO ⁽⁴⁾		Tost(2)	/	\/	\/ 	
INT pin				1 1 -		
INTF Flag (INTCON<1>)				Interrupt Latency	(3)	
GIEH bit (INTCON<7>)		DCESSOR IN SLEEP		 	1 1 1 1 1 1 1 1	i
INSTRUCTION FLOW	1 I 1 I		1	1	· ·	1
PC X PC	<u>χ PC+2</u> χ	PC+4	PC+4	X PC + 4	<u>χ 0008h</u>	(000Ah
Instruction I Inst(PC) = SLI	EEP Inst(PC + 2)	I	Inst(PC + 4)	1 1 1	Inst(0008h)	Inst(000Ah)
Instruction Executed) SLEEP		Inst(PC + 2)	Dummy Cycle	Dummy Cycle	Inst(0008h)

Note 1: XT, HS or LP Oscillator mode assumed.

2: GIE = 1 assumed. In this case, after wake-up, the processor jumps to the interrupt routine. If GIE = 0, execution will continue in-line.

3: TOST = 1024 TOSC (drawing not to scale). This delay will not occur for RC and EC Osc modes.

4: CLKO is not available in these Osc modes, but shown here for timing reference.

20.4 Program Verification and Code Protection

The overall structure of the code protection on the PIC18 FLASH devices differs significantly from other PIC devices. The user program memory is divided on binary boundaries into individual blocks, each of which has three separate code protection bits associated with it:

- Code Protect bit (CPn)
- Write Protect bit (WRTn)
- External Block Table Read bit (EBTRn)

The code protection bits are located in Configuration Registers 5L through 7H. Their locations within the registers are summarized in Table 20-3.

In the PIC18FXX39 family, program memory is divided into segments of 8 Kbytes. The first block in turn divided into a boot block of 512 bytes and a separately protected remainder (Block 0) of 7.5 Kbytes. This means for PIC18FXX39 devices, that there may be up to five blocks, depending on the program memory size. The organization of the blocks and their associated code protection bits are shown in Figure 20-3. For PIC18FX439 devices, program memory is divided into three blocks: a boot block, Block 0 (7.5 Kbytes) and Block 1 (8 Kbytes). Block 1 is further divided in half; the upper portion above 3000h is reserved, and unavailable to user applications. The entire block can be protected as a whole by bits CP1, WRT1 and EBTR1. By default, Block 1 is not code protected.

For PIC18FX539 devices, program memory is divided into five blocks: the boot block, Block 0 (7.5 Kbytes), and Blocks 1 through 3 (8 Kbytes). Code protection is implemented for the boot block and Blocks 0 through 2. There is no provision for code protection for Block 3.

Note: The reserved segments of the program memory space are used by the Motor Control kernel. For the kernel to function properly, this area must not be write protected. If users are developing applications that require code protection for PIC18FX439 devices, they should restrict program code (or at least those sections requiring protection) to below the 1FFFh memory boundary.

	V	Branch if	Branch if Not Overflow					
Synt	ax:	[label] B	NOV n					
Ope	rands:	-128 ≤ n ≤	127					
Ope	ration:	if overflow (PC) + 2 +						
Statu	us Affected:	None						
Enco	oding:	1110	0101 nn	nn nnnn				
Description:		program w The 2's co added to t have incre instruction PC+2+2n.	flow bit is '0' vill branch. mplement nu he PC. Since mented to fe , the new ad This instruction.	umber '2n' is e the PC will etch the next dress will be ction is then				
Wor	ds:	1	1					
Cycl	es:	1(2)	1(2)					
	Cycle Activity: ump:	_	03	04				
	ump: Q1	Q2	Q3 Process	Q4 Write to PC				
	ump:	_	Q3 Process Data	Q4 Write to PC				
	Ump: Q1 Decode No	Q2 Read literal 'n' No	Process Data No	Write to PC				
lf Ju	Q1 Decode No operation	Q2 Read literal 'n'	Process Data	Write to PC				
lf Ju	Q1 Decode No operation o Jump:	Q2 Read literal 'n' No operation	Process Data No operation	Write to PC No operation				
lf Ju	ump: Q1 Decode No operation o Jump: Q1	Q2 Read literal 'n' No operation Q2	Process Data No operation Q3	Write to PC No operation Q4				
lf Ju	Q1 Decode No operation o Jump:	Q2 Read literal 'n' No operation Q2 Read literal	Process Data No operation Q3 Process	Write to PC No operation Q4 No				
lf Ju	ump: Q1 Decode No operation o Jump: Q1	Q2 Read literal 'n' No operation Q2	Process Data No operation Q3	Write to PC No operation Q4				
lf Ju	ump: Q1 Decode No operation o Jump: Q1	Q2 Read literal 'n' No operation Q2 Read literal	Process Data No operation Q3 Process	Write to PC No operation Q4 No				
lf Ju lf N <u>Exar</u>	ump: Q1 Decode No operation o Jump: Q1 Decode	Q2 Read literal 'n' No operation Q2 Read literal 'n' HERE uction = ad	Process Data No operation Q3 Process Data	Write to PC No operation Q4 No operation				

Synt	ax:	[<i>label</i>] B	NZ n				
Ope	rands:	128 ≤ n ≤					
Ope	ration:		if zero bit is '0' (PC) + 2 + 2n \rightarrow PC				
Statu	us Affected:	None					
Enco	oding:	1110	0001	nnnn	nnnn		
	cription:	If the Zero program w The 2's co added to t have incre instruction PC+2+2n. a two-cycl	vill branc mpleme he PC. mented , the new This in	h. nt numb Since th to fetch w addres structior	per '2n' i le PC w the new ss will b		
Wor	ds:	1					
Cycl	es:	1(2)					
	ycle Activity ump:						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'n'	Proces Data		rite to PC		
	No operation	No operation	No operati	on o	No peration		
If N	o Jump:						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'n'	Proces Data		No peration		

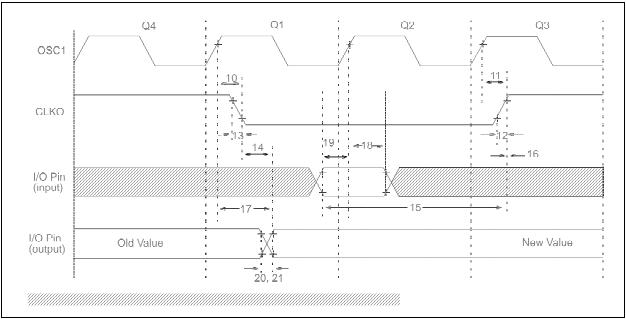
FC	=	address (HERE)
After Instruction		
If Zero PC If Zero PC	= = =	0; address (Jump) 1; address (HERE+2)

BTF	sc	Bit Test Fi	Bit Test File, Skip if Clear					
Synta	ax:	[<i>label</i>] B	FSC f,b	[,a]				
Oper	ands:	$\begin{array}{l} 0\leq f\leq 255\\ 0\leq b\leq 7\\ a\in [0,1] \end{array}$						
Oper	ation:	skip if (f <b< td=""><td>>) = 0</td><td></td><td></td></b<>	>) = 0					
Statu	is Affected:	None						
Enco	oding:	1011	bbba	ffff	ffff			
Encoding: Description:		next instru- If bit 'b' is 0 fetched du execution i executed in cycle instru Access Ba riding the B	If bit 'b' in register 'f' is 0, then the next instruction is skipped. If bit 'b' is 0, then the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a two- cycle instruction. If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' = 1, then the bank will be selected as per the					
Word	ds:	1	(,					
Cycle	es:							
QC	ycle Activity:	•	0.0		~ /			
	Q1 Decode	Q2 Read	Q3 Process D	ata	Q4 No			
	Decode	register 'f'	1100000 D		eration			
lf sk	ip:							
	Q1	Q2	Q3		Q4			
	No operation	No operation	No operatio	n op	No eration			
lf sk	ip and follow							
	Q1	Q2	Q3		Q4			
	No	No	No		No			
	operation No	operation No	operatio No	n op	eration No			
	operation	operation	operatio	n op	eration			
<u>Exan</u>	nple:	HERE B' FALSE : TRUE :	TFSC F	LAG, 1,	. 0			
I	Before Instru PC		iress (HER	E)				
,	After Instructi If FLAG<´ PC If FLAG<´ PC	l> = 0; = add l> = 1;	iress (TRU iress (FAI					

BTFSS		Bit Test File, Skip if Set					
Syntax:		[<i>label</i>] BTFSS f,b[,a]					
Operands:	$0 \le f \le 255$						
	0 ≤ b ≤ 7 a ∈ [0,1]						
Operation) _ 1					
Operation:	skip if (f <b< td=""><td>>) = 1</td><td></td></b<>	>) = 1					
Status Affected:	None						
Encoding:	1010	bbba ff	ff ffff				
Words: Cycles:	If bit 'b' is 1 fetched dur tion execut NOP is exec a two-cycle Access Bar riding the E the bank w BSR value 1 1(2)	ring the curre ion, is discar cuted insteac e instruction. nk will be sel SSR value. If ill be selecte	xt instruction ent instruc- ded and a I, making this If 'a' is 0, the ected, over- 'a' = 1, then d as per the				
	by						
	-	a 2-word ins					
Q Cycle Activity:		a 2-word ins	truction.				
Q Cycle Activity: Q1 Decode	-						
Q1	Q2	a 2-word ins Q3	truction. Q4				
Q1	Q2 Read	a 2-word ins Q3	truction. Q4 No				
Q1 Decode	Q2 Read	a 2-word ins Q3	truction. Q4 No				
Q1 Decode If skip: Q1 No	Q2 Read register 'f' Q2 No	a 2-word ins Q3 Process Data Q3 No	truction. Q4 No operation Q4 No				
Q1 Decode If skip: Q1 No operation	Q2 Read register 'f' Q2 No operation	a 2-word ins Q3 Process Data Q3 No operation	truction. Q4 No operation Q4				
Q1 Decode If skip: Q1 No	Q2 Read register 'f' Q2 No operation	a 2-word ins Q3 Process Data Q3 No operation	truction. Q4 No operation Q4 No				
Q1 Decode If skip: Q1 No operation If skip and follow Q1	Q2 Read register 'f' Q2 No operation red by 2-word Q2	a 2-word ins Q3 Process Data Q3 No operation instruction: Q3	truction. Q4 No operation Q4 No operation Q4				
Q1 Decode If skip: Q1 No operation If skip and follow Q1 No	Q2 Read register 'f' Q2 No operation red by 2-word Q2 No	a 2-word ins Q3 Process Data Q3 No operation instruction: Q3 No	truction. Q4 No operation Q4 No operation Q4 No				
Q1 Decode If skip: Q1 No operation If skip and follow Q1 No operation	Q2 Read register 'f' Q2 No operation red by 2-word Q2 No operation	a 2-word ins Q3 Process Data Q3 No operation instruction: Q3 No operation	truction. Q4 No operation Q4 No operation Q4 No operation				
Q1 Decode If skip: Q1 No operation If skip and follow Q1 No	Q2 Read register 'f' Q2 No operation red by 2-word Q2 No	a 2-word ins Q3 Process Data Q3 No operation instruction: Q3 No	truction. Q4 No operation Q4 No operation Q4 No operation No				
Q1 Decode If skip: Q1 No operation If skip and follow Q1 No operation No	Q2 Read register 'f' Q2 No operation red by 2-word Q2 No operation No	a 2-word ins Q3 Process Data Q3 No operation instruction: Q3 No operation No	truction. Q4 No operation Q4 No operation Q4 No operation				
Q1 Decode If skip: Q1 No operation If skip and follow Q1 No operation No operation	Q2 Read register 'f' Q2 No operation Q2 No operation No operation	a 2-word ins Q3 Process Data Q3 No operation instruction: Q3 No operation No	truction. Q4 No operation Q4 No operation Q4 No operation No operation				
Q1 Decode If skip: Q1 No operation If skip and follow Q1 No operation No operation	Q2 Read register 'f' Q2 No operation ved by 2-word Q2 No operation No operation HERE B' FALSE : TRUE :	a 2-word ins Q3 Process Data Q3 No operation No operation No operation	truction. Q4 No operation Q4 No operation Q4 No operation No operation				
Q1 Decode If skip: Q1 No operation If skip and follow Q1 No operation No operation	Q2 Read register 'f' Q2 No operation red by 2-word Q2 No operation No operation HERE B' FALSE : TRUE :	a 2-word ins Q3 Process Data Q3 No operation No operation No operation	truction. Q4 No operation Q4 No operation Q4 No operation No operation				
Q1 Decode If skip: Q1 No operation If skip and follow Q1 No operation No operation Example: Before Instruct PC After Instruct	Q2 Read register 'f' Q2 No operation red by 2-word Q2 No operation No operation No operation HERE B' FALSE : TRUE : truE :	a 2-word ins Q3 Process Data Q3 No operation No operation No operation	truction. Q4 No operation Q4 No operation Q4 No operation No operation				
Q1 Decode If skip: Q1 No operation If skip and follow Q1 No operation No operation Example: Before Instru PC	Q2 Read register 'f' Q2 No operation red by 2-word Q2 No operation No operation HERE B' FALSE : TRUE : iction = add ion 1> = 0;	a 2-word ins Q3 Process Data Q3 No operation No operation No operation	truction. Q4 No operation Q4 No operation Q4 No operation S, 1, 0				

22.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.


22.14 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

22.15 KEELOQ Evaluation and Programming Tools

KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

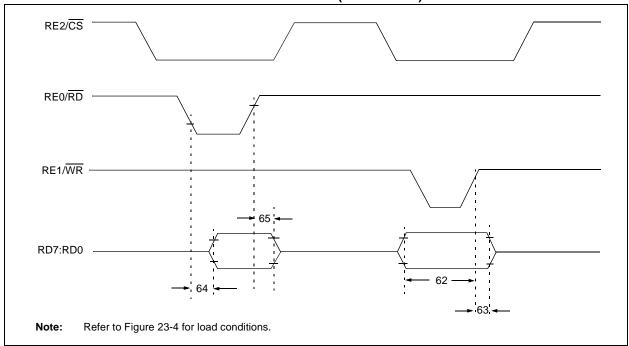


TABLE 23-6: CLKO AND I/O TIMING REQUIREMENTS

Param. No.	Symbol	Characteristi	c	Min	Тур	Max	Units	Conditions
10	TosH2ckL	OSC1↑ to CLKO↓		—	75	200	ns	(Note 1)
11	TosH2ckH	OSC1↑ to CLKO↑		—	75	200	ns	(Note 1)
12	TckR	CLKO rise time		—	35	100	ns	(Note 1)
13	TckF	CLKO fall time		—	35	100	ns	(Note 1)
14	TckL2ioV	CLKO↓ to Port out valid		—	_	0.5 Tcy + 20	ns	(Note 1)
15	TioV2ckH	Port in valid before CLKO \uparrow		0.25 TCY + 25	_	_	ns	(Note 1)
16	TckH2iol	Port in hold after CLKO ↑		0			ns	(Note 1)
17	TosH2ioV	OSC1↑ (Q1 cycle) to Port ou	ıt valid	—	50	150	ns	
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port	PIC18FXXXX	100	_	_	ns	
18A		input invalid (I/O in hold time)	PIC18 LF XXXX	200		—	ns	
19	TioV2osH	Port input valid to OSC1 [↑] (I/O	in setup time)	0		_	ns	
20	TioR	Port output rise time	PIC18FXXXX	—	10	25	ns	
20A			PIC18 LF XXXX	—		60	ns	Vdd = 2V
21	TioF	Port output fall time	PIC18 F XXXX		10	25	ns	
21A			PIC18LFXXXX		_	60	ns	Vdd = 2V
22††	Tinp	INT pin high or low time		Тсү	_	—	ns	
23††	Trbp	RB7:RB4 change INT high o	r low time	Тсү	_	—	ns	
24††	TRCP	RC7:RC4 change INT high c	or low time	20			ns	

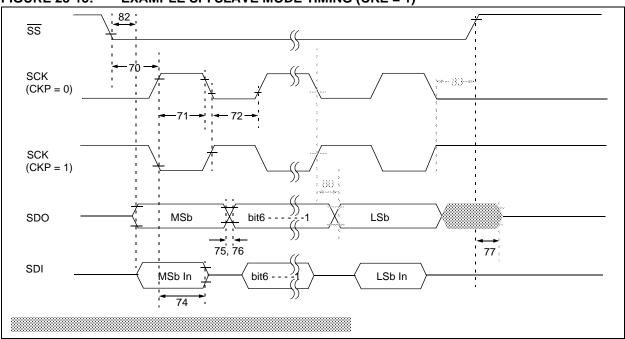
these parameters are asynchronous events not related to any internal clock edges.

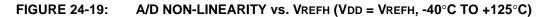
Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.

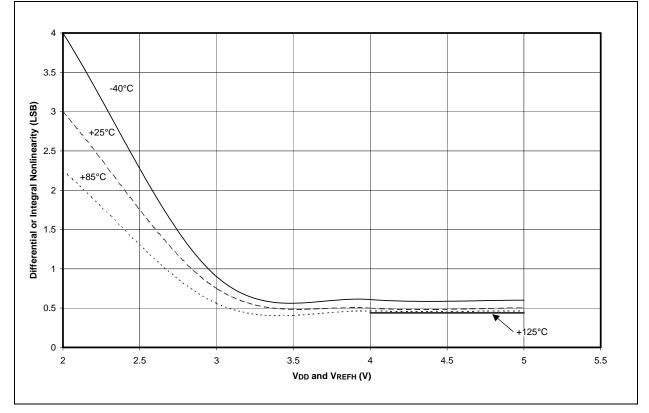
FIGURE 23-11: PARALLEL SLAVE PORT TIMING (PIC18F4X39)

TABLE 23-10: PARALLEL SLAVE PORT REQUIREMENTS (PIC18F4X39)

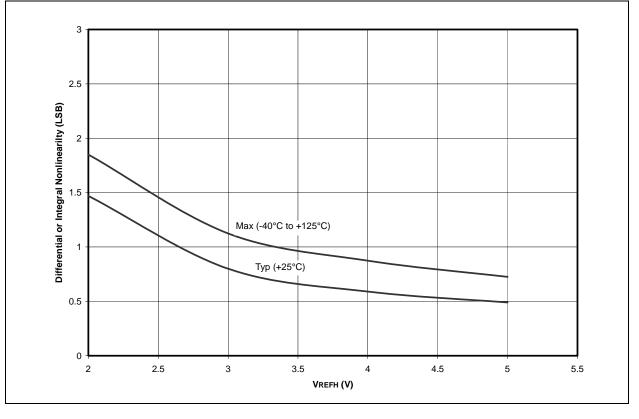
Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
62	TdtV2wrH	Data in valid before WR↑ or CS↑ (setup time)		20 25		ns ns	Extended Temp. Range
63	63 TwrH2dtl \overline{WR}^{\uparrow} or \overline{CS}^{\uparrow} to data–in invalid		PIC18FXXXX	20	_	ns	
		(hold time) PIC18LFXXXX		35	_	ns	VDD = 2V
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid			80 90	ns ns	Extended Temp. Range
65	TrdH2dtl	\overline{RD} for \overline{CS} to data–out invalid		10	30	ns	
66	TibfINH	Inhibit of the IBF flag bit being c WR \uparrow or CS \uparrow	leared from		3 TCY		




FIGURE 23-15: EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)

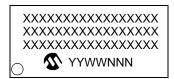

TABLE 23-14: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	\overline{SS} to SCK \downarrow or SCK \uparrow input		Тсү	—	ns	
71	TscH	SCK input high time	Continuous	1.25 Tcy + 30		ns	
71A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25 Tcy + 30		ns	
72A		(Slave mode)	Single Byte	40	—	ns	(Note 1)
73A	Тв2в	Last clock edge of Byte 1 to the first cloc	k edge of Byte 2	1.5 Tcy + 40	—	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK ed	ge	100	—	ns	
75	TdoR	SDO data output rise time	PIC18FXXXX	_	25	ns	
			PIC18LFXXXX		60	ns	VDD = 2V
76	TdoF	SDO data output fall time	PIC18FXXXX		25	ns	
			PIC18LFXXXX		60	ns	VDD = 2V
77	TssH2doZ	SS↑ to SDO output hi-impedance		10	50	ns	
78	TscR	SCK output rise time (Master mode)	PIC18FXXXX	_	25	ns	
			PIC18LFXXXX	_	60	ns	VDD = 2V
79	TscF	SCK output fall time (Master mode)	PIC18 F XXXX	_	25	ns	
			PIC18LFXXXX		60	ns	VDD = 2V
80	TscH2doV,	SDO data output valid after SCK	PIC18FXXXX	_	50	ns	
	TscL2doV	edge	PIC18LFXXXX	_	150	ns	VDD = 2V
82	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge	PIC18FXXXX		50	ns	
			PIC18LFXXXX		150	ns	VDD = 2V
83	TscH2ssH, TscL2ssH			1.5 TCY + 40	_	ns	


Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

25.0 PACKAGING INFORMATION


25.1 Package Marking Information

28-Lead PDIP (Skinny DIP)

28-Lead SOIC

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

© 2002-2013 Microchip Technology Inc.

Programming, Device Instructions2	11
PSP.See Parallel Slave Port.	
Pulse Width Modulation (PWM)1	23
Pulse Width Modulation. See PWM.	
PUSH2	40
PWM	
Associated Registers1	24
CCPR1H:CCPR1L Registers1	23
	20
Duty Cycle1	24
	24
Duty Cycle1	24 23

Q

Q Clock		124
---------	--	-----

R	
RAM. See Data Memory	
RCALL	241
RCSTA Register	
SPEN Bit	165
Register File	
Registers	
ADCON0 (A/D Control 0)	
ADCON1 (A/D Control 1)	
CCP1CON and CCP2CON (PWM Control)	
CONFIG1H (Configuration 1 High)	
CONFIG2H (Configuration 2 High)	
CONFIG2L (Configuration 2 Low)	
CONFIG4L (Configuration 4 Low)	
CONFIG5H (Configuration 5 High)	
CONFIG5L (Configuration 5 Low)	
CONFIG6H (Configuration 6 High)	
CONFIG6L (Configuration 6 Low)	
CONFIG7H (Configuration 7 High)	
CONFIG7L (Configuration 7 Low)	
DEVID1 (Device ID 1)	
DEVID2 (Device ID 2)	
EECON1 (Data EEPROM Control 1)	
File Summary	
INTCON (Interrupt Control)	
INTCON2 (Interrupt Control 2)	
INTCON3 (Interrupt Control 3)	
IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2)	70
LVDCON (LVD Control) PIE1 (Peripheral Interrupt Enable 1)	
PIE2 (Peripheral Interrupt Enable 2)	
PIR1 (Peripheral Interrupt Request 1) PIR2 (Peripheral Interrupt Request 2)	
RCON (Register Control)	۲۵۲۵ ۵۵
RCON (RESET Control)	
RCSTA (Receive Status and Control)	
SSPCON1 (MSSP Control 1)	107
SPI Mode	127
SSPCON1 (MSSP Control 1), I ² C Mode	، 127 136
SSPCON2 (MSSP Control 2), I ² C Mode	130
SSPSTAT (MSSP Status)	
SPI Mode	126
SSPSTAT (MSSP Status), I ² C Mode	120
STATUS	
STKPTR (Stack Pointer)	-
T0CON (Timer0 Control)	
T1CON (Timer 1 Control)	
T2CON (Timer 2 Control)	
T3CON (Timer3 Control)	
TRISE	

TXSTA (Transmit Status and Control)	
WDTCON (Watchdog Timer Control)	
RESET	
Brown-out Reset (BOR)	
MCLR Reset (During SLEEP)	23
MCLR Reset (Normal Operation)	
Oscillator Start-up Timer (OST)	
Power-on Reset (POR)	
Power-up Timer (PWRT)	· · · ·
Programmable Brown-out Reset (BOR)	
RESET Instruction	
Stack Full Reset	-
Stack Underflow Reset	
Watchdog Timer (WDT) Reset	
RETFIE	
RETLW	
RETURN	
Return Address Stack	
Associated Registers	
Pointer (STKPTR)	
Top-of-Stack Access	
Revision History	
,	
RLCF	
RLNCF	
RRCF	
RRNCF	

S

SCI. See USART	
SCK	
SDI	125
SDO	125
Serial Clock, SCK	125
Serial Communication Interface. See USART	
Serial Data In, SDI	
Serial Data Out, SDO	125
Serial Peripheral Interface. See SPI Mode	
SETF	245
Single Phase Induction Motor Control Module.	
See Motor Control	
Slave Select Synchronization	
Slave Select, SS	
SLEEP	
Software Simulator (MPLAB SIM)	
Special Features of the CPU	195
Configuration Registers	
Special Function Registers	39
Мар	42
SPI Mode	
•	
SPI Mode	133
SPI Mode Associated Registers	133 133
SPI Mode Associated Registers Bus Mode Compatibility	133 133 133
SPI Mode Associated Registers Bus Mode Compatibility Effects of a RESET Master Mode	
SPI Mode Associated Registers Bus Mode Compatibility Effects of a RESET	
SPI Mode Associated Registers Bus Mode Compatibility Effects of a RESET Master Mode Master/Slave Connection	
SPI Mode Associated Registers Bus Mode Compatibility Effects of a RESET Master Mode Master/Slave Connection Overview	
SPI Mode Associated Registers Bus Mode Compatibility Effects of a RESET Master Mode Master/Slave Connection Overview Serial Clock Serial Data In	
SPI Mode Associated Registers Bus Mode Compatibility Effects of a RESET Master Mode Master/Slave Connection Overview Serial Clock Serial Data In Serial Data Out	
SPI Mode Associated Registers Bus Mode Compatibility Effects of a RESET Master Mode Master/Slave Connection Overview Serial Clock Serial Data In Serial Data Out Slave Mode	
SPI Mode Associated Registers Bus Mode Compatibility Effects of a RESET Master Mode Master/Slave Connection Overview Serial Clock Serial Data In Serial Data Out Slave Mode Slave Select	
SPI Mode Associated Registers Bus Mode Compatibility Effects of a RESET Master Mode Master/Slave Connection Overview Serial Clock Serial Data In Serial Data In Serial Data Out Slave Mode Slave Select Slave Select Synchronization	
SPI Mode Associated Registers Bus Mode Compatibility Effects of a RESET Master Mode Overview Serial Clock Serial Data In Serial Data In Serial Data Out Slave Mode Slave Select Slave Select Synchronization Slave Synch Timing	
SPI Mode Associated Registers Bus Mode Compatibility Effects of a RESET Master Mode Overview Serial Clock Serial Data In Serial Data Out Slave Mode Slave Select Slave Select Slave Select Synchronization Slave Synch Timing SLEEP Operation	133 133 133 130 129 125 125 125 125 125 125 125 125 131 125 131 125 131 131
SPI Mode Associated Registers Bus Mode Compatibility Effects of a RESET Master Mode Overview Serial Clock Serial Data In Serial Data Out Slave Mode Slave Select Slave Select Slave Select Slave Select Slave Synch Timing SLEEP Operation SPI Clock	
SPI Mode Associated Registers Bus Mode Compatibility Effects of a RESET Master Mode Overview Serial Clock Serial Data In Serial Data Out Slave Mode Slave Select Slave Select Slave Select Synchronization Slave Synch Timing SLEEP Operation	133 133 133 130 129 125 125 125 125 125 125 125 131 131 131 133 130 125

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support