

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	24KB (12K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1408 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4539t-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-1: SPECIAL FUNCTION REGISTER MAP

Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽³⁾	FBFh	CCPR1H	F9Fh	IPR1
FFEh	TOSH	FDEh	POSTINC2 ⁽³⁾	FBEh	CCPR1L [*]	F9Eh	PIR1
FFDh	TOSL	FDDh	POSTDEC2 ⁽³⁾	FBDh	CCP1CON*	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2 ⁽³⁾	FBCh	CCPR2H	F9Ch	_
FFBh	PCLATU	FDBh	PLUSW2 ⁽³⁾	FBBh	CCPR2L [*]	F9Bh	—
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP2CON [*]	F9Ah	_
FF9h	PCL	FD9h	FSR2L	FB9h		F99h	_
FF8h	TBLPTRU	FD8h	STATUS	FB8h	_	F98h	—
FF7h	TBLPTRH	FD7h	TMR0H	FB7h		F97h	_
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	—	F96h	TRISE ⁽²⁾
FF5h	TABLAT	FD5h	TOCON	FB5h	—	F95h	TRISD ⁽²⁾
FF4h	PRODH	FD4h	_	FB4h	—	F94h	TRISC ⁽⁴⁾
FF3h	PRODL	FD3h	OSCCON [*]	FB3h	TMR3H	F93h	TRISB
FF2h	INTCON	FD2h	LVDCON	FB2h	TMR3L	F92h	TRISA
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	—
FF0h	INTCON3	FD0h	RCON	FB0h	—	F90h	—
FEFh	INDF0 ⁽³⁾	FCFh	TMR1H	FAFh	SPBRG	F8Fh	—
FEEh	POSTINC0 ⁽³⁾	FCEh	TMR1L	FAEh	RCREG	F8Eh	—
FEDh	POSTDEC0 ⁽³⁾	FCDh	T1CON	FADh	TXREG	F8Dh	LATE ⁽²⁾
FECh	PREINC0 ⁽³⁾	FCCh	TMR2 [*]	FACh	TXSTA	F8Ch	LATD ⁽²⁾
FEBh	PLUSW0 ⁽³⁾	FCBh	PR2 [*]	FABh	RCSTA	F8Bh	LATC ⁽⁴⁾
FEAh	FSR0H	FCAh	T2CON [*]	FAAh	_	F8Ah	LATB
FE9h	FSR0L	FC9h	SSPBUF	FA9h	EEADR	F89h	LATA
FE8h	WREG	FC8h	SSPADD	FA8h	EEDATA	F88h	—
FE7h	INDF1 ⁽³⁾	FC7h	SSPSTAT	FA7h	EECON2	F87h	—
FE6h	POSTINC1 ⁽³⁾	FC6h	SSPCON1	FA6h	EECON1	F86h	
FE5h	POSTDEC1 ⁽³⁾	FC5h	SSPCON2	FA5h	_	F85h	_
FE4h	PREINC1 ⁽³⁾	FC4h	ADRESH	FA4h	—	F84h	PORTE ⁽²⁾
FE3h	PLUSW1 ⁽³⁾	FC3h	ADRESL	FA3h		F83h	PORTD ⁽²⁾
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC ⁽⁴⁾
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE0h	BSR	FC0h	—	FA0h	PIE2	F80h	PORTA

* These registers are retained to maintain compatibility with PIC18FXX2 devices; however, one or more bits are reserved in PIC18FXX39 devices. Users should not alter the values of these bits.

Note 1: Unimplemented registers are read as '0'.

2: This register is not available on PIC18F2X39 devices.

3: This is not a physical register.

4: Bits 1 and 2 are reserved; users should not alter their values.

Figure 13-1 is a simplified block diagram of the Timer3

Register 13-1 shows the Timer1 control register, which

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

sets the Operating mode of the Timer1 module.

13.0 TIMER3 MODULE

The Timer3 module timer/counter has the following features:

- 16-bit timer/counter (two 8-bit registers: TMR3H and TMR3L)
- Readable and writable (both registers)
- Internal or external clock select
- Interrupt-on-overflow from FFFFh to 0000h

REGISTER 13-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 T3CKPS1 **T3SYNC RD16** T3CKPS0 ____ TMR3CS TMR3ON bit 7 bit 0 bit 7 RD16: 16-bit Read/Write Mode Enable bit 1 = Enables register read/write of Timer3 in one 16-bit operation 0 = Enables register read/write of Timer3 in two 8-bit operations bit 6, 3 Unimplemented: Maintain as '0' bit 5, 4 T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value bit 2 T3SYNC: Timer3 External Clock Input Synchronization Control bit (Not usable if the system clock comes from Timer1/Timer3) When TMR3CS = 1: 1 = Do not synchronize external clock input 0 = Synchronize external clock input When TMR3CS = 0: This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0. bit 1 TMR3CS: Timer3 Clock Source Select bit 1 = External clock input from T13CKI (on the rising edge after the first falling edge) 0 = Internal clock (Fosc/4) bit 0 TMR3ON: Timer3 On bit 1 = Enables Timer3 0 = Stops Timer3 Legend:

module.

R = Readable bit

- n = Value at POR

W = Writable bit

'1' = Bit is set

x = Bit is unknown

13.1 Timer3 Operation

Timer3 can operate in one of these modes:

- · As a timer
- As a synchronous counter
- As an asynchronous counter

FIGURE 13-1: TIMER3 BLOCK DIAGRAM

The Operating mode is determined by the clock select bit, TMR3CS (T3CON<1>). When TMR3CS = 0, Timer3 increments every instruction cycle. When TMR3CS = 1, Timer3 increments on every rising edge of the Timer1 external clock input.

FIGURE 13-2: TIMER3 BLOCK DIAGRAM CONFIGURED IN 16-BIT READ/WRITE MODE

14.3.3 ProMPT API METHODS

There are 27 separate API methods for the ProMPT kernel:

Note: The operation of the Motor Control kernel and its APIs is based on an assumed clock frequency of 20 MHz. Changing the oscillator frequency will change the timing used in the Motor Control kernel accordingly. To achieve the best results in motor control applications, a clock frequency of 20 MHz is highly recommended.

void ProMPT_ClearTick(void)

Resources used: 0 stack levels

Description: This function clears the Tick (62.5 ms) timer flag returned by ProMPT_tick(). This function must be called by any routine that is used for timing purposes.

void ProMPT_DisableBoostMode(void)

Resources used: 0 stack levels

Description: This function disables the Boost mode logic. This method should be called before changing any of the Boost mode parameters.

void ProMPT_EnableBoostMode(void)

Resources used: 0 stack levels

Description: This function enables the Boost mode logic. Boost mode is entered when a stopped drive is commanded to start. The drive will immediately go to Boost Frequency and ramp from Start Modulation to End Modulation over the time period, Boost Time.

unsigned char ProMPT_GetAccelRate(void)

Resources used: 1 stack level

Range of values: 0 to 255

Description: Returns the current Acceleration Rate in Hz/second.

unsigned char ProMPT_GetBoostEndModulation(void)

Resources used: 1 stack level

Range of values: 0 to 200

Description: Returns the current End Modulation (in %) used in the boost logic.

unsigned char ProMPT_GetBoostFrequency(void) Resources used: 1 stack level Range of values: 0 to 127 Description: Returns the current Boost Frequency in Hz.

unsigned char ProMPT_GetBoostStartModulation(void)
Resources used: 1 stack level
Range of values: 0 to BoostEndModulation
Description: Returns the Start Modulation (in %) used in the Boost logic.

© 2002-2013 Microchip Technology Inc.

NOTES:

16.4.2 OPERATION

The MSSP module functions are enabled by setting MSSP Enable bit, SSPEN (SSPCON<5>).

The SSPCON1 register allows control of the I²C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I²C modes to be selected:

- I²C Master mode, clock = OSC/4 (SSPADD +1)
- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with START and STOP bit interrupts enabled
- I²C Slave mode (10-bit address), with START and STOP bit interrupts enabled
- I²C Firmware controlled master operation, slave is IDLE

Selection of any I²C mode, with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits. To ensure proper operation of the module, pull-up resistors must be provided externally to the SCL and SDA pins.

16.4.3 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The MSSP module will override the input state with the output data when required (slave-transmitter).

The I²C Slave mode hardware will always generate an interrupt on an address match. Through the mode select bits, the user can also choose to interrupt on START and STOP bits

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse and load the SSPBUF register with the received value currently in the SSPSR register.

Any combination of the following conditions will cause the MSSP module not to give this \overline{ACK} pulse:

- The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. The BF bit is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, are shown in timing parameter 100 and parameter 101.

16.4.3.1 Addressing

Once the MSSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- 1. The SSPSR register value is loaded into the SSPBUF register.
- 2. The buffer full bit BF is set.
- 3. An ACK pulse is generated.
- 4. MSSP interrupt flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) on the falling edge of the ninth SCL pulse.

In 10-bit Address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '11110 A9 A8 0', where 'A9' and 'A8' are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7 through 9 for the slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF and bit UA (SSPSTAT<1>) are set).
- 2. Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of Address. If match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated START condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

17.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 17-1 shows the formula for computation of the baud rate for different USART modes, which only apply in Master mode (internal clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRG register can be calculated using the formula in Table 17-1. From this, the error in baud rate can be determined. Example 17-1 shows the calculation of the baud rate error for the following conditions:

- Fosc = 16 MHz
- Desired Baud Rate = 9600
- BRGH = 0
- SYNC = 0

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the FOSC/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

17.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

EXAMPLE 17-1: CALCULATING BAUD RATE ERROR

Desired Baud Rate	= Fosc / $(64 (X + 1))$
Solving for X:	
X X X	= $((Fosc / Desired Baud Rate) / 64) - 1$ = $((16000000 / 9600) / 64) - 1$ = $[25.042] = 25$
Calculated Baud Rate	= 16000000 / (64 (25 + 1)) = 9615
Error	 <u>(Calculated Baud Rate – Desired Baud Rate)</u> Desired Baud Rate (9615 – 9600) / 9600 0.16%

TABLE 17-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate = Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	N/A

Legend: X = value in SPBRG (0 to 255)

TABLE 17-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
SPBRG	Baud Ra	te Genera	0000 0000	0000 0000						

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	—	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	—	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	—	TMR2IP	TMR1IP	0000 0000	0000 0000
PIR2	_	—	_	EEIF	BCLIF	LVDIF	TMR3IF	—	0 0000	0 0000
PIE2	—	—		EEIE	BCLIE	LVDIE	TMR3IE	—	0 0000	0 0000
IPR2	—	—		EEIP	BCLIP	LVDIP	TMR3IP	—	1 1111	1 0000
ADRESH	A/D Resul	t Register							xxxx xxxx	uuuu uuuu
ADRESL	A/D Resul	t Register							xxxx xxxx	uuuu uuuu
ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0
ADCON1	ADFM	ADCS2			PCFG3	PCFG2	PCFG1	PCFG0	000	000
PORTA	_	RA6	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
TRISA		PORTA D	ata Directio	on Register					11 1111	11 1111
PORTE	—	—	_	_	—	RE2	RE1	RE0	000	000
LATE	—	—	—	_	—	LATE2	LATE1	LATE0	xxx	uuu
TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Dat	a Direction	bits	0000 -111	0000 -111

TABLE 18-2: SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X39 devices; always maintain these bits clear.

ADDWFC	ADD W ar	ADD W and Carry bit to f							
Syntax:	[label] Al	[<i>label</i>] ADDWFC f [,d [,a]							
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$							
Operation:	(W) + (f) +	$(C) \rightarrow d$	est						
Status Affected:	N,OV, C, [N,OV, C, DC, Z							
Encoding:	0010	00da	ffff	ffff					
Description:	Flag and (. If 'd' is (V. If 'd' is lata mem e Access a' is 1, th en.	data), the 1, the ory loca- Bank be BSR							
Words:	1								
Cycles:	1	1							
Q Cycle Activity:									
Q1	Q2	Q3		Q4					
Decode	Read register 'f'	Proces Data	s Wr dest	ite to ination					
Example:	ADDWFC	REG,	0, 1						
Before Instru	iction								
Carry bit REG	= 1 = 0x02								
W	= 0x4D								
After Instruct	tion								
Carry bit REG	= 0 = 0x02								

ANDLW	AND liter	AND literal with W						
Syntax:	[label] A	[<i>label</i>] ANDLW k						
Operands:	$0 \le k \le 25$	$0 \le k \le 255$						
Operation:	(W) .AND	$k \rightarrow W$						
Status Affected:	N,Z							
Encoding:	0000	1011	kkkk	kkkk				
Description:	The conte the 8-bit li placed in	ents of W iteral 'k'. W.	/ are ANI The resu	Ded with ult is				
Words:	1	1						
Cycles:	1							
Q Cycle Activity	:							
Q1	Q2	Q3	3	Q4				
Decode	Read literal 'k'	Proce Data	ss Wi a	rite to W				
Example:	ANDLW	0x5F						

Before Instruction W = 0xA3After Instruction W = 0x03

W

0x50

=

23.1 DC Characteristics: PIC18FXX39 (Industrial, Extended) PIC18LFXX39 (Industrial) (Continued)

PIC18LFXX39 (Industrial)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
PIC18FXX39 (Industrial, Extended)			Standa Operat	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended						
Param No.	Symbol	bol Characteristic Min Typ Max Units					Conditions			
	Idd	Supply Current ⁽²⁾								
D010C		PIC18LFXX39	_	10	25	mA	EC, ECIO osc configurations VDD = 4.2V, -40°C to +85°C			
D010C		PIC18FXX39	_	10	25	mA	EC, ECIO osc configurations VDD = 4.2V, -40°C to +125°C			
D013		PIC18LFXX39	_	10 15	15 25	mA mA	HS osc configuration Fosc = 25 MHz, VDD = $5.5V$ HS + PLL osc configurations Fosc = 10 MHz, VDD = $5.5V$			
D013		PIC18FXX39	_	10 15	15 25	mA mA	HS osc configuration Fosc = 25 MHz, VDD = $5.5V$ HS + PLL osc configurations Fosc = 10 MHz, VDD = $5.5V$			
	IPD	Power-down Current ⁽³⁾								
D020		PIC18LFXX39		0.08 0.1 3	0.9 4 10	μΑ μΑ μΑ	VDD = 2.0V, +25°C VDD = 2.0V, -40°C to +85°C VDD = 4.2V, -40°C to +85°C			
D020 D021B		PIC18FXX39		.1 3 15	.9 10 25	μΑ μΑ μΑ	VDD = 4.2V, +25°C VDD = 4.2V, -40°C to +85°C VDD = 4.2V, -40°C to +125°C			

Legend: Shading of rows is to assist in readability of the table.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode, or during a device RESET, without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD

- MCLR = VDD; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).
- **4:** The LVD and BOR modules share a large portion of circuitry. The △IBOR and △ILVD currents are not additive. Once one of these modules is enabled, the other may also be enabled without further penalty.

23.2 DC Characteristics: PIC18FXX39 (Industrial, Extended) PIC18LFXX39 (Industrial)

DC CHA	RACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$					
Param No.	Symbol	ol Characteristic Min Max		Max	Units	Conditions		
	VIL	Input Low Voltage						
		I/O ports:						
D030		with TTL buffer	Vss	0.15 Vdd	V	Vdd < 4.5V		
D030A			—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D031		with Schmitt Trigger buffer RC3 and RC4	Vss Vss	0.2 Vdd 0.3 Vdd	V V			
D032		MCLR	Vss	0.2 Vdd	V			
D032A		OSC1 (HS mode)	Vss	0.3 Vdd	V			
D033		OSC1 (EC mode)	Vss	0.2 Vdd	V			
	Vih	Input High Voltage						
		I/O ports:						
D040		with TTL buffer	0.25 VDD + 0.8V	Vdd	V	Vdd < 4.5V		
D040A			2.0	Vdd	V	$4.5V \le VDD \le 5.5V$		
D041		with Schmitt Trigger buffer	0.8 VDD 0 7 VDD	VDD VDD	V V			
D042		MCLR OSC1 (EC mode)	0.8 VDD	VDD	v			
D042A		OSC1 (HS mode)	0.7 VDD	VDD	v			
	lıL	Input Leakage Current ^(1,2)						
D060		I/O ports	.02	±1	μΑ	$\label{eq:VSS} \begin{split} & VSS \leq VPIN \leq VDD, \\ & Pin \text{ at hi-impedance} \end{split}$		
D061		MCLR	—	±1	μA	$Vss \le VPin \le VDD$		
D063		OSC1	—	±1	μA	$Vss \leq VPIN \leq VDD$		
	IPU	Weak Pull-up Current						
D070	IPURB	PORTB weak pull-up current	50	450	μA	VDD = 5V, VPIN = VSS		

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

2: Negative current is defined as current sourced by the pin.

3: Parameter is characterized but not tested.

FIGURE 23-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

Param No.	Symbol		Characteristic		Min	Max	Units	Conditions
40	Tt0H	T0CKI High Pu	llse Width	No Prescaler	0.5Tcy + 20	_	ns	
				With Prescaler	10	—	ns	
41	Tt0L	T0CKI Low Pu	lse Width	No Prescaler	0.5TCY + 20	—	ns	
				With Prescaler	10	—	ns	
42	Tt0P	T0CKI Period		No Prescaler	Tcy + 10	—	ns	
		,		With Prescaler	Greater of: 20 ns or <u>TcY + 40</u> N	_	ns	N = prescale value (1, 2, 4,, 256)
45	Tt1H	T13CKI High	Synchronous, no	prescaler	0.5Tcy + 20	—	ns	
		Time	Synchronous, with prescaler	PIC18FXXXX	10	_	ns	
				PIC18LFXXXX	25	_	ns	
			Asynchronous	PIC18FXXXX	30	—	ns	
				PIC18LFXXXX	50	—	ns	
46	Tt1L	T13CKI Low Time	Synchronous, no	prescaler	0.5TCY + 5	—	ns	
			Synchronous,	PIC18FXXXX	10	—	ns	
			with prescaler	PIC18LFXXXX	25	—	ns	
			Asynchronous	PIC18FXXXX	30	—	ns	
				PIC18LFXXXX	50	—	ns	
47	Tt1P	P T13CKI input period	Synchronous		Greater of: 20 ns or <u>Tcy + 40</u> N	—	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	_	ns	
	Ft1	T13CKI oscilla	tor input frequency	range	DC	50	kHz	
48	Tcke2tmrl	Delay from ext increment	ernal T13CKI clock	edge to timer	2 Tosc	7 Tosc	_	

FIGURE 23-14: EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)

TABLE 23-13: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0))

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input		Тсү	—	ns	
71	TscH	SCK input high time (Slave mode)	Continuous	1.25 TCY + 30	—	ns	
71A			Single Byte	40		ns	(Note 1)
72	TscL	SCK input low time (Slave mode)	Continuous	1.25 TCY + 30		ns	
72A			Single Byte	40	—	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK ec	100	—	ns		
73A	Тв2в	Last clock edge of Byte 1 to the first clock	1.5 Tcy + 40		ns	(Note 2)	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edg	100	_	ns		
75	TdoR	SDO data output rise time	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	60	ns	VDD = 2V
76	TdoF	SDO data output fall time	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	60	ns	VDD = 2V
77	TssH2doZ	SS↑ to SDO output hi-impedance		10	50	ns	
78	TscR	SCK output rise time (Master mode)	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	60	ns	VDD = 2V
79	TscF	SCK output fall time (Master mode)	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX		60	ns	VDD = 2V
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge	PIC18FXXXX		50	ns	
			PIC18LFXXXX		150	ns	VDD = 2V
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5 Tcy + 40	—	ns	

Note 1: Requires the use of Parameter # 73A.

2: Only if Parameter # 71A and # 72A are used.

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions	
100	Тнідн	Clock high time	100 kHz mode	4.0	—	μs	PIC18FXXX must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μs	PIC18FXXX must operate at a minimum of 10 MHz	
			SSP Module	1.5 TCY	—			
101	TLOW	Clock low time	100 kHz mode	4.7	—	μs	PIC18FXXX must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	_	μs	PIC18FXXX must operate at a minimum of 10 MHz	
			SSP Module	1.5 TCY	—			
102	TR	SDA and SCL rise time	100 kHz mode	—	1000	ns		
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF	
103	TF	SDA and SCL fall time	100 kHz mode	—	1000	ns	$V\text{DD} \geq 4.2 V$	
			400 kHz mode	20 + 0.1 Св	300	ns	$V\text{DD} \geq 4.2 V$	
90	TSU:STA	START condition setup time	100 kHz mode	4.7	—	μs	Only relevant for Repeated	
			400 kHz mode	0.6	—	μs	START condition	
91 Thd	THD:STA	START condition hold time	100 kHz mode	4.0	—	μs	After this period, the first clock	
			400 kHz mode	0.6	—	μs	pulse is generated	
106	THD:DAT	Data input hold time	100 kHz mode	0	—	ns		
			400 kHz mode	0	0.9	μs		
107	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	(Note 2)	
			400 kHz mode	100	—	ns		
92	Tsu:sto	STOP condition setup time	100 kHz mode	4.7	—	μs		
			400 kHz mode	0.6	—	μs		
109	ΤΑΑ	Output valid from clock	100 kHz mode	—	3500	ns	(Note 1)	
			400 kHz mode		—	ns		
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free	
			400 kHz mode	1.3	_	μS	before a new transmission can start	
D102	Св	Bus capacitive loading		—	400	pF		

TABLE 23-16: I²C BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but the requirement TSU:DAT \ge 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line. TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification) before the SCL line is released.

Package Marking Information (Cont'd)

Example

44-Lead TQFP

Example

44-Lead Plastic Quad Flat No Lead Package (ML) 8x8 mm Body (QFN)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES			MILLIMETERS*			
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		44			44		
Pitch	р	.026 BSC			0.65 BSC			
Overall Height	A	.031	.035	.039	0.80	0.90	1.00	
Standoff	A1	.000	.001	.002	0	0.02	0.05	
Base Thickness	A3	.010 REF			0.25 REF			
Overall Width		.315 BSC			8.00 BSC			
Exposed Pad Width	E2	.262	.268	.274	6.65	6.80	6.95	
Overall Length	D	.315 BSC			8.00 BSC			
Exposed Pad Length	D2	.262	.268	.274	6.65	6.80	6.95	
Lead Width	В	.012	.013	.013	0.30	0.33	0.35	
Lead Length	L	.014	.016	.018	0.35	0.40	0.45	

*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC equivalent: M0-220

Drawing No. C04-103