
Microchip Technology - PIC18LF2539-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 40MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, LVD, POR, PWM, WDT

Number of I/O 21

Program Memory Size 24KB (12K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 1408 x 8

Voltage - Supply (Vcc/Vdd) 2V ~ 5.5V

Data Converters A/D 5x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-SOIC (0.295", 7.50mm Width)

Supplier Device Package 28-SOIC

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2539-i-so

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf2539-i-so-4426520
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18FXX39
3.0 RESET

The PIC18FXX39 differentiates between various kinds
of RESET:

a) Power-on Reset (POR)

b) MCLR Reset during normal operation

c) MCLR Reset during SLEEP

d) Watchdog Timer (WDT) Reset (during normal
operation)

e) Programmable Brown-out Reset (BOR)

f) RESET Instruction

g) Stack Full Reset

h) Stack Underflow Reset

Most registers are unaffected by a RESET. Their status
is unknown on POR and unchanged by all other
RESETS. The other registers are forced to a “RESET
state” on Power-on Reset, MCLR, WDT Reset, Brown-
out Reset, MCLR Reset during SLEEP and by the
RESET instruction.

Most registers are not affected by a WDT wake-up,
since this is viewed as the resumption of normal oper-
ation. Status bits from the RCON register, RI, TO, PD,
POR and BOR, are set or cleared differently in different
RESET situations, as indicated in Table 3-2. These bits
are used in software to determine the nature of the
RESET. See Table 3-3 for a full description of the
RESET states of all registers.

A simplified block diagram of the On-Chip Reset Circuit
is shown in Figure 3-1.

The Enhanced MCU devices have a MCLR noise filter
in the MCLR Reset path. The filter will detect and
ignore small pulses.

The MCLR pin is not driven low by any internal
RESETS, including the WDT.

FIGURE 3-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

S

R Q

External Reset

MCLR

VDD

OSC1

WDT
Module

VDD Rise
Detect

OST/PWRT

On-chip
RC OSC(1)

WDT

Time-out

Power-on Reset

OST

10-bit Ripple Counter

PWRT

Chip_Reset

10-bit Ripple Counter

Reset

Enable OST(2)

Enable PWRT

SLEEP

Note 1: This is a separate oscillator from the RC oscillator of the CLKI pin.

2: See Table 3-1 for time-out situations.

Brown-out
Reset BOREN

RESET
Instruction

Stack
Pointer Stack Full/Underflow Reset
 2002-2013 Microchip Technology Inc. Preliminary DS30485B-page 23

PIC18FXX39
TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Register Applicable Devices
Power-on Reset,
Brown-out Reset

MCLR Resets
WDT Reset

RESET Instruction
Stack Resets

Wake-up via WDT
or Interrupt

TOSU 2439 4439 2539 4539 ---0 0000 ---0 0000 ---0 uuuu(1)

TOSH 2439 4439 2539 4539 0000 0000 0000 0000 uuuu uuuu(1)

TOSL 2439 4439 2539 4539 0000 0000 0000 0000 uuuu uuuu(1)

STKPTR 2439 4439 2539 4539 00-0 0000 uu-0 0000 uu-u uuuu(1)

PCLATU 2439 4439 2539 4539 ---0 0000 ---0 0000 ---u uuuu

PCLATH 2439 4439 2539 4539 0000 0000 0000 0000 uuuu uuuu

PCL 2439 4439 2539 4539 0000 0000 0000 0000 PC + 2(2)

TBLPTRU 2439 4439 2539 4539 --00 0000 --00 0000 --uu uuuu

TBLPTRH 2439 4439 2539 4539 0000 0000 0000 0000 uuuu uuuu

TBLPTRL 2439 4439 2539 4539 0000 0000 0000 0000 uuuu uuuu

TABLAT 2439 4439 2539 4539 0000 0000 0000 0000 uuuu uuuu

PRODH 2439 4439 2539 4539 xxxx xxxx uuuu uuuu uuuu uuuu

PRODL 2439 4439 2539 4539 xxxx xxxx uuuu uuuu uuuu uuuu

INTCON 2439 4439 2539 4539 0000 000x 0000 000u uuuu uuuu(3)

INTCON2 2439 4439 2539 4539 1111 -1-1 1111 -1-1 uuuu -u-u(3)

INTCON3 2439 4439 2539 4539 11-0 0-00 11-0 0-00 uu-u u-uu(3)

INDF0 2439 4439 2539 4539 N/A N/A N/A

POSTINC0 2439 4439 2539 4539 N/A N/A N/A

POSTDEC0 2439 4439 2539 4539 N/A N/A N/A

PREINC0 2439 4439 2539 4539 N/A N/A N/A

PLUSW0 2439 4439 2539 4539 N/A N/A N/A

FSR0H 2439 4439 2539 4539 ---- xxxx ---- uuuu ---- uuuu

FSR0L 2439 4439 2539 4539 xxxx xxxx uuuu uuuu uuuu uuuu

WREG 2439 4439 2539 4539 xxxx xxxx uuuu uuuu uuuu uuuu

INDF1 2439 4439 2539 4539 N/A N/A N/A

POSTINC1 2439 4439 2539 4539 N/A N/A N/A

POSTDEC1 2439 4439 2539 4539 N/A N/A N/A

PREINC1 2439 4439 2539 4539 N/A N/A N/A

PLUSW1 2439 4439 2539 4539 N/A N/A N/A

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.
Shaded cells indicate conditions do not apply for the designated device.

* These registers are retained to maintain compatibility with PIC18FXX2 devices; however, one or more bits
are reserved. Users should not modify the value of these bits. See Section 4.9.2 for details.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are
updated with the current value of the PC. The STKPTR is modified to point to the next location in the
hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt
vector (0008h or 0018h).

3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
4: See Table 3-2 for RESET value for specific condition.
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other

Oscillator modes, they are disabled and read ‘0’.
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read ‘0’.
DS30485B-page 26 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
4.7.1 TWO-WORD INSTRUCTIONS

The PIC18FXX39 devices have four two-word instruc-
tions: MOVFF, CALL, GOTO and LFSR. The second
word of these instructions has the 4 MSBs set to ‘1’s
and is a special kind of NOP instruction. The lower 12
bits of the second word contain data to be used by the
instruction. If the first word of the instruction is exe-
cuted, the data in the second word is accessed. If the

second word of the instruction is executed by itself (first
word was skipped), it will execute as a NOP. This action
is necessary when the two-word instruction is preceded
by a conditional instruction that changes the PC. A pro-
gram example that demonstrates this concept is shown
in Example 4-2. Refer to Section 21.0 for further details
of the instruction set.

EXAMPLE 4-2: TWO-WORD INSTRUCTIONS

4.8 Lookup Tables

Lookup tables are implemented two ways. These are:

• Computed GOTO

• Table Reads

4.8.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset
to the program counter (ADDWF PCL).

A lookup table can be formed with an ADDWF PCL
instruction and a group of RETLW 0xnn instructions.
WREG is loaded with an offset into the table before
executing a call to that table. The first instruction of the
called routine is the ADDWF PCL instruction. The next
instruction executed will be one of the RETLW 0xnn
instructions, that returns the value 0xnn to the calling
function.

The offset value (value in WREG) specifies the number
of bytes that the program counter should advance.

In this method, only one data byte may be stored in
each instruction location and room on the return
address stack is required.

4.8.2 TABLE READS/TABLE WRITES

A better method of storing data in program memory
allows 2 bytes of data to be stored in each instruction
location.

Lookup table data may be stored 2 bytes per program
word by using table reads and writes. The table pointer
(TBLPTR) specifies the byte address and the table
latch (TABLAT) contains the data that is read from, or
written to program memory. Data is transferred to/from
program memory, one byte at a time.

A description of the Table Read/Table Write operation
is shown in Section 5.1.

CASE 1:

Object Code Source Code

0110 0110 0000 0000 TSTFSZ REG1 ; is RAM location 0?

1100 0001 0010 0011 MOVFF REG1, REG2 ; No, execute 2-word instruction

1111 0100 0101 0110 ; 2nd operand holds address of REG2

0010 0100 0000 0000 ADDWF REG3 ; continue code

CASE 2:

Object Code Source Code

0110 0110 0000 0000 TSTFSZ REG1 ; is RAM location 0?

1100 0001 0010 0011 MOVFF REG1, REG2 ; Yes

1111 0100 0101 0110 ; 2nd operand becomes NOP

0010 0100 0000 0000 ADDWF REG3 ; continue code

Note: The ADDWF PCL instruction does not
update PCLATH and PCLATU. A read
operation on PCL must be performed to
update PCLATH and PCLATU.
DS30485B-page 38 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
EXAMPLE 5-3: WRITING TO FLASH PROGRAM MEMORY
MOVLW D'64 ; number of bytes in erase block
MOVWF COUNTER
MOVLW BUFFER_ADDR_HIGH ; point to buffer
MOVWF FSR0H
MOVLW BUFFER_ADDR_LOW
MOVWF FSR0L
MOVLW CODE_ADDR_UPPER ; Load TBLPTR with the base
MOVWF TBLPTRU ; address of the memory block
MOVLW CODE_ADDR_HIGH
MOVWF TBLPTRH
MOVLW CODE_ADDR_LOW
MOVWF TBLPTRL

READ_BLOCK
TBLRD*+ ; read into TABLAT, and inc
MOVF TABLAT, W ; get data
MOVWF POSTINC0 ; store data
DECFSZ COUNTER ; done?
BRA READ_BLOCK ; repeat

MODIFY_WORD
MOVLW DATA_ADDR_HIGH ; point to buffer
MOVWF FSR0H
MOVLW DATA_ADDR_LOW
MOVWF FSR0L
MOVLW NEW_DATA_LOW ; update buffer word
MOVWF POSTINC0
MOVLW NEW_DATA_HIGH
MOVWF INDF0

ERASE_BLOCK
MOVLW CODE_ADDR_UPPER ; load TBLPTR with the base
MOVWF TBLPTRU ; address of the memory block
MOVLW CODE_ADDR_HIGH
MOVWF TBLPTRH
MOVLW CODE_ADDR_LOW
MOVWF TBLPTRL
BSF EECON1,EEPGD ; point to FLASH program memory
BCF EECON1,CFGS ; access FLASH program memory
BSF EECON1,WREN ; enable write to memory
BSF EECON1,FREE ; enable Row Erase operation
BCF INTCON,GIE ; disable interrupts
MOVLW 55h
MOVWF EECON2 ; write 55h
MOVLW AAh
MOVWF EECON2 ; write AAh
BSF EECON1,WR ; start erase (CPU stall)
BSF INTCON,GIE ; re-enable interrupts
TBLRD*- ; dummy read decrement

WRITE_BUFFER_BACK
MOVLW 8 ; number of write buffer groups of 8 bytes
MOVWF COUNTER_HI
MOVLW BUFFER_ADDR_HIGH ; point to buffer
MOVWF FSR0H
MOVLW BUFFER_ADDR_LOW
MOVWF FSR0L

PROGRAM_LOOP
MOVLW 8 ; number of bytes in holding register
MOVWF COUNTER

WRITE_WORD_TO_HREGS
MOVF POSTINC0, W ; get low byte of buffer data
MOVWF TABLAT ; present data to table latch
TBLWT+* ; write data, perform a short write

; to internal TBLWT holding register.
DECFSZ COUNTER ; loop until buffers are full
BRA WRITE_WORD_TO_HREGS
DS30485B-page 58 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
EXAMPLE 5-3: WRITING TO FLASH PROGRAM MEMORY (CONTINUED)

5.5.2 WRITE VERIFY

Depending on the application, good programming
practice may dictate that the value written to the mem-
ory should be verified against the original value. This
should be used in applications where excessive writes
can stress bits near the specification limit.

5.5.3 UNEXPECTED TERMINATION OF
WRITE OPERATION

If a write is terminated by an unplanned event, such as
loss of power or an unexpected RESET, the memory
location just programmed should be verified and repro-
grammed if needed.The WRERR bit is set when a write
operation is interrupted by a MCLR Reset, or a WDT
Time-out Reset during normal operation. In these situ-
ations, users can check the WRERR bit and rewrite the
location.

5.5.4 PROTECTION AGAINST SPURIOUS
WRITES

To protect against spurious writes to FLASH program
memory, the write initiate sequence must also be fol-
lowed. See “Special Features of the CPU”
(Section 20.0) for more detail.

5.6 FLASH Program Operation During
Code Protection

See “Special Features of the CPU” (Section 20.0) for
details on code protection of FLASH program memory.

TABLE 5-2: REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY

PROGRAM_MEMORY
BSF EECON1,EEPGD ; point to FLASH program memory
BCF EECON1,CFGS ; access FLASH program memory
BSF EECON1,WREN ; enable write to memory
BCF INTCON,GIE ; disable interrupts
MOVLW 55h

Required MOVWF EECON2 ; write 55h
Sequence MOVLW AAh

MOVWF EECON2 ; write AAh
BSF EECON1,WR ; start program (CPU stall)
BSF INTCON,GIE ; re-enable interrupts
DECFSZ COUNTER_HI ; loop until done
BRA PROGRAM_LOOP
BCF EECON1,WREN ; disable write to memory

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on:
POR, BOR

Value on
 All Other
RESETS

TBLPTRU — — bit 21 Program Memory Table Pointer Upper Byte
(TBLPTR<20:16>)

--00 0000 --00 0000

TBPLTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>) 0000 0000 0000 0000

TBLPTRL Program Memory Table Pointer High Byte (TBLPTR<7:0>) 0000 0000 0000 0000

TABLAT Program Memory Table Latch 0000 0000 0000 0000

INTCON GIE/GIEH PEIE/GIEL TMR0IE INTE RBIE TMR0IF INTF RBIF 0000 000x 0000 000u

EECON2 EEPROM Control Register2 (not a physical register) — —

EECON1 EEPGD CFGS — FREE WRERR WREN WR RD xx-0 x000 uu-0 u000

IPR2 — — — EEIP BCLIP LVDIP TMR3IP — ---1 1111 ---1 1111

PIR2 — — — EEIF BCLIF LVDIF TMR3IF — ---0 0000 ---0 0000

PIE2 — — — EEIE BCLIE LVDIE TMR3IE — ---0 0000 ---0 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used during FLASH/EEPROM access.
 2002-2013 Microchip Technology Inc. Preliminary DS30485B-page 59

PIC18FXX39
NOTES:
DS30485B-page 60 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
REGISTER 8-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0

— — — EEIF BCLIF LVDIF TMR3IF —

 bit 7 bit 0

bit 7-5 Unimplemented: Read as '0'

bit 4 EEIF: Data EEPROM/FLASH Write Operation Interrupt Flag bit
1 = The write operation is complete (must be cleared in software)
0 = The write operation is not complete, or has not been started

bit 3 BCLIF: Bus Collision Interrupt Flag bit
1 = A bus collision occurred (must be cleared in software)
0 = No bus collision occurred

bit 2 LVDIF: Low Voltage Detect Interrupt Flag bit
1 = A low voltage condition occurred (must be cleared in software)
0 = The device voltage is above the Low Voltage Detect trip point

bit 1 TMR3IF: TMR3 Overflow Interrupt Flag bit
1 = TMR3 register overflowed (must be cleared in software)
0 = TMR3 register did not overflow

bit 0 Unimplemented: Read as ‘0’

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

- n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
 2002-2013 Microchip Technology Inc. Preliminary DS30485B-page 75

PIC18FXX39
REGISTER 9-1: TRISE REGISTER

R-0 R-0 R/W-0 R/W-0 U-0 R/W-1 R/W-1 R/W-1

IBF OBF IBOV PSPMODE — TRISE2 TRISE1 TRISE0

bit 7 bit 0

bit 7 IBF: Input Buffer Full Status bit
1 = A word has been received and waiting to be read by the CPU
0 = No word has been received

bit 6 OBF: Output Buffer Full Status bit
1 = The output buffer still holds a previously written word
0 = The output buffer has been read

bit 5 IBOV: Input Buffer Overflow Detect bit (in Microprocessor mode)
1 = A write occurred when a previously input word has not been read

(must be cleared in software)
0 = No overflow occurred

bit 4 PSPMODE: Parallel Slave Port Mode Select bit
1 = Parallel Slave Port mode
0 = General Purpose I/O mode

bit 3 Unimplemented: Read as '0'

bit 2 TRISE2: RE2 Direction Control bit
1 = Input
0 = Output

bit 1 TRISE1: RE1 Direction Control bit
1 = Input
0 = Output

bit 0 TRISE0: RE0 Direction Control bit
1 = Input
0 = Output

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

- n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
DS30485B-page 94 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
12.0 TIMER2 MODULE

The Timer2 module is an 8-bit timer with a selectable
8-bit period. It has the following features:

• Input from system clock at FOSC/4 with
programmable input prescaler

• Interrupt on timer-to-period match with
programmable postscaler

The module has three registers: the TMR2 counter, the
PR2 period register, and the T2CON control register.
The general operation of Timer2 is shown in
Figure 12-1.

Additional information on the use of Timer2 as a
time-base is available in Section 15.0 (PWM Modules).

FIGURE 12-1: TIMER2 BLOCK DIAGRAM

Note: In PIC18FXX39 devices, Timer2 is used
exclusively as a time-base for the PWM
modules in motor control applications. As
such, it is not available to users as a
resource. Although their locations are
shown on the device data memory maps,
none of the Timer2 registers are directly
accessible. Users should not alter the
values of these registers.

Comparator

TMR2

Sets Flag

TMR2
Output

RESET

Postscaler

Prescaler

PR2

FOSC/4

1:1 to 1:16

1:1, 1:4, 1:16

bit TMR2IF
(ProMPT Module)

(TMR2 = PR2)

(ProMPT Module)
 2002-2013 Microchip Technology Inc. Preliminary DS30485B-page 107

PIC18FXX39
NOTES:
DS30485B-page 112 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
void ProMPT_SetAccelRate(unsigned char rate)

Resources used: 0 stack level

rate range: 0 to 255

Description: Sets the acceleration to the value of rate in Hz/second. The default setting is 10 Hz/s.

void ProMPT_SetBoostEndModulation(unsigned char modulation)

Resources used: Hardware Multiplier; 0 stack levels

modulation range: 0 to 200

Description: Sets the End Modulation (in %) for the Boost logic. Boost mode operates at Boost Frequency, and the
modulation ramps from BoostStartModulation to BoostEndModulation. This function should not be called while
Boost is enabled.

unsigned char ProMPT_SetBoostFrequency(unsigned char frequency)

Resources used: 0 stack levels

frequency range: 0 to 127

Description: Sets the frequency the drive goes to in Boost mode. Frequency must be < 128. On exit, w = 0 if the
command is successful, or w = FFh if the frequency is out of range. This function should not be called while Boost is
enabled.

void ProMPT_SetBoostStartModulation(unsigned char modulation)

Resources used: Hardware Multiplier; 0 stack levels

modulation range: 0 to BoostEndModulation

Description: Sets the Start Modulation (in %) for the Boost logic. Boost mode operates at Boost Frequency, and the
modulation ramps from BoostStartModulation to BoostEndModulation. This function should not be called while
Boost is enabled.

void ProMPT_SetBoostTime(unsigned char time)

Resources used: Hardware Multiplier; 0 stack levels

time range: 0 to 255

Description: Sets the amount of time in seconds for the Boost mode. Boost mode operates at Boost Frequency, and
the modulation ramps from BoostStartModulation to BoostEndModulation over BoostTime. This function
should not be called while Boost is enabled.

void ProMPT_SetDecelRate(unsigned char rate)

Resources used: 0 stack levels

rate range: 0 to 255

Description: Sets the deceleration to the value of rate in Hz per second. The default setting is 5 Hz/s.

unsigned char ProMPT_SetFrequency(unsigned char frequency)

Resources used: 2 stack levels

frequency range: 0 to 127

Description: Sets the output frequency of the drive if the drive is running. Frequency is limited to 0 to 127, but should
be controlled within the valid operational range of the motor. Modulation is determined from the V/F curve, which is set
up with the ProMPT_SetVFCurve method. If frequency = 0, the drive will stop. If the drive is stopped and frequency > 0,
the drive will start.
 2002-2013 Microchip Technology Inc. Preliminary DS30485B-page 119

PIC18FXX39
16.4.17.1 Bus Collision During a START
Condition

During a START condition, a bus collision occurs if:

a) SDA or SCL are sampled low at the beginning of
the START condition (Figure 16-26).

b) SCL is sampled low before SDA is asserted low
(Figure 16-27).

During a START condition, both the SDA and the SCL
pins are monitored.

If the SDA pin is already low, or the SCL pin is already
low, then all of the following occur:

• the START condition is aborted,

• the BCLIF flag is set, and

• the MSSP module is reset to its IDLE state
(Figure 16-26).

The START condition begins with the SDA and SCL
pins de-asserted. When the SDA pin is sampled high,
the baud rate generator is loaded from SSPADD<6:0>
and counts down to ‘0’. If the SCL pin is sampled low
while SDA is high, a bus collision occurs, because it is
assumed that another master is attempting to drive a
data '1' during the START condition.

If the SDA pin is sampled low during this count, the
BRG is reset and the SDA line is asserted early
(Figure 16-28). If, however, a '1' is sampled on the SDA
pin, the SDA pin is asserted low at the end of the BRG
count. The baud rate generator is then reloaded and
counts down to ‘0’, and during this time, if the SCL pins
are sampled as '0', a bus collision does not occur. At
the end of the BRG count, the SCL pin is asserted low.

FIGURE 16-26: BUS COLLISION DURING START CONDITION (SDA ONLY)

Note: The reason that bus collision is not a factor
during a START condition, is that no two
bus masters can assert a START condition
at the exact same time. Therefore, one
master will always assert SDA before the
other. This condition does not cause a bus
collision, because the two masters must be
allowed to arbitrate the first address follow-
ing the START condition. If the address is
the same, arbitration must be allowed to
continue into the data portion, Repeated
START or STOP conditions.

SDA

SCL

SEN

SDA sampled low before

SDA goes low before the SEN bit is set.

S bit and SSPIF set because

SSP module reset into IDLE state.
SEN cleared automatically because of bus collision.

S bit and SSPIF set because

Set SEN, enable START
condition if SDA = 1, SCL = 1

SDA = 0, SCL = 1.

BCLIF

S

SSPIF

SDA = 0, SCL = 1.

SSPIF and BCLIF are
cleared in software.

SSPIF and BCLIF are
cleared in software.

Set BCLIF,

START condition. Set BCLIF.
DS30485B-page 160 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
16.4.17.2 Bus Collision During a Repeated
START Condition

During a Repeated START condition, a bus collision
occurs if:

a) A low level is sampled on SDA when SCL goes
from low level to high level.

b) SCL goes low before SDA is asserted low, indi-
cating that another master is attempting to
transmit a data ‘1’.

When the user de-asserts SDA and the pin is allowed to
float high, the BRG is loaded with SSPADD<6:0> and
counts down to ‘0’. The SCL pin is then de-asserted,
and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another
master is attempting to transmit a data ’0’,
Figure 16-29). If SDA is sampled high, the BRG is

reloaded and begins counting. If SDA goes from high to
low before the BRG times out, no bus collision occurs
because no two masters can assert SDA at exactly the
same time.

If SCL goes from high to low before the BRG times out
and SDA has not already been asserted, a bus collision
occurs. In this case, another master is attempting to
transmit a data ‘1’ during the Repeated START
condition, see Figure 16-30.

If, at the end of the BRG time-out, both SCL and SDA
are still high, the SDA pin is driven low and the BRG is
reloaded and begins counting. At the end of the count,
regardless of the status of the SCL pin, the SCL pin is
driven low and the Repeated START condition is
complete.

FIGURE 16-29: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 16-30: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

SDA

SCL

RSEN

BCLIF

S

SSPIF

Sample SDA when SCL goes high.
If SDA = 0, set BCLIF and release SDA and SCL.

Cleared in software

'0'

'0'

SDA

SCL

BCLIF

RSEN

S

SSPIF

Interrupt cleared
in software

SCL goes low before SDA,
Set BCLIF. Release SDA and SCL.

TBRG TBRG

'0'
DS30485B-page 162 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
17.2.2 USART ASYNCHRONOUS
RECEIVER

The receiver block diagram is shown in Figure 17-4.
The data is received on the RC7/RX/DT pin and drives
the data recovery block. The data recovery block is
actually a high speed shifter operating at x16 times the
baud rate, whereas the main receive serial shifter oper-
ates at the bit rate or at FOSC. This mode would
typically be used in RS-232 systems.

To set up an Asynchronous Reception:

1. Initialize the SPBRG register for the appropriate
baud rate. If a high speed baud rate is desired,
set bit BRGH (Section 17.1).

2. Enable the asynchronous serial port by clearing
bit SYNC and setting bit SPEN.

3. If interrupts are desired, set enable bit RCIE.

4. If 9-bit reception is desired, set bit RX9.

5. Enable the reception by setting bit CREN.

6. Flag bit RCIF will be set when reception is com-
plete and an interrupt will be generated if enable
bit RCIE was set.

7. Read the RCSTA register to get the ninth bit (if
enabled) and determine if any error occurred
during reception.

8. Read the 8-bit received data by reading the
RCREG register.

9. If any error occurred, clear the error by clearing
enable bit CREN.

10. If using interrupts, ensure that the GIE and PEIE
bits in the INTCON register (INTCON<7:6>) are
set.

17.2.3 SETTING UP 9-BIT MODE WITH
ADDRESS DETECT

This mode would typically be used in RS-485 systems.
To set up an Asynchronous Reception with Address
Detect Enable:

1. Initialize the SPBRG register for the appropriate
baud rate. If a high speed baud rate is required,
set the BRGH bit.

2. Enable the asynchronous serial port by clearing
the SYNC bit and setting the SPEN bit.

3. If interrupts are required, set the RCEN bit and
select the desired priority level with the RCIP bit.

4. Set the RX9 bit to enable 9-bit reception.

5. Set the ADDEN bit to enable address detect.

6. Enable reception by setting the CREN bit.

7. The RCIF bit will be set when reception is com-
plete. The interrupt will be acknowledged if the
RCIE and GIE bits are set.

8. Read the RCSTA register to determine if any
error occurred during reception, as well as read
bit 9 of data (if applicable).

9. Read RCREG to determine if the device is being
addressed.

10. If any error occurred, clear the CREN bit.

11. If the device has been addressed, clear the
ADDEN bit to allow all received data into the
receive buffer and interrupt the CPU.

FIGURE 17-4: USART RECEIVE BLOCK DIAGRAM

x64 Baud Rate CLK

SPBRG

Baud Rate Generator

RC7/RX/DT

Pin Buffer
and Control

SPEN

Data
Recovery

CREN OERR FERR

RSR RegisterMSb LSb

RX9D RCREG Register
FIFO

Interrupt RCIF

RCIE

Data Bus

8

 64

 16
or

STOP START(8) 7 1 0

RX9


DS30485B-page 174 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
FIGURE 21-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations

15 10 9 8 7 0

d = 0 for result destination to be WREG register

OPCODE d a f (FILE #)

d = 1 for result destination to be file register (f)
a = 0 to force Access Bank

Bit-oriented file register operations

15 12 11 9 8 7 0

OPCODE b (BIT #) a f (FILE #)

b = 3-bit position of bit in file register (f)

Literal operations

15 8 7 0

 OPCODE k (literal)

k = 8-bit immediate value

Byte to Byte move operations (2-word)

15 12 11 0

OPCODE f (Source FILE #)

CALL, GOTO and Branch operations

15 8 7 0

OPCODE n<7:0> (literal)

n = 20-bit immediate value

a = 1 for BSR to select bank
f = 8-bit file register address

a = 0 to force Access Bank
a = 1 for BSR to select bank
f = 8-bit file register address

15 12 11 0

1111 n<19:8> (literal)

15 12 11 0

 1111 f (Destination FILE #)

f = 12-bit file register address

Control operations

Example Instruction

ADDWF MYREG, W, B

MOVFF MYREG1, MYREG2

BSF MYREG, bit, B

MOVLW 0x7F

GOTO Label

15 8 7 0

OPCODE n<7:0> (literal)

15 12 11 0

 n<19:8> (literal)

CALL MYFUNC

15 11 10 0

 OPCODE n<10:0> (literal)

S = Fast bit

BRA MYFUNC

15 8 7 0

OPCODE n<7:0> (literal) BC MYFUNC

S

 2002-2013 Microchip Technology Inc. Preliminary DS30485B-page 213

PIC18FXX39

BTFSC Bit Test File, Skip if Clear

Syntax: [label] BTFSC f,b[,a]

Operands: 0  f  255
0  b  7
a [0,1]

Operation: skip if (f) = 0

Status Affected: None

Encoding: 1011 bbba ffff ffff

Description: If bit 'b' in register ’f' is 0, then the
next instruction is skipped.
If bit 'b' is 0, then the next instruction
fetched during the current instruction
execution is discarded, and a NOP is
executed instead, making this a two-
cycle instruction. If ‘a’ is 0, the
Access Bank will be selected, over-
riding the BSR value. If ‘a’ = 1, then
the bank will be selected as per the
BSR value (default).

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register 'f'
Process Data No

operation

If skip:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation

No
operation

No
operation

No
operation

No
operation

Example: HERE
FALSE
TRUE

BTFSC
:
:

FLAG, 1, 0

Before Instruction
PC = address (HERE)

After Instruction
If FLAG<1> = 0;

PC = address (TRUE)
If FLAG<1> = 1;

PC = address (FALSE)

BTFSS Bit Test File, Skip if Set

Syntax: [label] BTFSS f,b[,a]

Operands: 0  f  255
0  b  7
a [0,1]

Operation: skip if (f) = 1

Status Affected: None

Encoding: 1010 bbba ffff ffff

Description: If bit 'b' in register 'f' is 1, then the
next instruction is skipped.
If bit 'b' is 1, then the next instruction
fetched during the current instruc-
tion execution, is discarded and a
NOP is executed instead, making this
a two-cycle instruction. If ‘a’ is 0, the
Access Bank will be selected, over-
riding the BSR value. If ‘a’ = 1, then
the bank will be selected as per the
BSR value (default).

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register 'f'
Process Data No

operation

If skip:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation

No
operation

No
operation

No
operation

No
operation

Example: HERE
FALSE
TRUE

BTFSS
:
:

FLAG, 1, 0

Before Instruction
PC = address (HERE)

After Instruction
If FLAG<1> = 0;

PC = address (FALSE)
If FLAG<1> = 1;

PC = address (TRUE)
DS30485B-page 224 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39

SUBLW Subtract W from literal

Syntax: [label] SUBLW k

Operands: 0 k 255

Operation: k – (W) W

Status Affected: N, OV, C, DC, Z

Encoding: 0000 1000 kkkk kkkk

Description: W is subtracted from the eight-bit
literal 'k'. The result is placed
in W.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

literal 'k'
Process

Data
Write to W

Example 1: SUBLW 0x02

Before Instruction

W = 1
C = ?

After Instruction

W = 1
C = 1 ; result is positive
Z = 0
N = 0

Example 2: SUBLW 0x02

Before Instruction

W = 2
C = ?

After Instruction

W = 0
C = 1 ; result is zero
Z = 1
N = 0

Example 3: SUBLW 0x02

Before Instruction

W = 3
C = ?

After Instruction

W = FF ; (2’s complement)
C = 0 ; result is negative
Z = 0
N = 1

SUBWF Subtract W from f

Syntax: [label] SUBWF f [,d [,a]

Operands: 0 f 255
d  [0,1]
a  [0,1]

Operation: (f) – (W) dest

Status Affected: N, OV, C, DC, Z

Encoding: 0101 11da ffff ffff

Description: Subtract W from register 'f' (2’s
complement method). If 'd' is 0,
the result is stored in W. If 'd' is 1,
the result is stored back in regis-
ter 'f' (default). If ‘a’ is 0, the
Access Bank will be selected,
overriding the BSR value. If ‘a’ is
1, then the bank will be selected
as per the BSR value (default).

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register 'f'
Process

Data
Write to

destination

Example 1: SUBWF REG, 1, 0

Before Instruction
REG = 3
W = 2
C = ?

After Instruction
REG = 1
W = 2
C = 1 ; result is positive
Z = 0
N = 0

Example 2: SUBWF REG, 0, 0

Before Instruction
REG = 2
W = 2
C = ?

After Instruction
REG = 2
W = 0
C = 1 ; result is zero
Z = 1
N = 0

Example 3: SUBWF REG, 1, 0

Before Instruction
REG = 1
W = 2
C = ?

After Instruction
REG = FFh ;(2’s complement)
W = 2
C = 0 ; result is negative
Z = 0
N = 1
 2002-2013 Microchip Technology Inc. Preliminary DS30485B-page 247

PIC18FXX39

SUBWFB Subtract W from f with Borrow

Syntax: [label] SUBWFB f [,d [,a]

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) – (W) – (C) dest

Status Affected: N, OV, C, DC, Z

Encoding: 0101 10da ffff ffff

Description: Subtract W and the carry flag (bor-
row) from register 'f' (2’s complement
method). If 'd' is 0, the result is stored
in W. If 'd' is 1, the result is stored
back in register 'f' (default). If ‘a’ is 0,
the Access Bank will be selected,
overriding the BSR value. If ‘a’ is 1,
then the bank will be selected as per
the BSR value (default).

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register 'f'
Process

Data
Write to

destination

Example 1: SUBWFB REG, 1, 0

Before Instruction
REG = 0x19 (0001 1001)

W = 0x0D (0000 1101)
C = 1

After Instruction
REG = 0x0C (0000 1011)

W = 0x0D (0000 1101)
C = 1
Z = 0
N = 0 ; result is positive

Example 2: SUBWFB REG, 0, 0

Before Instruction
REG = 0x1B (0001 1011)

W = 0x1A (0001 1010)
C = 0

After Instruction
REG = 0x1B (0001 1011)

W = 0x00
C = 1
Z = 1 ; result is zero
N = 0

Example 3: SUBWFB REG, 1, 0

Before Instruction
REG = 0x03 (0000 0011)

W = 0x0E (0000 1101)
C = 1

After Instruction
REG = 0xF5 (1111 0100)

; [2’s comp]
W = 0x0E (0000 1101)
C = 0
Z = 0
N = 1 ; result is negative

SWAPF Swap f

Syntax: [label] SWAPF f [,d [,a]

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f<3:0>)  dest<7:4>,
(f<7:4>)  dest<3:0>

Status Affected: None

Encoding: 0011 10da ffff ffff

Description: The upper and lower nibbles of reg-
ister 'f' are exchanged. If 'd' is 0, the
result is placed in W. If 'd' is 1, the
result is placed in register 'f'
(default). If ‘a’ is 0, the Access
Bank will be selected, overriding
the BSR value. If ‘a’ is 1, then the
bank will be selected as per the
BSR value (default).

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register 'f'
Process

Data
Write to

destination

Example: SWAPF REG, 1, 0

Before Instruction
REG = 0x53

After Instruction
REG = 0x35
DS30485B-page 248 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
23.3.2 TIMING CONDITIONS

The temperature and voltages specified in Table 23-3
apply to all timing specifications unless otherwise
noted. Figure 23-4 specifies the load conditions for the
timing specifications.

TABLE 23-3: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

FIGURE 23-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

AC CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C  TA +85°C for industrial

-40°C  TA +125°C for extended
Operating voltage VDD range as described in DC spec Section 23.1 and
Section 23.2.
LC parts operate for industrial temperatures only.

VDD/2

CL

RL

Pin

Pin

VSS

VSS

CL

RL = 464

CL = 50 pF for all pins except OSC2/CLKO
and including D and E outputs as ports

Load condition 1 Load condition 2
 2002-2013 Microchip Technology Inc. Preliminary DS30485B-page 269

PIC18FXX39
FIGURE 24-17: MINIMUM AND MAXIMUM VIN vs. VDD (TTL INPUT, -40C TO +125C)

FIGURE 24-18: MINIMUM AND MAXIMUM VIN vs. VDD (I2C INPUT, -40C TO +125C)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

VDD (V)

V
IN

 (
V

)

VTH (Max)

VTH (Min)

Typical: statistical mean @ 25°C
Maximum: mean + 3 (-40°C to 125°C)
Minimum: mean – 3 (-40°C to 125°C)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

VDD (V)

V
IN

 (
V

)

VIH Max

VIH Min

VILMax

VIL Min

Typical: statistical mean @ 25°C
Maximum: mean + 3 (-40°C to 125°C)
Minimum: mean – 3 (-40°C to 125°C)
 2002-2013 Microchip Technology Inc. Preliminary DS30485B-page 295

