

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	24KB (12K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1408 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2539-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 RESET

The PIC18FXX39 differentiates between various kinds of RESET:

- Power-on Reset (POR) a)
- MCLR Reset during normal operation b)
- MCLR Reset during SLEEP C)
- Watchdog Timer (WDT) Reset (during normal d) operation)
- Programmable Brown-out Reset (BOR) e)
- f) **RESET** Instruction
- Stack Full Reset g)
- Stack Underflow Reset h)

Most registers are unaffected by a RESET. Their status is unknown on POR and unchanged by all other RESETS. The other registers are forced to a "RESET state" on Power-on Reset, MCLR, WDT Reset, Brownout Reset, MCLR Reset during SLEEP and by the RESET instruction.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, RI, TO, PD, POR and BOR, are set or cleared differently in different RESET situations, as indicated in Table 3-2. These bits are used in software to determine the nature of the RESET. See Table 3-3 for a full description of the RESET states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 3-1.

The Enhanced MCU devices have a MCLR noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

The MCLR pin is not driven low by any internal RESETS, including the WDT.

FIGURE 3-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

Register	Ар	olicabl	e Devi	ces	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt	
TOSU	2439	4439	2539	4539	0 0000	0 0000	0 uuuu (1)	
TOSH	2439	4439	2539	4539	0000 0000	0000 0000	uuuu uuuu (1)	
TOSL	2439	4439	2539	4539	0000 0000	0000 0000	uuuu uuuu (1)	
STKPTR	2439	4439	2539	4539	00-0 0000	uu-0 0000	uu-u uuuu (1)	
PCLATU	2439	4439	2539	4539	0 0000	0 0000	u uuuu	
PCLATH	2439	4439	2539	4539	0000 0000	0000 0000	uuuu uuuu	
PCL	2439	4439	2539	4539	0000 0000	0000 0000	PC + 2 ⁽²⁾	
TBLPTRU	2439	4439	2539	4539	00 0000	00 0000	uu uuuu	
TBLPTRH	2439	4439	2539	4539	0000 0000	0000 0000	սսսս սսսս	
TBLPTRL	2439	4439	2539	4539	0000 0000	0000 0000	սսսս սսսս	
TABLAT	2439	4439	2539	4539	0000 0000	0000 0000	սսսս սսսս	
PRODH	2439	4439	2539	4539	XXXX XXXX	սսսս սսսս	սսսս սսսս	
PRODL	2439	4439	2539	4539	XXXX XXXX	uuuu uuuu	uuuu uuuu	
INTCON	2439	4439	2539	4539	0000 000x	0000 000u	uuuu uuuu (3)	
INTCON2	2439	4439	2539	4539	1111 -1-1	1111 -1-1	uuuu -u-u ⁽³⁾	
INTCON3	2439	4439	2539	4539	11-0 0-00	11-0 0-00	uu-u u-uu ⁽³⁾	
INDF0	2439	4439	2539	4539	N/A	N/A	N/A	
POSTINC0	2439	4439	2539	4539	N/A	N/A	N/A	
POSTDEC0	2439	4439	2539	4539	N/A	N/A	N/A	
PREINC0	2439	4439	2539	4539	N/A	N/A	N/A	
PLUSW0	2439	4439	2539	4539	N/A	N/A	N/A	
FSR0H	2439	4439	2539	4539	xxxx	uuuu	uuuu	
FSR0L	2439	4439	2539	4539	XXXX XXXX	uuuu uuuu	uuuu uuuu	
WREG	2439	4439	2539	4539	XXXX XXXX	uuuu uuuu	uuuu uuuu	
INDF1	2439	4439	2539	4539	N/A	N/A	N/A	
POSTINC1	2439	4439	2539	4539	N/A	N/A	N/A	
POSTDEC1	2439	4439	2539	4539	N/A	N/A	N/A	
PREINC1	2439	4439	2539	4539	N/A	N/A	N/A	
PLUSW1	2439	4439	2539	4539	N/A	N/A	N/A	

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

* These registers are retained to maintain compatibility with PIC18FXX2 devices; however, one or more bits are reserved. Users should not modify the value of these bits. See Section 4.9.2 for details.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

4: See Table 3-2 for RESET value for specific condition.

5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other Oscillator modes, they are disabled and read '0'.

6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read '0'.

4.7.1 TWO-WORD INSTRUCTIONS

The PIC18FXX39 devices have four two-word instructions: MOVFF, CALL, GOTO and LFSR. The second word of these instructions has the 4 MSBs set to '1's and is a special kind of NOP instruction. The lower 12 bits of the second word contain data to be used by the instruction. If the first word of the instruction is executed, the data in the second word is accessed. If the second word of the instruction is executed by itself (first word was skipped), it will execute as a NOP. This action is necessary when the two-word instruction is preceded by a conditional instruction that changes the PC. A program example that demonstrates this concept is shown in Example 4-2. Refer to Section 21.0 for further details of the instruction set.

EXAMPLE 4-2:	TWO-WORD INSTRUCTIONS

CASE 1:								
Object Code	Source Code							
0110 0110 0000 0000	TSTFSZ REG1 ; is RAM location 0?							
1100 0001 0010 0011	MOVFF REG1, REG2 ; No, execute 2-word instruction							
1111 0100 0101 0110	; 2nd operand holds address of REG2							
0010 0100 0000 0000	ADDWF REG3 ; continue code							

CASE 2:	
---------	--

CASE Z.					
Object Code	Source Code				
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?			
1100 0001 0010 0011	MOVFF REG1, REG2	; Yes			
1111 0100 0101 0110		; 2nd operand becomes NOP			
0010 0100 0000 0000	ADDWF REG3	; continue code			

4.8 Lookup Tables

Lookup tables are implemented two ways. These are:

- Computed GOTO
- Table Reads

COMPUTED GOTO 4.8.1

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL).

A lookup table can be formed with an ADDWF PCL instruction and a group of RETLW 0xnn instructions. WREG is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW 0xnn instructions, that returns the value 0xnn to the calling function.

The offset value (value in WREG) specifies the number of bytes that the program counter should advance.

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

PCL instruction does not Note: The ADDWF update PCLATH and PCLATU. A read operation on PCL must be performed to update PCLATH and PCLATU.

4.8.2 TABLE READS/TABLE WRITES

A better method of storing data in program memory allows 2 bytes of data to be stored in each instruction location.

Lookup table data may be stored 2 bytes per program word by using table reads and writes. The table pointer (TBLPTR) specifies the byte address and the table latch (TABLAT) contains the data that is read from, or written to program memory. Data is transferred to/from program memory, one byte at a time.

A description of the Table Read/Table Write operation is shown in Section 5.1.

EXAMPLE 5-3: WRITING TO FLASH PROGRAM MEMORY

	MOVLW	D'64	;	number of bytes in erase block
	MOVWF	COUNTER		
	MOVLW	BUFFER_ADDR_HIGH	;	point to buffer
	MOVWF	FSROH		
	MOVLW	BUFFER_ADDR_LOW		
	MOVWF	FSROL		
	MOVLW	CODE_ADDR_UPPER	;	Load TBLPTR with the base
	MOVWE	TBLPTRU	;	address of the memory block
	MOVINE	TEL DTEL		
	MOVLW	CODE ADDR LOW		
	MOVWF	TBLPTRL		
READ_BLOCK				
	TBLRD*+	-	;	read into TABLAT, and inc
	MOVF	TABLAT, W	;	get data
	MOVWF	POSTINCO	;	store data
	DECFSZ	COUNTER	;	done?
	BRA	READ_BLOCK	;	repeat
MODIFY_WORI)			
	MOVLW	DATA_ADDR_HIGH	;	point to buffer
	MOVWF	FSRUH		
	MOVINE	DATA_ADDR_LOW		
	MOVTW	NEW DATA LOW		undate huffer word
	MOVWE	POSTINCO	,	update buller word
	MOVLW	NEW DATA HIGH		
	MOVWF	INDF0		
ERASE BLOCI	ĸ			
_	MOVLW	CODE ADDR UPPER	;	load TBLPTR with the base
	MOVWF	TBLPTRU	;	address of the memory block
	MOVLW	CODE_ADDR_HIGH		
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
	BSF	EECON1, EEPGD	;	point to FLASH program memory
	BCF	EECON1,CFGS	;	access FLASH program memory
	BSF	EECON1, WREN	;	enable write to memory
	BSF	EECONI, FREE	;	enable Row Erase operation
	MOVIW	INICON, GIE	;	disable interrupts
	MOVWE	FECON2		write 55h
	MOVIW	AAh	,	WIICE 5511
	MOVWF	EECON2	;	write AAh
	BSF	EECON1,WR	;	start erase (CPU stall)
	BSF	INTCON, GIE	;	re-enable interrupts
	TBLRD*-	-	;	dummy read decrement
WRITE_BUFF	ER_BACK			
	MOVLW	8	;	number of write buffer groups of 8 bytes
	MOVWF	COUNTER_HI		
	MOVLW	BUFFER_ADDR_HIGH	;	point to buffer
	MOVWF	FSROH		
	MOVLW	BUFFER_ADDR_LOW		
	MOVWF	FSROL		
PROGRAM_LOO	JP NOTITI	0		number of botton in bolding contation
	MOVTA	Ö COLINITED	;	number of bytes in noiding register
אסדייד אומיים	MOVWF TO UDEC	COUNTER		
WKIIE_WORD	_10_RKEG	POSTINCO W		get low byte of buffer data
	MOVWE	TABLAT	;	present data to table latch
	TBLWT+*	*		write data, perform a short write
			:	to internal TBLWT holding register.
	DECFSZ	COUNTER	;	loop until buffers are full
	BRA	WRITE_WORD_TO_HREGS	,	-

EXAMPLE 5-3: WRITING TO FLASH PROGRAM MEMORY (CONTINUED)

PROGRAM_ME	PROGRAM_MEMORY						
	BSF	EECON1, EEPGD	;	point to FLASH program memory			
	BCF	EECON1, CFGS	;	access FLASH program memory			
	BSF	EECON1,WREN	;	enable write to memory			
	BCF	INTCON,GIE	;	disable interrupts			
	MOVLW	55h					
Required	MOVWF	EECON2	;	write 55h			
Sequence	MOVLW	AAh					
	MOVWF	EECON2	;	write AAh			
	BSF	EECON1,WR	;	start program (CPU stall)			
	BSF	INTCON, GIE	;	re-enable interrupts			
	DECFSZ	COUNTER_HI	;	loop until done			
	BRA	PROGRAM_LOOP					
	BCF	EECON1,WREN	;	disable write to memory			

5.5.2 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

5.5.3 UNEXPECTED TERMINATION OF WRITE OPERATION

If a write is terminated by an unplanned event, such as loss of power or an unexpected RESET, the memory location just programmed should be verified and reprogrammed if needed. The WRERR bit is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset during normal operation. In these situations, users can check the WRERR bit and rewrite the location.

5.5.4 PROTECTION AGAINST SPURIOUS WRITES

To protect against spurious writes to FLASH program memory, the write initiate sequence must also be followed. See "Special Features of the CPU" (Section 20.0) for more detail.

5.6 FLASH Program Operation During Code Protection

See "Special Features of the CPU" (Section 20.0) for details on code protection of FLASH program memory.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on All Other RESETS
TBLPTRU		—	bit 21	Program M (TBLPTR<	Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)					00 0000
TBPLTRH	H Program Memory Table Pointer High Byte (TBLPTR<15:8>)								0000 0000	0000 0000
TBLPTRL	L Program Memory Table Pointer High Byte (TBLPTR<7:0>)								0000 0000	0000 0000
TABLAT	Program M	lemory Table	Latch						0000 0000	0000 0000
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
EECON2	V2 EEPROM Control Register2 (not a physical register)							—		
EECON1	EEPGD	CFGS		FREE	WRERR	WREN	WR	RD	xx-0 x000	uu-0 u000
IPR2	-	—		EEIP	BCLIP	LVDIP	TMR3IP	-	1 1111	1 1111
PIR2	_	_	_	EEIF	BCLIF	LVDIF	TMR3IF	_	0 0000	0 0000
PIE2	_	_	_	EEIE	BCLIE	LVDIE	TMR3IE	_	0 0000	0 0000

TABLE 5-2: REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used during FLASH/EEPROM access.

NOTES:

x = Bit is unknown

	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	
	_	_	—	EEIF	BCLIF	LVDIF	TMR3IF	_	
	bit 7							bit 0	
bit 7-5	Unimplem	ented: Rea	d as '0'						
bit 4	EEIF: Data	EEPROM/	FLASH Write	e Operation	Interrupt Fla	ag bit			
	1 = The wr 0 = The wr	 1 = The write operation is complete (must be cleared in software) 0 = The write operation is not complete, or has not been started 							
bit 3	BCLIF: Bu	s Collision I	nterrupt Flag	g bit					
	 1 = A bus collision occurred (must be cleared in software) 0 = No bus collision occurred 								
bit 2	LVDIF : Low Voltage Detect Interrupt Flag bit 1 = A low voltage condition occurred (must be cleared in software) 0 = The device voltage is above the Low Voltage Detect trip point								
bit 1	TMR3IF : TMR3 Overflow Interrupt Flag bit 1 = TMR3 register overflowed (must be cleared in software)								
bit 0	Unimplem	ented: Rea	d as '0'						
	pioin								
	Legend:								
	R = Reada	ble bit	W = Wr	itable bit	U = Unir	nplemented	bit, read as '	0'	

'1' = Bit is set

'0' = Bit is cleared

REGISTER 8-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

- n = Value at POR

REGISTER 9-1: TRISE REGISTER

- n = Value at POR

	R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
	IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0
	bit 7	·		·		·		bit 0
bit 7	IBF: Input	Buffer Full S	Status bit	-l ···aiting to be	read by the			
	1 = A word 0 = No word	rd has been i	received and	d waiting to be) read by the	9 0 9 0		
bit 6	OBF: Outp	out Buffer Fu	ull Status bit	t				
	1 = The ou	utput buffer s	still holds a	previously writ	tten word			
	0 = The ou	Itput buffer I	nas been re	ad				
bit 5	IBOV : Inpu	ut Buffer Ove	erflow Dete	ct bit (in Micro	processor n	node) boon read		
	⊥ = A write (must	be cleared in	n software)		JU 1185 1101	Deen reau		
	0 = No ove	erflow occur	red					
bit 4	PSPMODE	E: Parallel S	lave Port M	lode Select bit				
	1 = Paralle	I Slave Port	t mode					
hit 3		arr urpose r rented: Res	'0' as '0'					
hit 2	TRISE2 R	PE2 Direction	n Control hi	t				
	1 = Input			L				
	0 = Output	t						
bit 1	TRISE1: R	E1 Direction	n Control bi	t				
	1 = Input	۰.						
hit ()		PEO Direction	n Control bi	t				
	1 = Input			L				
	0 = Output	t						
	<u> </u>							1
	Legend:							
	R = Reada	able bit	W = V	Nritable bit	U = Unim	plemented l	bit, read as '	0'

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

12.0 TIMER2 MODULE

The Timer2 module is an 8-bit timer with a selectable 8-bit period. It has the following features:

- Input from system clock at Fosc/4 with programmable input prescaler
- Interrupt on timer-to-period match with programmable postscaler

The module has three registers: the TMR2 counter, the PR2 period register, and the T2CON control register. The general operation of Timer2 is shown in Figure 12-1.

Additional information on the use of Timer2 as a time-base is available in Section 15.0 (PWM Modules).

Note: In PIC18FXX39 devices, Timer2 is used exclusively as a time-base for the PWM modules in motor control applications. As such, it is not available to users as a resource. Although their locations are shown on the device data memory maps, none of the Timer2 registers are directly accessible. Users should not alter the values of these registers.

NOTES:

void ProMPT_SetAccelRate(unsigned char rate)

Resources used: 0 stack level

rate range: 0 to 255

Description: Sets the acceleration to the value of rate in Hz/second. The default setting is 10 Hz/s.

void ProMPT_SetBoostEndModulation(unsigned char modulation)

Resources used: Hardware Multiplier; 0 stack levels

modulation range: 0 to 200

Description: Sets the End Modulation (in %) for the Boost logic. Boost mode operates at Boost Frequency, and the modulation ramps from BoostStartModulation to BoostEndModulation. This function should not be called while Boost is enabled.

unsigned char ProMPT_SetBoostFrequency(unsigned char frequency)

Resources used: 0 stack levels

frequency range: 0 to 127

Description: Sets the frequency the drive goes to in Boost mode. Frequency must be < 128. On exit, w = 0 if the command is successful, or w = FFh if the frequency is out of range. This function should not be called while Boost is enabled.

void ProMPT_SetBoostStartModulation(unsigned char modulation)

Resources used: Hardware Multiplier; 0 stack levels

modulation range: 0 to BoostEndModulation

Description: Sets the Start Modulation (in %) for the Boost logic. Boost mode operates at Boost Frequency, and the modulation ramps from BoostStartModulation to BoostEndModulation. This function should not be called while Boost is enabled.

void ProMPT_SetBoostTime(unsigned char time)

Resources used: Hardware Multiplier; 0 stack levels

time range: 0 to 255

Description: Sets the amount of time in seconds for the Boost mode. Boost mode operates at Boost Frequency, and the modulation ramps from BoostStartModulation to BoostEndModulation over BoostTime. This function should not be called while Boost is enabled.

void ProMPT_SetDecelRate(unsigned char rate)

Resources used: 0 stack levels

rate range: 0 to 255

Description: Sets the deceleration to the value of rate in Hz per second. The default setting is 5 Hz/s.

unsigned char ProMPT_SetFrequency(unsigned char frequency)

Resources used: 2 stack levels

frequency range: 0 to 127

Description: Sets the output frequency of the drive if the drive is running. Frequency is limited to 0 to 127, but should be controlled within the valid operational range of the motor. Modulation is determined from the V/F curve, which is set up with the ProMPT_SetVFCurve method. If frequency = 0, the drive will stop. If the drive is stopped and frequency > 0, the drive will start.

© 2002-2013 Microchip Technology Inc.

16.4.17.1 Bus Collision During a START Condition

During a START condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the START condition (Figure 16-26).
- b) SCL is sampled low before SDA is asserted low (Figure 16-27).

During a START condition, both the SDA and the SCL pins are monitored.

If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- the START condition is aborted,
- the BCLIF flag is set, and
- the MSSP module is reset to its IDLE state (Figure 16-26).

The START condition begins with the SDA and SCL pins de-asserted. When the SDA pin is sampled high, the baud rate generator is loaded from SSPADD<6:0> and counts down to '0'. If the SCL pin is sampled low while SDA is high, a bus collision occurs, because it is assumed that another master is attempting to drive a data '1' during the START condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 16-28). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The baud rate generator is then reloaded and counts down to '0', and during this time, if the SCL pins are sampled as '0', a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a START condition, is that no two bus masters can assert a START condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision, because the two masters must be allowed to arbitrate the first address following the START condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated START or STOP conditions.

FIGURE 16-26: BUS COLLISION DURING START CONDITION (SDA ONLY)

16.4.17.2 Bus Collision During a Repeated START Condition

During a Repeated START condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user de-asserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to '0'. The SCL pin is then de-asserted, and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 16-29). If SDA is sampled high, the BRG is

reloaded and begins counting. If SDA goes from high to low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high to low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated START condition, see Figure 16-30.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated START condition is complete.

FIGURE 16-30: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

17.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 17-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.

To set up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 17.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit RCIE.
- 4. If 9-bit reception is desired, set bit RX9.
- 5. Enable the reception by setting bit CREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

17.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is required, set the BRGH bit.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are required, set the RCEN bit and select the desired priority level with the RCIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- 5. Set the ADDEN bit to enable address detect.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF bit will be set when reception is complete. The interrupt will be acknowledged if the RCIE and GIE bits are set.
- 8. Read the RCSTA register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 9. Read RCREG to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

FIGURE 17-4: USART RECEIVE BLOCK DIAGRAM

FIGURE 21-1:	GENERAL FORMAT FOR INSTRUCTIONS	
	Byte-oriented file register operations	Example Instruction
	<u>15 10 9 8 7 0</u>	
	OPCODE d a f (FILE #)	ADDWF MYREG, W, B
	d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f)	
	a = 0 to force Access Bank	
	a = 1 for BSR to select bank f = 8-bit file register address	
	Byte to Byte move operations (2-word)	
	<u>15 12 11 0</u>	
	OPCODE f (Source FILE #)	MOVFF MYREG1, MYREG2
	<u>15 12 11 0</u>	
	1111 f (Destination FILE #)	
	f = 12-bit file register address	
	Bit-oriented file register operations	
	<u>15 1211 987 0</u>	
	OPCODE b (BIT #) a f (FILE #)	BSF MYREG, bit, B
	b = 3-bit position of bit in file register (f)	
	a = 0 to force Access Bank a = 1 for BSR to select bank	
	f = 8-bit file register address	
	Literal operations	
	15 8 7 0	
	OPCODE k (literal)	MOVLW 0x7F
	k = 8-bit immediate value	
	Control operations	
	CALL. GOTO and Branch operations	
	15 8 7 0	
	OPCODE n<7:0> (literal)	GOTO Label
	15 12 11 0	
	1111 n<19:8> (literal)	
	n = 20-bit immediate value	
	15 8 7 0	
	OPCODE S n<7:0> (literal)	CALL MYFUNC
	<u>15 12 11 0</u>	
	n<19:8> (literal)	
	S = Fast bit	
	15 11 10 0	
	OPCODE n<10:0> (literal)	BRA MYFUNC
	15 9.7 0	
		BC MYFUNC

BTFSC		Bit Test File, Skip if Clear				
Syntax:		[<i>label</i>] BT	[label] BTFSC f,b[,a]			
Operands:		$\begin{array}{l} 0\leq f\leq 255\\ 0\leq b\leq 7\\ a\in [0,1] \end{array}$	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$			
Opei	ration:	skip if (f 	>) = 0			
Statu	is Affected:	None				
Enco	oding:	1011	bbba	fff	ffff	
Description:		If bit 'b' in register 'f' is 0, then the next instruction is skipped. If bit 'b' is 0, then the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a two- cycle instruction. If 'a' is 0, the Access Bank will be selected, over- riding the BSR value. If 'a' = 1, then the bank will be selected as per the				
More	le.		BSR value (default).			
Cycl	es:	1(2) Note: 3 c by	ycles if skip a 2-word in	o and f	ollowed on.	
QC	Q1	Q2	Q3		Q4	
	Decode	Read register 'f'	Process Da	ta op	No eration	
lf sk	ip:					
	Q1	Q2	Q3		Q4	
	No	No	No	00	No	
lf ol		od by 2 word	instruction	Op		
11 56					04	
	No	No	No		No	
	operation	operation	operation	ор	eration	
	No	No	No		No	
operation		operation	operation	ор	eration	
Exar	nple:	HERE B FALSE : TRUE :	FFSC FL	AG, 1,	, 0	
	Before Instru PC	ction = add	ress (here)		
	After Instructi If FLAG< PC If FLAG< PC	ion 1> = 0; = add 1> = 1; = add	ress (TRUE ress (Fals	2) 5E)		

RIF22	Bit Test File, Skip if Set				
Syntax:	[label] B1	[label] BTFSS f,b[,a]			
Operands:	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$				
Operation:	skip if (f <b:< td=""><td colspan="4">skip if (f) = 1</td></b:<>	skip if (f) = 1			
Status Affected:	None				
Encoding:	1010	bbba ff	ff ffff		
Description:	If bit 'b' in r next instruct If bit 'b' is 1 fetched dur tion execut NOP is exec a two-cycle Access Ba riding the E the bank w BSP value	egister T is 1 ction is skipp , then the ne ing the curre ion, is discar cuted insteac a instruction. nk will be sel 3SR value. If ill be selecte (default)	I, then the ed. ext instruction ent instruc- ided and a d, making this If 'a' is 0, the ected, over- 'a' = 1, then d as per the		
Mordo	BSR value	(default).			
Words.	1				
Q Cycle Activity: Q1 Decode	by Q2 Read	a 2-word ins Q3 Process Data	Q4		
	register 'f'		operation		
If skip:					
Q1	Q2	Q3	Q4		
No	No	No	No		
operation	operation	operation	onoration		
			operation		
If skip and followe	ed by 2-word	instruction:			
If skip and followe	ed by 2-word Q2	Q3	Q4		
If skip and followe Q1 No	ed by 2-word Q2 No operation	Q3 No operation	Q4 No operation		
If skip and followe Q1 No operation No	ed by 2-word Q2 No operation No	I instruction: Q3 No operation No	Q4 No operation No		
If skip and followe Q1 No operation No operation	ed by 2-word Q2 No operation No operation	Instruction: Q3 No operation No operation	Q4 No operation No operation		
If skip and followe Q1 No operation No operation <u>Example</u> :	ed by 2-word Q2 No operation No operation HERE B' FALSE : TRUE :	I instruction: Q3 No operation No operation	Q4 No operation No operation 5, 1, 0		
If skip and followe Q1 No operation No operation Example: Before Instruct	ed by 2-word Q2 No operation No operation HERE B' FALSE : TRUE : Ction	Instruction: Q3 No operation No operation	Q4 No operation No operation		
If skip and followe Q1 No operation No operation Example: Before Instruct PC	ed by 2-word Q2 No operation No operation HERE B' FALSE : TRUE : Ction = add	Instruction: Q3 No operation No operation	Q4 No operation No operation		

SUBLW	Subtract W from literal					
Syntax:	[label] S	SUBLW k				
Operands:	$0 \le k \le 25$	$0 \le k \le 255$				
Operation:	$k - (W) \rightarrow W$					
Status Affected:	N, OV, C	DC, Z				
Encoding:	0000	0000 1000 kkkk kkkk				
Description:	W is subt literal 'k'. in W.	W is subtracted from the eight-bit literal 'k'. The result is placed in W.				
Words:	1					
Cycles:	1					
Q Cycle Activity	1					
Q1	Q2	Q3	Q4			
Decode	Read literal 'k'	Process Data	Write to W			
Example 1:	SUBLW ()x02				
Before Instru	uction					
W	= 1					
C	= ?					
After Instruc	tion					
W	= 1 - 1 ·re	sult is positive				
Z	= 0					
N Everanla O	= 0					
Example 2:	SOBTM (JX02				
W C	= 2 = ?					
After Instruc	tion					
W	= 0					
C	= 1 ; re	esult is zero				
Ň	= 0					
Example 3: SUBLW 0x02						
Before Instruction						
W	= 3					
С	= ?					
After Instruc	tion					
W	= FF ; (2	's complement	t)			
Z	= 0 ,103	suit is negative				
N	= 1					

Syntax: [label] SUBWF f [,d [,a] Operands: $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ $a \in [0,1]$ $a \in [0,1]$ Operation: (f) - (W) → dest Status Affected: N, OV, C, DC, Z Encoding: 0101 11da ffff Description: Subtract W from register 'f' (2's complement method). If 'd' is 0, the result is stored back in register 'f' (d'fault). If 'a' is 0, the result is stored back in register 'f' (d'fault). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default). Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to destination Example 1: SUBWF REG, 1, 0 Before Instruction REG 1 W 2 C 2 C 2 1 REG 1 C Decode Read Process Write to destination Example 1: SUBWF REG, 1, 0 Before Instruction REG 1 ; result is positive 2	SUBWF		Subtract W from f			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Syntax:	[label] S	SUBWF f[,d [,a]	
Operation: (f) - (W) → dest Status Affected: N, OV, C, DC, Z Encoding: 0101 11da ffff Description: Subtract W from register 'f' (2's complement method). If 'd' is 0, the result is stored back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, the result is stored back in register 'f' (default). If 'a' is 0, the Access Bank will be selected as per the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default). Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to destination Example 1: SUBWF REG, 1, 0 Before Instruction REG 1 W 2 C C = 1 W 2 C C = 1 W 2 C C = 1 ; result is positive Z C Z 0 N = 0 Example 2: SUBWF REG, 0, 0 Example 2: SUBWF REG, 1, 0 Before Instruction REG 2 C 2 C 2<	Operands:		$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$			
Status Affected: N, OV, C, DC, Z Encoding: 0101 11da ffff ffff Description: Subtract W from register 'f' (2's complement method). If 'd' is 0, the result is stored back in regis- ter 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value. If 'a' is 0, the register 'f' Data destination Example 1: SUBWF REG, 1, 0 Before Instruction REG = 3 W = 2 C = ? After Instruction REG = 1 W = 2 C = 1 ; result is positive Z = 0 N = 0 Example 2: SUBWF REG, 0, 0 Before Instruction REG = 2 W = 0 Example 3: SUBWF REG, 1, 0 Before Instruction REG = 1 W = 2 C = ? After Instruction REG = 2 W = 0 Example 3: SUBWF REG, 1, 0 Before Instruction REG = 1 W = 2 C = ? After Instruction REG = 1 W = 0 Example 3: SUBWF REG, 1, 0 Before Instruction REG = 1 W = 2 C = ? After Instruction REG = 1 W = 2 C = 0; result is negative Z = 0; ; result is negative REG = 0; ; result is	Operation:		$(f) - (W) \rightarrow dest$			
Encoding: 0101 11da ffff ffff Description: Subtract W from register 'f' (2's complement method). If 'd' is 0, the result is stored back in regis- ter 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default). Words: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write to register 'f' Data destination Example 1: SUBWF REG, 1, 0 Before Instruction REG = 1 W = 2 C = 7 After Instruction REG = 1 W = 2 C = 1 ; result is positive Z = 0 N = 0 Example 2: SUBWF REG, 0, 0 Before Instruction REG = 2 W = 2 C = 7 After Instruction REG = 2 W = 2 C = 7 After Instruction REG = 2 W = 0 C = 1 ; result is zero Z = 1 N = 0 Example 3: SUBWF REG, 1, 0 Before Instruction REG = 1 W = 2 C = 7 After Instruction REG = 1 W = 2 C = 7 After Instruction REG = 2 W = 0 C = 1; result is zero Z = 1 N = 0 Example 3: SUBWF REG, 1, 0 Before Instruction REG = 1 W = 2 C = 7 After Instruction REG = 1 W = 2 C = 0; result is negative Z = 0 ; result is negative	Status Affected:	١	N, OV, C, DC, Z			
Description: Subtract W from register 'f (2's complement method). If 'd' is 0, the result is stored back in regis- ter 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default). Words: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register 'f' Data W Example 1: SUBWF REG, 1, 0 Before Instruction REG = 1 W = 2 C = 1 W = 2 C = 1; result is positive Z = 0 N = 0 Example 2: SUBWF REG, 0, 0 Before Instruction REG = 2 W = 2 C = 7 After Instruction REG = 2 W = 2 C = 1; result is zero Z = 1 N = 0 Example 3: SUBWF REG, 1, 0 Before Instruction REG = 1 W = 2 C = 1; result is zero Z = 1 N = 0 Example 3: SUBWF REG, 1, 0 Before Instruction REG = 1 W = 2 C = 7 After Instruction REG = 2 W = 0 C = 1; result is zero Z = 1 N = 0 Example 3: SUBWF REG, 1, 0 Before Instruction REG = 1 W = 2 C = 7 After Instruction REG = 1 W = 2 C = 0; result is negative Z = 0 ; result is negative	Encoding:		0101 11da ffff ffff			
Words:1Cycles:1Q Cycle Activity: $Q1$ $Q2$ $Q3$ $Q4$ DecodeRead register 'f'Process DataWrite to destinationExample 1:SUBWFREG, 1, 0Before Instruction REG=3 W=REG=1 W=C=?After Instruction REG=1 ; result is positive ZZC=1 ; result is positive ZZSUBWFREG, 0, 0Example 2:SUBWFREG, 0, 0Before Instruction REG=2 ; result is zero ZREG=2 ; wW=0Example 3:SUBWFREG, 1, 0Before Instruction REG=REG=1 ; result is zero ZZ=1 ; result is zero ZZ=1 ; result is zero ZREG=1 ; WW=QC=REG=REG=REG=Q=Q=Q=Q=Q=Q=Q=Q=Q=Q=Q=Q=Q=Q=Q=Q=Q=Q=Q= <td>Description:</td> <td>t t t f c</td> <td colspan="4">Subtract W from register 'f' (2's complement method). If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).</td>	Description:	t t t f c	Subtract W from register 'f' (2's complement method). If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Words:	1				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cycles:	1				
$\begin{tabular}{ c c c c c } \hline Q2 & Q3 & Q4 \\ \hline \hline Decode & Read & Process & Write to \\ \hline register 'f' & Data & destination \\ \hline \hline \\ \hline $	Q Cycle Activity:					
$\begin{tabular}{ c c c c c } \hline Decode & Read register 'f' & Data & Virite to destination \\ \hline Process & Data & Virite to destination \\ \hline Process & Data & Virite to destination \\ \hline Process & Data & Virite to destination \\ \hline Process & Data & Virite to destination \\ \hline REG & = & 3 & Virite & 2 & 0 & Virite & 2 & C & 2 & 2 & C & 2 & 2 & C & 2 & 2$	Q1		Q2	Q3	Q4	
Example 1:SUBWFREG, 1, 0Before InstructionREGREGCREG1W2C1W2C1result is positiveZ2C1REG2C1REG2C1REG2C2C2C2C2C3N4Before InstructionREGREG2C1N2C2C3C4Before InstructionREGREG1W2C2C3After InstructionREGREG4W2C34444555566778697888888888 <td< td=""><td>Decode</td><td>F reç</td><td>Read gister 'f'</td><td>Process Data</td><td>Write to destination</td></td<>	Decode	F reç	Read gister 'f'	Process Data	Write to destination	
Before Instruction $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Example 1:	S	UBWF	REG, 1, 0		
$\begin{array}{rcl} REG &=& 3\\ W &=& 2\\ C &=& ?\\ After Instruction\\ ® &=& 1\\ W &=& 2\\ C &=& 1\\ W &=& 2\\ C &=& 1\\ X &=& 0\\ \hline Example 2: & SUBWF REG, 0, 0\\ \hline \\ \hline \\ \mathbf{Ecample 2}: & SUBWF REG, 0, 0\\ \hline \\ \hline \\ \hline \\ \mathbf{Ecample 2}: & SUBWF REG, 0, 0\\ \hline \\ \hline \\ \hline \\ \mathbf{REG} &=& 2\\ W &=& 2\\ C &=& ?\\ \hline \\ \mathbf{After Instruction}\\ ® &=& 2\\ W &=& 0\\ C &=& 1\\ N &=& 0\\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \mathbf{Ecample 3}: & SUBWF REG, 1, 0\\ \hline \\ \\ \hline \\ \hline $	Before Instru	ictio	n			
W = 2 $C = ?$ After Instruction $REG = 1$ $W = 2$ $C = 1 ; result is positive$ $Z = 0$ $N = 0$ Example 2: SUBWF REG, 0, 0 Before Instruction $REG = 2$ $W = 0$ $C = ?$ After Instruction $REG = 2$ $W = 0$ $C = 1 ; result is zero$ $Z = 1$ $N = 0$ Example 3: SUBWF REG, 1, 0 Before Instruction $REG = 1$ $W = 2$ $C = ?$ After Instruction $REG = 1$ $W = 2$ $C = ?$ After Instruction $REG = 1$ $W = 2$ $C = ?$ After Instruction $REG = 1$ $W = 2$ $C = ?$ After Instruction $REG = FFh ; (2's complement)$ $W = 2$ $C = 0 ; result is negative$	REG	=	3			
After Instruction $\begin{array}{rcrcrc} REG &=& 1\\ W &=& 2\\ C &=& 1\\ Z &=& 0\\ N &=& 0\\ \end{array}$ Fexample 2: SUBWF REG, 0, 0 Before Instruction REG &=& 2 W &=& 2 C &=& ? After Instruction REG &=& 2 W &=& 0 C &=& 1 N &=& 0\\ \end{array} Fexample 3: SUBWF REG, 1, 0 Before Instruction REG &=& 1 W &=& 2 C &=& ? After Instruction REG &=& FFh ;(2's complement) W &=& 2 C &=& 0 ; result is negative Z &=& 0 ; result is negative	W C	=	2 ?			
$\begin{array}{rcl} REG &=& 1\\ W &=& 2\\ C &=& 1\\ W &=& 2\\ C &=& 0\\ N &=& 0\\ \hline \\ \mathbf{Example 2}: & SUBWF & REG, \ 0, \ 0\\ \hline \\ \hline \\ \mathbf{Example 2}: & SUBWF & REG, \ 0, \ 0\\ \hline \\ \hline \\ \mathbf{REG} &=& 2\\ W &=& 2\\ C &=& ?\\ \hline \\ \mathbf{After Instruction}\\ REG &=& 2\\ W &=& 0\\ C &=& 1\\ N &=& 0\\ \hline \\ \hline \\ \hline \\ \mathbf{Example 3}: & SUBWF & REG, \ 1, \ 0\\ \hline \\ \hline \\ \hline \\ \hline \\ \mathbf{Ecample 3}: & SUBWF & REG, \ 1, \ 0\\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \mathbf{REG} &=& 1\\ W &=& 2\\ C &=& ?\\ \hline \\ \hline \\ \mathbf{After Instruction}\\ \hline \\ \hline \\ \hline \\ \hline \\ \mathbf{REG} &=& FFh \ ; (2's \ complement)\\ W &=& 2\\ C &=& 0\\ \hline \\ $	After Instruct	ion				
W = 2 $C = 1 ; result is positive$ $Z = 0$ $N = 0$ Example 2: SUBWF REG, 0, 0 Before Instruction $REG = 2$ $W = 2$ $C = ?$ After Instruction $REG = 2$ $W = 0$ $C = 1 ; result is zero$ $Z = 1$ $N = 0$ Example 3: SUBWF REG, 1, 0 Before Instruction $REG = 1$ $W = 2$ $C = ?$ After Instruction $REG = 1$ $W = 2$ $C = ?$ After Instruction $REG = FFh ; (2's complement)$ $W = 2$ $C = 0 ; result is negative$	REG	=	1			
Z = 0 $N = 0$ Example 2: SUBWF REG, 0, 0 Before Instruction $REG = 2$ $W = 2$ $C = ?$ After Instruction $REG = 2$ $W = 0$ $C = 1$; result is zero $Z = 1$ $N = 0$ Example 3: SUBWF REG, 1, 0 Before Instruction $REG = 1$ $W = 2$ $C = ?$ After Instruction $REG = 1$ $W = 2$ $C = ?$ After Instruction $REG = FFh ; (2's complement)$ $W = 2$ $C = 0; result is negative$	C	=	∠ 1 ;re	sult is positive	•	
IN $=$ 0 Example 2:SUBWFREG, 0, 0Before InstructionREG $=$ REG $=$ 2 C $=$ 2 C $=$ 2 W $=$ 0 C $=$ 1 C $=$ 1 REG $=$ 2 C $=$ 1 REG $=$ 1 W $=$ 2 C $=$ 0 T T T	Z	=	0	·		
Before Instruction $\begin{array}{rcl} REG &=& 2\\ W &=& 2\\ C &=& ?\\ After Instruction\\ REG &=& 2\\ W &=& 0\\ C &=& 1\\ W &=& 0\\ C &=& 1\\ REG &=& 1\\ N &=& 0\\ \hline \end{array}$ Example 3: SUBWF REG, 1, 0 Before Instruction $\begin{array}{rcl} REG &=& 1\\ W &=& 2\\ C &=& ?\\ After Instruction\\ REG &=& 1\\ W &=& 2\\ C &=& ?\\ After Instruction\\ REG &=& FFh ;(2's complement)\\ W &=& 2\\ C &=& 0\\ &; result is negative\\ Z &=& 0\\ \end{array}$	Example 2	-	UBWF	REG. 0. 0		
REG = 2 $W = 2$ $C = ?$ After Instruction $REG = 2$ $W = 0$ $C = 1 ; result is zero$ $Z = 1$ $N = 0$ Example 3: SUBWF REG, 1, 0 Before Instruction $REG = 1$ $W = 2$ $C = ?$ After Instruction $REG = FFh ; (2's complement)$ $W = 2$ $C = 0 ; result is negative$	Before Instruction					
	REG	=	2			
C = ? After Instruction $REG = 2$ $W = 0$ $C = 1 ; result is zero$ $Z = 1$ $N = 0$ Example 3: SUBWF REG, 1, 0 Before Instruction $REG = 1$ $W = 2$ $C = ?$ After Instruction $REG = FFh ; (2's complement)$ $W = 2$ $C = 0 ; result is negative$	W	=	2			
REG = 2 $W = 0$ $C = 1 ; result is zero$ $Z = 1$ $N = 0$ $Example 3: SUBWF REG, 1, 0$ $REG = 1$ $W = 2$ $C = ?$ After Instruction $REG = FFh ; (2's complement)$ $W = 2$ $C = 0 ; result is negative$	C After Instruct	= ion	?			
	REG	=	2			
C = 1 ; result is zero $Z = 1$ $N = 0$ Example 3: SUBWF REG, 1, 0 Before Instruction $REG = 1$ $W = 2$ $C = ?$ After Instruction $REG = FFh ; (2's complement)$ $W = 2$ $C = 0 ; result is negative$	W	=	0			
$\overline{N} = 0$ Example 3: SUBWF REG, 1, 0 Before Instruction REG = 1 W = 2 C = ? After Instruction REG = FFh ;(2's complement) W = 2 C = 0 ; result is negative $\overline{Z} = 0$	C Z	=	1 ; re	sult is zero		
Example 3: SUBWF REG, 1, 0 Before Instruction REG = 1 W = 2 C = ? After Instruction REG = FFh ;(2's complement) W = 2 C = 0 ; result is negative Z = 0	Ň	=	ò			
Before Instruction $\begin{array}{rcl} REG &=& 1\\ W &=& 2\\ C &=& ?\\ \end{array}$ After Instruction $\begin{array}{rcl} REG &=& FFh \ ;(2's \ complement)\\ W &=& 2\\ C &=& 0 \ ; \ result \ is \ negative\\ T &=& 0\\ \end{array}$	Example 3: SUBWF REG, 1, 0					
REG = 1 $W = 2$ $C = ?$ After Instruction $REG = FFh ; (2's complement)$ $W = 2$ $C = 0 ; result is negative$ $Z = 0$	Before Instru	ictio	n			
W = 2 $C = ?$ After Instruction $REG = FFh ; (2's complement)$ $W = 2$ $C = 0 ; result is negative$ $Z = 0$	REG	=	1			
After Instruction REG = FFh ;(2's complement) W = 2 C = 0 ; result is negative Z = 0	C	=	2 ?			
$\begin{array}{rcl} REG &=& FFh \ \ (2's \ complement) \\ W &=& 2 \\ C &=& 0 \\ Z &=& 0 \end{array}$; result is negative	After Instruct	ion				
W = 2 C = 0; result is negative Z = 0	REG	=	FFh ;(2	2's compleme	nt)	
7 = 0	W	=	2 0 · ro	sult is negativ	e	
N – 1	Ž	=	0	- sit is nogativ	-	

SUBWFB		Subtract W from f with Borrow					
Syntax:		[label]	[label] SUBWFB f [,d [,a]				
Operands:		$0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$				
Operation:		$(f) - (W) - (\overline{C}) \rightarrow dest$					
Status Affected:		N, OV, C	N, OV, C, DC, Z				
Enc	oding:	0101	10da fff	f ffff			
Description:		Subtract W and the carry flag (bor- row) from register 'f' (2's complement method). If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default).					
Wor	ds:	1					
Cycl	es:	1					
QC	Cycle Activity:	:					
	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process Data	Write to destination			
Exa	<u>mple 1</u> :	SUBWFB	REG, 1, 0				
	Before Instru REG W	uction = 0x19 = 0x0D - 1	(0001 100 (0000 110	01) 01)			
	After Instruct	tion					
	REG	= 0x0C	(0000 101	.1)			
	Č	= 1	(0000 110	(1)			
	Z N	= 0 = 0	; result is po	sitive			
Example 2:		SUBWFB	REG, 0, 0				
	Before Instru	uction					
	REG	= 0x1B	(0001 101	.1)			
	C After Instruct	= 0	(0001 101	.0)			
	REG W C Z	= 0x1B = 0x00 = 1 = 1	(0001 101 : result is ze	.1)			
	Ň	= 0	, 10001110 20				
Exa	<u>mple 3:</u>	SUBWFB	REG, 1, 0				
	Before Instru REG	uction = 0x03	(0000 001	.1)			
	W	= 0x0E	(0000 110)1)			
	C After Instruct	= 1 tion					
	REG	= 0xF5	(1111 010 ; [2's comp]	00)			
	W C	= 0x0E = 0	(0000 110)1)			
	Z N	= 0 = 1	; result is ne	gative			

	Swap f				
Syntax:	[label]	SWAPF f[,d	l [,a]		
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]				
Operation:	(f<3:0>) → dest<7:4>, (f<7:4>) → dest<3:0>				
Status Affected:	None	None			
Encoding:	0011	10da ffi	ff fff	f	
Description:	The upper and lower nibbles of reg- ister 'f' are exchanged. If 'd' is 0, the result is placed in W. If 'd' is 1, the result is placed in register 'f' (default). If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' is 1, then the bank will be selected as per the BSR value (default)				
Words:	1	· · ·			
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	Q4		
Decode	Read register 'f'	Process	Write to)	
		Dala	uestinatio		
Example: Before Instru REG After Instructi REG	SWAPF F ction = 0x53 ion = 0x35	EG, 1, 0	Cestinau		

23.3.2 TIMING CONDITIONS

The temperature and voltages specified in Table 23-3 apply to all timing specifications unless otherwise noted. Figure 23-4 specifies the load conditions for the timing specifications.

TABLE 23-3: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions (unless otherwise stated)			
	Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial			
	-40°C \leq TA \leq +125°C for extended			
AC CHARACTERISTICS	Operating voltage VDD range as described in DC spec Section 23.1 and			
	Section 23.2.			
	LC parts operate for industrial temperatures only.			

FIGURE 23-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

FIGURE 24-17: MINIMUM AND MAXIMUM VIN vs. VDD (TTL INPUT, -40°C TO +125°C)

© 2002-2013 Microchip Technology Inc.