

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	24KB (12K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1408 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2539t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-1:	TIME-OUT IN VARIOUS SITUATIONS
------------	--------------------------------

Oscillator	Power-up	(2)	-	Wake-up from
Configuration	PWRTE = 0	PWRTE = 1	Brown-out	SLEEP or Oscillator Switch
HS with PLL enabled ⁽¹⁾	72 ms + 1024 Tosc 1024 Tosc + 2ms + 2 ms		72 ms ⁽²⁾ + 1024 Tosc + 2 ms	1024 Tosc + 2 ms
HS, XT, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms ⁽²⁾ + 1024 Tosc	1024 Tosc
EC	72 ms	—	72 ms ⁽²⁾	—
External RC	72 ms	—	72 ms ⁽²⁾	—

Note 1: 2 ms is the nominal time required for the 4x PLL to lock.

2: 72 ms is the nominal power-up timer delay, if implemented.

REGISTER 3-1:	RCON REGISTER BITS AND POSITIONS
---------------	----------------------------------

R/W-0	U-0	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	_	—	RI	TO	PD	POR	BOR
bit 7							bit 0

Note 1: Refer to Section 4.14 (page 50) for bit definitions.

TABLE 3-2:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program Counter	RCON Register	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	01 1100	1	1	1	0	0	u	u
MCLR Reset during normal operation	0000h	0u uuuu	u	u	u	u	u	u	u
Software Reset during normal operation	0000h	00 uuuu	0	u	u	u	u	u	u
Stack Full Reset during normal operation	0000h	0u uull	u	u	u	u	u	u	1
Stack Underflow Reset during normal operation	0000h	0u uull	u	u	u	u	u	1	u
MCLR Reset during SLEEP	0000h	0u 10uu	u	1	0	u	u	u	u
WDT Reset	0000h	0u 01uu	1	0	1	u	u	u	u
WDT Wake-up	PC + 2	uu 00uu	u	0	0	u	u	u	u
Brown-out Reset	0000h	01 11u0	1	1	1	1	0	u	u
Interrupt wake-up from SLEEP	PC + 2 ⁽¹⁾	uu 00uu	u	1	0	u	u	u	u

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (0x000008h or 0x000018h).

4.14 RCON Register

The Reset Control (RCON) register contains flag bits that allow differentiation between the sources of a device RESET. These flags include the TO, PD, POR, BOR and RI bits. This register is readable and writable.

For PIC18FXX39 devices, the IPEN bit must always be set (= 1) for the ProMPT kernel to function correctly. Refer to Section 8.0 (page 69) for a more detailed discussion.

- Note 1: If the BOREN configuration bit is set (Brown-out Reset enabled), the BOR bit is '1' on a Power-on Reset. After a Brownout Reset has occurred, the BOR bit will be cleared, and must be set by firmware to indicate the occurrence of the next Brown-out Reset.
 - 2: It is recommended that the POR bit be set after a Power-on Reset has been detected, so that subsequent Power-on Resets may be detected.

REGISTER 4-3: RCON REGISTER

R/W-0	U-0	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	_	_	RI	TO	PD	POR	BOR
bit 7							bit 0

hit	7	IDEN: Interrupt Drighty English hit							
Dit	/								
		Always maintain this bit set for proper operation of ProMPT kernel.							
bit	ô-5	Unimplemented: Read as '0'							
bit	4	RI: RESET Instruction Flag bit							
		 1 = The RESET instruction was not executed 0 = The RESET instruction was executed causing a device RESET (must be set in software after a Brown-out Reset occurs) 							
bit	3	TO: Watchdog Time-out Flag bit							
	1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred								
bit	2	PD: Power-down Detection Flag bit							
		 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction 							
bit	1	POR: Power-on Reset Status bit							
		1 = A Power-on Reset has not occurred							
		 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) 							
bit	0	BOR: Brown-out Reset Status bit							
		 1 = A Brown-out Reset has not occurred 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs) 							
	Γ	Legend:							
		R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							

DS30485B-page 50

- n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

EXAMPLE 5-3: WRITING TO FLASH PROGRAM MEMORY

	MOVLW	D'64	;	number of bytes in erase block
	MOVWF	COUNTER		
	MOVLW	BUFFER_ADDR_HIGH	;	point to buffer
	MOVWF	FSROH		
	MOVLW	BUFFER_ADDR_LOW		
	MOVWF	FSROL		
	MOVLW	CODE_ADDR_UPPER	;	Load TBLPTR with the base
	MOVWE	TBLPTRU	;	address of the memory block
	MOVINE	TELETEL		
	MOVLW	CODE ADDR LOW		
	MOVWF	TBLPTRL		
READ_BLOCK				
	TBLRD*+	-	;	read into TABLAT, and inc
	MOVF	TABLAT, W	;	get data
	MOVWF	POSTINCO	;	store data
	DECFSZ	COUNTER	;	done?
	BRA	READ_BLOCK	;	repeat
MODIFY_WORI)			
	MOVLW	DATA_ADDR_HIGH	;	point to buffer
	MOVWF	FSRUH		
	MOVINE	DATA_ADDR_LOW		
	MOVTW	NEW DATA LOW		undate huffer word
	MOVWE	POSTINCO	,	update buller word
	MOVLW	NEW DATA HIGH		
	MOVWF	INDF0		
ERASE BLOCI	ĸ			
_	MOVLW	CODE ADDR UPPER	;	load TBLPTR with the base
	MOVWF	TBLPTRU	;	address of the memory block
	MOVLW	CODE_ADDR_HIGH		
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
	BSF	EECON1, EEPGD	;	point to FLASH program memory
	BCF	EECON1,CFGS	;	access FLASH program memory
	BSF	EECON1, WREN	;	enable write to memory
	BSF	EECONI, FREE	;	enable Row Erase operation
	MOVIW	INICON, GIE	;	disable interrupts
	MOVWE	FECON2		write 55h
	MOVIW	AAh	,	WIICE 5511
	MOVWF	EECON2	;	write AAh
	BSF	EECON1,WR	;	start erase (CPU stall)
	BSF	INTCON, GIE	;	re-enable interrupts
	TBLRD*-	-	;	dummy read decrement
WRITE_BUFF	ER_BACK			
	MOVLW	8	;	number of write buffer groups of 8 bytes
	MOVWF	COUNTER_HI		
	MOVLW	BUFFER_ADDR_HIGH	;	point to buffer
	MOVWF	FSROH		
	MOVLW	BUFFER_ADDR_LOW		
	MOVWF	FSROL		
PROGRAM_LOO	JP NOTITI	0		number of botton in bolding contation
	MOVTA	Ö COLINITED	;	number of bytes in noiding register
אסדייד אומיים	MOVWE TO UDEC	COUNTER		
WKIIE_WORD	_10_RKEG	POSTINCO W		get low byte of buffer data
	MOVWE	TABLAT	;	present data to table latch
	TBLWT+*	*		write data, perform a short write
			:	to internal TBLWT holding register.
	DECFSZ	COUNTER	;	loop until buffers are full
	BRA	WRITE_WORD_TO_HREGS	,	-

EXAMPLE 5-3: WRITING TO FLASH PROGRAM MEMORY (CONTINUED)

PROGRAM_ME	MORY			
	BSF	EECON1, EEPGD	;	point to FLASH program memory
	BCF	EECON1, CFGS	;	access FLASH program memory
	BSF	EECON1,WREN	;	enable write to memory
	BCF	INTCON,GIE	;	disable interrupts
	MOVLW	55h		
Required	MOVWF	EECON2	;	write 55h
Sequence	MOVLW	AAh		
	MOVWF	EECON2	;	write AAh
	BSF	EECON1,WR	;	start program (CPU stall)
	BSF	INTCON, GIE	;	re-enable interrupts
	DECFSZ	COUNTER_HI	;	loop until done
	BRA	PROGRAM_LOOP		
	BCF	EECON1,WREN	;	disable write to memory

5.5.2 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

5.5.3 UNEXPECTED TERMINATION OF WRITE OPERATION

If a write is terminated by an unplanned event, such as loss of power or an unexpected RESET, the memory location just programmed should be verified and reprogrammed if needed. The WRERR bit is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset during normal operation. In these situations, users can check the WRERR bit and rewrite the location.

5.5.4 PROTECTION AGAINST SPURIOUS WRITES

To protect against spurious writes to FLASH program memory, the write initiate sequence must also be followed. See "Special Features of the CPU" (Section 20.0) for more detail.

5.6 FLASH Program Operation During Code Protection

See "Special Features of the CPU" (Section 20.0) for details on code protection of FLASH program memory.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on All Other RESETS
TBLPTRU		—	bit 21	Program M (TBLPTR<	lemory Tabl 20:16>)	00 0000	00 0000			
TBPLTRH	Program M	lemory Table	Pointer Hig	h Byte (TBI	LPTR<15:8:	>)			0000 0000	0000 0000
TBLPTRL	Program M	lemory Table	Pointer Hig	h Byte (TBI	LPTR<7:0>))			0000 0000	0000 0000
TABLAT	Program M	lemory Table	Latch						0000 0000	0000 0000
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
EECON2	EEPROM (Control Regis	ster2 (not a	physical reg	gister)				—	
EECON1	EEPGD	CFGS		FREE	WRERR	WREN	WR	RD	xx-0 x000	uu-0 u000
IPR2	-	—		EEIP	BCLIP	LVDIP	TMR3IP	-	1 1111	1 1111
PIR2	_	_	_	EEIF	BCLIF	LVDIF	TMR3IF	_	0 0000	0 0000
PIE2	_	_	_	EEIE	BCLIE	LVDIE	TMR3IE	_	0 0000	0 0000

TABLE 5-2: REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used during FLASH/EEPROM access.

REGISTER 8-2: INTCON2 REGISTER

	R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1	U-0	R/W-1
	RBPU	INTEDG0	INTEDG1	INTEDG2		TMR0IP		RBIP ⁽¹⁾
	bit 7							bit 0
bit 7	RBPU: PO	ORTB Pull-up	Enable bit					
	1 = All PO	RTB pull-ups	are disable	b				
	0 = PORT	B pull-ups ar	e enabled by	individual po	ort latch val	ues		
bit 6	INTEDG0	: External Inte	errupt 0 Edge	e Select bit				
	1 = Interru	upt on rising e	edge					
	0 = Interru	upt on falling	edge					
bit 5	INTEDG1	: External Inte	errupt 1 Edge	e Select bit				
	1 = Interru	upt on rising e	edge					
	0 = Interru	upt on falling	edge					
bit 4	INTEDG2	: External Inte	errupt 2 Edge	e Select bit				
	1 = Interru	upt on rising e	edge					
	0 = Interru	upt on failing	edge					
bit 3	Unimplen	nented: Rea	d as '0'					
bit 2	TMR0IP ⁽¹): TMR0 Ove	rflow Interrup	ot Priority bit				
	1 = High p	oriority						
	0 = Low p	oriority						
bit 1	Unimplen	nented: Read	d as '0'					
bit 0	RBIP ⁽¹⁾ : F	RB Port Chan	ge Interrupt I	Priority bit				
	1 = High p	oriority						
	0 = Low p	riority						
	Note 1	: Maintain th	is bit cleared	(= 0).				
	Legend.							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 8-3: INTCON3 REGISTER

- n = Value at POR

	R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0				
	INT2IP ⁽¹⁾	INT1IP ⁽¹⁾	_	INT2IE	INT1IE	—	INT2IF	INT1IF				
	bit 7							bit 0				
bit 7	INT2IP ⁽¹⁾ :	INT2 Externa	al Interrupt	Priority bit								
	1 = High p	riority										
	0 = Low pr	iority										
bit 6	INT1IP ⁽¹⁾ :	INT1 Externa	al Interrupt	Priority bit								
	1 = High p	riority										
	0 = Low pr	iority										
bit 5	Unimplem	nented: Read	l as '0'									
bit 4	INT2IE: IN	INT2IE: INT2 External Interrupt Enable bit										
	1 = Enable	es the INT2 e	xternal inte	rrupt								
	0 = Disable	es the INT2 e	external inte	errupt								
bit 3	INT1IE: IN	IT1 External I	Interrupt En	able bit								
	1 = Enable	es the INT1 e	xternal inte	rrupt								
	0 = Disable	es the INT1 e	external inte	errupt								
bit 2	Unimplem	nented: Read	l as '0'									
bit 1	INT2IF: IN	T2 External I	nterrupt Fla	ag bit								
	1 = The IN	T2 external i	nterrupt occ	curred (must	be cleared	in software)						
	0 = The IN	T2 external i	nterrupt did	not occur								
bit 0	INT1IF: IN	T1 External I	nterrupt Fla	ag bit								
	1 = The IN	T1 external i	nterrupt occ	curred (must	be cleared	in software)						
	0 = The IN	T1 external i	nterrupt did	not occur								
	Note 1:	Maintain thi	s bit cleare	d (= 0).								
	Legend:											
	R = Reada	able bit	W = V	Vritable bit	U = Unir	nplemented	bit, read as	'0'				

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

x = Bit is unknown

	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
	_	_	—	EEIF	BCLIF	LVDIF	TMR3IF	_			
	bit 7							bit 0			
bit 7-5	Unimplem	ented: Rea	d as '0'								
bit 4	EEIF: Data	EEPROM/	FLASH Write	e Operation	Interrupt Fla	ag bit					
	1 = The wr 0 = The wr	ite operation ite operation	n is complete n is not com	e (must be c plete, or has	leared in so not been st	ftware) arted					
bit 3	BCLIF: Bus Collision Interrupt Flag bit										
	1 = A bus o 0 = No bus	collision occ collision oc	urred (must curred	be cleared i	n software)						
bit 2	LVDIF : Lov 1 = A low v 0 = The de	w Voltage Do voltage conc vice voltage	etect Interru lition occurre e is above th	pt Flag bit ed (must be e Low Voltag	cleared in so ge Detect tri	oftware) p point					
bit 1	TMR3IF : T 1 = TMR3 0 = TMR3	MR3 Overfl register ove	ow Interrupt rflowed (mu	Flag bit st be cleared	d in software	e)					
bit 0	Unimplem	ented: Rea	d as '0'								
	pioin										
	Legend:										
	R = Reada	ble bit	W = Wr	itable bit	U = Unir	nplemented	bit, read as '	0'			

'1' = Bit is set

'0' = Bit is cleared

REGISTER 8-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

- n = Value at POR

10.0 TIMER0 MODULE

The Timer0 module has the following features:

- Software selectable as an 8-bit or 16-bit timer/counter
- Readable and writable
- Dedicated 8-bit software programmable prescaler
- · Clock source selectable to be external or internal
- Interrupt-on-overflow from FFh to 00h in 8-bit mode and FFFFh to 0000h in 16-bit mode
- Edge select for external clock

Figure 10-1 shows a simplified block diagram of the Timer0 module in 8-bit mode and Figure 10-2 shows a simplified block diagram of the Timer0 module in 16-bit mode.

The T0CON register (Register 10-1) is a readable and writable register that controls all the aspects of Timer0, including the prescale selection.

REGISTER 10-1: TOCON: TIMER0 CONTROL REGISTER

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0						
	bit 7							bit 0						
bit 7	TMR0ON:	Timer0 On/C	Off Control k	oit										
	1 = Enable 0 = Stops T	s Timer0 Fimer0												
bit 6	T08BIT: Tir	ner0 8-bit/16	3-bit Contro	l bit										
	1 = Timer0 0 = Timer0	is configure is configure	d as an 8-b d as a 16-b	it timer/cour it timer/cour	iter iter									
bit 5	TOCS: Time	er0 Clock Sc	ource Selec	t bit										
	1 = Transiti 0 = Interna	1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (CLKO)												
bit 4	TOSE: Time	T0SE: Timer0 Source Edge Select bit												
	1 = Increme 0 = Increme	ent on high-f ent on low-to	to-low trans o-high trans	ition on TOC ition on TOC	KI pin KI pin									
bit 3	PSA: Time	r0 Prescaler	⁻ Assignmer	nt bit										
	1 = TImer0 0 = Timer0	prescaler is prescaler is	NOT assig assigned.	ned. Timer0 Timer0 clock	clock input	bypasses pi s from prese	rescaler. caler output.							
bit 2-0	T0PS2:T0F	°S0: Timer0	Prescaler S	Select bits										
	111 = 1:25	6 prescale v	alue											
	110 = 1:12	8 prescale v	alue											
	101 = 1.64	prescale va	lue											
	100 = 1.32 011 = 1:16	prescale va	alue											
	010 = 1:8	prescale va	lue											
	001 = 1:4	prescale va	lue											
	000 = 1:2	prescale va	lue											
	Legend:													
	R = Readal	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'						
	- n = Value	at POR	'1' = Bi	it is set	'0' = Bit is	s cleared	x = Bit is u	unknown						

Figure 13-1 is a simplified block diagram of the Timer3

Register 13-1 shows the Timer1 control register, which

U = Unimplemented bit, read as '0'

'0' = Bit is cleared

sets the Operating mode of the Timer1 module.

13.0 TIMER3 MODULE

The Timer3 module timer/counter has the following features:

- 16-bit timer/counter (two 8-bit registers: TMR3H and TMR3L)
- Readable and writable (both registers)
- Internal or external clock select
- Interrupt-on-overflow from FFFFh to 0000h

REGISTER 13-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 T3CKPS1 **T3SYNC RD16** T3CKPS0 ____ TMR3CS TMR3ON bit 7 bit 0 bit 7 RD16: 16-bit Read/Write Mode Enable bit 1 = Enables register read/write of Timer3 in one 16-bit operation 0 = Enables register read/write of Timer3 in two 8-bit operations bit 6, 3 Unimplemented: Maintain as '0' bit 5, 4 T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value bit 2 T3SYNC: Timer3 External Clock Input Synchronization Control bit (Not usable if the system clock comes from Timer1/Timer3) When TMR3CS = 1: 1 = Do not synchronize external clock input 0 = Synchronize external clock input When TMR3CS = 0: This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0. bit 1 TMR3CS: Timer3 Clock Source Select bit 1 = External clock input from T13CKI (on the rising edge after the first falling edge) 0 = Internal clock (Fosc/4) bit 0 TMR3ON: Timer3 On bit 1 = Enables Timer3 0 = Stops Timer3 Legend:

module.

R = Readable bit

- n = Value at POR

W = Writable bit

'1' = Bit is set

x = Bit is unknown

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN				
	bit 7		<u>.</u>			<u> </u>		bit 0				
bit 7	GCEN: G 1 = Enabl	eneral Call En le interrupt wh	able bit (Sla en a genera	ive mode only I call address	y) 3 (0000h) is	received in	the SSPS	R				
hit 6	0 = Gener	ral call addres	S OISADIEU	(Master Tran	smit mode (
DILO	1 = Acknown0 = Acknown	owledge was n owledge was r	ot received from	from slave n slave	Shin mode c	, iiiy <i>j</i>						
bit 5	ACKDT: A 1 = Not A 0 = Ackno	Acknowledge [cknowledge owledge	Data bit (Ma	ster Receive	mode only)							
	Note:	Value that with the end of a	ill be transm receive.	itted when the	e user initiat	tes an Ackr	nowledge s	equence at				
bit 4	ACKEN: A 1 = Initiate Auton 0 = Ackne	 ACKEN: Acknowledge Sequence Enable bit (Master Receive mode only) 1 = Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit. Automatically cleared by hardware. 0 = Acknowledge sequence IDLE 										
bit 3	RCEN: Re 1 = Enabl 0 = Recei	RCEN: Receive Enable bit (Master mode only) 1 = Enables Receive mode for I ² C 0 = Receive IDLE										
bit 2	PEN: STO	JP Condition F	Enable bit (N	Aaster mode	only)							
	1 = Initiate 0 = STOF	a STOP condition IDL	tion on SDA _E	and SCL pin	s. Automatio	cally cleare	∍d by hardw	/are.				
bit 1	RSEN: RO	RSEN: Repeated START Condition Enabled bit (Master mode only)										
	1 = Initiate Autor 0 = Repe	e Repeated S [™] natically cleare ated START c	FART condit ad by hardward ondition IDL	ion on SDA a are. .E	and SCL pina	S.						
bit 0	SEN: ST/	ART Condition	Enabled/Str	retch Enabled	d bit							
	<u>In Master</u> 1 = Initiate 0 = STAR	In Master mode: 1 = Initiate START condition on SDA and SCL pins. Automatically cleared by hardware. 0 = START condition IDLE										
	<u>In Slave n</u> 1 = Clock 0 = Clock	In Slave mode: 1 = Clock stretching is enabled for both Slave Transmit and Slave Receive (stretch enabled) 0 = Clock stretching is enabled for slave transmit only (Legacy mode)										
	Note:	Note: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I ² C module is not in the IDLE mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).										
	Legend:											
	R = Read	able bit	W = W	ritable bit	U = Unimr	plemented	bit, read as	· 'O'				

REGISTER 16-5: SSPCON2: MSSP CONTROL REGISTER 2 (I²C MODE)

© 2002-2013 Microchip Technology Inc.

- n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

16.4.3.2 Reception

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and the SDA line is held low (ACK).

When the address byte overflow condition exists, then the no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set, or bit SSPOV (SSPCON1<6>) is set.

An MSSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

If SEN is enabled (SSPCON1<0> = 1), RC3/SCK/SCL will be held low (clock stretch) following each data transfer. The clock must be released by setting bit CKP (SSPCON<4>). See Section 16.4.4 ("Clock Stretching"), for more detail.

16.4.3.3 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin RC3/SCK/SCL is held low, regardless of SEN (see "Clock Stretching", Section 16.4.4, for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then, pin RC3/ SCK/SCL should be enabled by setting bit CKP (SSPCON1<4>). The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 16-9).

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line is high (not ACK), then the data transfer is complete. In this case, when the ACK is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave monitors for another occurrence of the START bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPBUF register. Again, pin RC3/SCK/SCL must be enabled by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared in software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse.

FIGURE 17-3: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

TABLE 17-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on All Other RESETS
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	_	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	_	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	_	TMR2IP	TMR1IP	0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 -00x	0000 -00x
TXREG	USART Tra	insmit Regis	ter						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	Baud Rate	Generator F		0000 0000	0000 0000					

Legend: x = unknown, - = unimplemented locations read as '0'.

Shaded cells are not used for Asynchronous Transmission.

Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X39 devices; always maintain these bits clear.

18.0 COMPATIBLE 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has five inputs for the PIC18F2X39 devices and eight for the PIC18F4X39 devices. This module has the ADCON0 and ADCON1 register definitions that are compatible with the mid-range A/D module.

The A/D allows conversion of an analog input signal to a corresponding 10-bit digital number.

REGISTER 18-1: ADCON0 REGISTER

The A/D module has four registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Register 18-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 18-2, configures the functions of the port pins.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
ADCS1	ADCS0 CHS2 CHS1		CHS0	GO/DONE	—	ADON	
bit 7							bit 0

bit 7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits (ADCON0 bits in **bold**)

ADCON1 <adcs2></adcs2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion
0	00	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	00	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

bit 5-3 CHS2:CHS0: Analog Channel Select bits

- 000 = Channel 0 (AN0)
- 001 = Channel 1 (AN1)
- 010 = Channel 2 (AN2)
- 011 = Channel 3 (AN3)
- 100 = Channel 4 (AN4)
- 101 = Channel 5 (AN5)⁽¹⁾
- 110 = Channel 6 (AN6)⁽¹⁾
- $111 = Channel 7 (AN7)^{(1)}$
 - **Note 1:** These channels are unimplemented on PIC18F2X39 devices. Do not select any unimplemented channel.
- bit 2 GO/DONE: A/D Conversion Status bit

When ADON = 1:

- 1 = A/D conversion in progress (setting this bit starts the A/D conversion, which is automatically cleared by hardware when the A/D conversion is complete)
- 0 = A/D conversion not in progress

bit 1 Unimplemented: Read as '0'

bit 0 ADON: A/D On bit

- 1 = A/D converter module is powered up
- 0 = A/D converter module is shut-off and consumes no operating current

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

19.1 Control Register

The Low Voltage Detect Control register controls the operation of the Low Voltage Detect circuitry.

REGISTER 19-1: LVDCON REGISTER

U-0	U-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
—	—	IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0
bit 7							bit 0

- bit 7-6 Unimplemented: Read as '0'
- bit 5 IRVST: Internal Reference Voltage Stable Flag bit
 - 1 = Indicates that the Low Voltage Detect logic will generate the interrupt flag at the specified voltage range
 - 0 = Indicates that the Low Voltage Detect logic will not generate the interrupt flag at the specified voltage range and the LVD interrupt should not be enabled
- bit 4 LVDEN: Low Voltage Detect Power Enable bit
 - 1 = Enables LVD, powers up LVD circuit
 - 0 = Disables LVD, powers down LVD circuit
- bit 3-0 LVDL3:LVDL0: Low Voltage Detection Limit bits
 - 1111 = External analog input is used (input comes from the LVDIN pin)
 - 1110 = 4.5V 4.77V
 - 1101 = 4.2V 4.45V
 - 1100 = 4.0V 4.24V
 - 1011 = 3.8V 4.03V
 - 1010 = 3.6V 3.82V
 - 1001 = 3.5V 3.71V
 - 1000 = 3.3V 3.50V
 - 0111 = 3.0V 3.18V
 - 0110 = 2.8V 2.97V
 - 0101 = 2.7V 2.86V
 - 0100 = 2.5V 2.65V
 - 0011 = 2.4V 2.54V
 - 0010 = 2.2V 2.33V
 - 0001 = 2.0V 2.12V
 - 0000 = Reserved
 - **Note:** LVDL3:LVDL0 modes, which result in a trip point below the valid operating voltage of the device, are not tested.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Mnemo	onic,	Description	Qualas	16-	Bit Instr	uction W	/ord	Status	Natas
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
CONTROL	OPERA	TIONS							
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	2	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	1 (2)	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	—	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	n	Go to address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	_	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation	1	1111	xxxx	xxxx	xxxx	None	4
POP	—	Pop top of return stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	—	Push top of return stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software device RESET	1	0000	0000	1111	1111	All	
RETFIE	S	Return from interrupt enable	2	0000	0000	0001	000s	GIE/GIEH,	
								PEIE/GIEL	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP	—	Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 21-2: PIC18FXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP, unless the first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locations have a valid instruction.

5: If the Table Write starts the write cycle to internal memory, the write will continue until terminated.

© 2002-2013 Microchip Technology Inc.

BNOV		Branch if	Branch if Not Overflow					
Synta	ax:	[<i>label</i>] B	NOV n					
Operands:		-128 ≤ n ≤	127					
Oper	ation:	if overflow (PC) + 2 +	if overflow bit is '0' (PC) + 2 + 2n \rightarrow PC					
Statu	is Affected:	None						
Enco	oding:	1110	0101 nn	nn nnnn				
Description:		If the Over program w The 2's co added to th have incre instruction PC+2+2n. a two-cvcl	If the Overflow bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then					
Word	ls.	1						
Cyclos:		1(2)						
Q C If Ju	ycle Activity: Imp: Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	Write to PC				
	No operation	No operation	No operation	No operation				
lf No	o Jump:							
_	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	No operation				
Exan	nple:	HERE	BNOV Jump					
I	Before Instru PC	iction = ade	dress (HERE))				
	After Instruct If Overflo PC If Overflo PC	tion w = 0; = ado w = 1; = ado	dress (Jump) dress (HERE-) +2)				

BNZ		Branch if	Not Zer	o			
Syntax:		[<i>label</i>] B	[<i>label</i>] BNZ n				
Opera	nds:	-128 ≤ n ≤	127				
Opera	tion:	if zero bit i (PC) + 2 +	if zero bit is '0' (PC) + 2 + 2n \rightarrow PC				
Status	Affected:	None					
Encod	ing:	1110	0001	nnn	n	nnnn	
Desch	ρτιοη:	The 2's co added to the have incree instruction PC+2+2n. a two-cycle	ill branc mpleme he PC. S mented , the new This ins e instruc	, thei h. nt nu Since to fe v ado struc tion.	imbe the tch t dress tion	er '2n' is PC will he next s will be is then	
Words	:	1					
Cycles:		1(2)					
Q Cyo If Jurr	cle Activity:						
	Q1	Q2	Q3			Q4	
	Decode	Read literal 'n'	Proces Data	SS	Writ	e to PC	
,	No operation	No operation	No operati	on	оре	No eration	
If No Jump:							
	Q1	Q2	Q3			Q4	
	Decode	Read literal 'n'	Proces Data	SS	оре	No eration	
<u>Examp</u>	<u>ole</u> :	HERE	BNZ J	Jump			
Be	efore Instru	uction – adu	dress (H	28E)			

After Instruction If Zero = 0; PC = address (Jump) If Zero = 1; PC = address (HERE+2)

DS30485B-page 222

BTG	Bit Toggl	e f		BOV	,	Branch if	Overflow			
Syntax:	[<i>label</i>] B	[<i>label</i>] BTG f,b[,a]			ax:	[<i>label</i>] B	[<i>label</i>] BOV n			
Operands:	0 ≤ f ≤ 25	$0 \le f \le 255$			perands: $-128 \le n \le 127$					
$0 \le b \le 7$ a $\in [0,1]$			Ope	ration:	if overflow (PC) + 2 +	if overflow bit is '1' (PC) + 2 + 2n \rightarrow PC				
Operation: $(\overline{f < b >}) \rightarrow f < b >$			Statu	us Affected:	None	None				
Status Affected:	None			Enco	odina:	1110	0100 nn:	nn nnnn		
Encoding:	0111	bbba f	fff ffff	Desi	Description: If the Overflow bit is '1' then the					
Description: Bit 'b' in data memory location 'f' is inverted. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).			2		program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then					
Words:	1					a two-cycl	e instruction			
Cycles:	1		Wor	ds:	1					
Q Cycle Activity:				Cycl	es:	1(2)				
Q1	Q2	Q3	Q4	QC	Sycle Activity	/:				
Decode	Read register 'f'	Process Data	Write register 'f'	If Ju	ump: Q1	Q2	Q3	Q4		
Example:	BTG I	PORTC, 4,	0		Decode	Read literal 'n'	Process Data	Write to PC		
Before Instru		0101 [0v75]			No operation	No operation	No operation	No operation		
After Instruct	tion:	JIJI [0x/3]		lf N	o Jump:					
PORTC	= 0110 (0101 [0x65]			Q1	Q2	Q3	Q4		
					Decode	Read literal 'n'	Process Data	No operation		

Example:	HERE	BOV	Jump
Before Instruc PC	tion =	address	(HERE)
After Instruction If Overflow PC If Overflow PC	on = = = =	1; address 0; address	(Jump) (HERE+2)

GOT	ю	Uncondi	Unconditional Branch					
Synt	ax:	[label]	GOTO	k				
Ope	rands:	$0 \le k \le 10$	$0 \leq k \leq 1048575$					
Ope	ration:	$k \rightarrow PC < 2$	20:1>					
Statu	us Affected:	None						
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>)		1110) 1111	1111 k ₁₉ kkk	k ₇ kk kkk	ck k	kkkk ₀ kkkk ₈		
Desc	cription:	GOTO allo branch ar 2 Mbyte r value 'k' i GOTO is a instruction	nywhere nemory s loaded Ilways a n.	ncond within range. I into F two-c <u>y</u>	ition en Tł PC< ycle	nai tire ne 20-bit 20:1>.		
Words:		2	2					
Cycles:		2	2					
Q Cycle Activity:								
	Q1	Q2	Q	3		Q4		
	Decode	Read literal 'k'<7:0>,	No operat	ion	Rea 'k'<	ad literal <19:8>, to to PC		

Decode	Read literal 'k'<7:0>,	No operation	Read literal 'k'<19:8>, Write to PC
No	No	No	No
operation	operation	operation	operation

Example: GOTO THERE

After Instruction

PC = Address (THERE)

INCF	Incremen	t f		
Syntax:	[label]	INCF 1	f [,d [,a]	
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5		
Operation:	$(f) + 1 \rightarrow 0$	dest		
Status Affected:	C, DC, N	, OV, Z		
Encoding:	0010	10da	ffff	ffff
	increment placed in ' placed ba If 'a' is 0, 1 selected, (If 'a' = 1, t selected a (default).	ed. If 'd' W. If 'd' i ck in reg the Acce overridin hen the as per th	is 0, the is 1, the gister 'f' ess Ban ng the B bank w e BSR v	e result is result is (default). k will be SR value. Il be /alue
Words:	1			
Cycles:	1			
Q Cycle Activity	:			
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Proce: Data	ss a de	Write to estination
Example:	INCF	CNT,	1, 0	
Before Instr	uction			
CNT Z C DC	= 0xFF = 0 = ? = ?			
After Instruc	tion			

22.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

22.14 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

22.15 KEELOQ Evaluation and Programming Tools

KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

© 2002-2013 Microchip Technology Inc.