
Microchip Technology - PIC18LF4539-I/P Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 40MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, LVD, POR, PWM, WDT

Number of I/O 32

Program Memory Size 24KB (12K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 1408 x 8

Voltage - Supply (Vcc/Vdd) 2V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Through Hole

Package / Case 40-DIP (0.600", 15.24mm)

Supplier Device Package 40-PDIP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4539-i-p

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf4539-i-p-4413560
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18FXX39
PORTB is a bi-directional I/O port. PORTB can be software
programmed for internal weak pull-ups on all inputs.

RB0/INT0
RB0
INT0

21 21
I/O
I

TTL
ST

Digital I/O.
External interrupt 0.

RB1/INT1
RB1
INT1

22 22
I/O
I

TTL
ST

Digital I/O.
External interrupt 1.

RB2/INT2
RB2
INT2

23 23
I/O
I

TTL
ST

Digital I/O.
External interrupt 2.

RB3 24 24 I/O TTL Digital I/O.

RB4 25 25 I/O TTL Digital I/O.
Interrupt-on-change pin.

RB5/PGM
RB5
PGM

26 26
I/O
I/O

TTL
ST

Digital I/O. Interrupt-on-change pin.
Low Voltage ICSP programming enable pin.

RB6/PGC
RB6
PGC

27 27
I/O
I/O

TTL
ST

Digital I/O. Interrupt-on-change pin.
In-Circuit Debugger and ICSP programming clock pin.

RB7/PGD
RB7
PGD

28 28
I/O
I/O

TTL
ST

Digital I/O. Interrupt-on-change pin.
In-Circuit Debugger and ICSP programming data pin.

TABLE 1-2: PIC18F2X39 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name
Pin Number Pin

Type
Buffer
Type

Description
DIP SOIC

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output
ST = Schmitt Trigger input with CMOS levels I = Input
O = Output P = Power
OD = Open Drain (no P diode to VDD)
DS30485B-page 12 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
6.3 Reading the Data EEPROM
Memory

To read a data memory location, the user must write the
address to the EEADR register, clear the EEPGD con-
trol bit (EECON1<7>), clear the CFGS control bit

(EECON1<6>), and then set control bit RD
(EECON1<0>). The data is available for the very next
instruction cycle; therefore, the EEDATA register can
be read by the next instruction. EEDATA will hold this
value until another read operation, or until it is written to
by the user (during a write operation).

EXAMPLE 6-1: DATA EEPROM READ

6.4 Writing to the Data EEPROM
Memory

To write an EEPROM data location, the address must
first be written to the EEADR register and the data writ-
ten to the EEDATA register. Then, the sequence in
Example 6-2 must be followed to initiate the write cycle.

The write will not initiate if the above sequence is not
exactly followed (write 55h to EECON2, write AAh to
EECON2, then set WR bit) for each byte. It is strongly
recommended that interrupts be disabled during this
code segment.

Additionally, the WREN bit in EECON1 must be set to
enable writes. This mechanism prevents accidental
writes to data EEPROM due to unexpected code exe-

cution (i.e., runaway programs). The WREN bit should
be kept clear at all times, except when updating the
EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, EECON1,
EEADR and EDATA cannot be modified. The WR bit
will be inhibited from being set unless the WREN bit is
set. The WREN bit must be set on a previous instruc-
tion. Both WR and WREN cannot be set with the same
instruction.

At the completion of the write cycle, the WR bit is
cleared in hardware and the EEPROM Write Complete
Interrupt Flag bit (EEIF) is set. The user may either
enable this interrupt, or poll this bit. EEIF must be
cleared by software.

EXAMPLE 6-2: DATA EEPROM WRITE

MOVLW DATA_EE_ADDR ;
MOVWF EEADR ; Data Memory Address to read
BCF EECON1, EEPGD ; Point to DATA memory
BCF EECON1, CFGS ; Access program FLASH or Data EEPROM memory
BSF EECON1, RD ; EEPROM Read
MOVF EEDATA, W ; W = EEDATA

MOVLW DATA_EE_ADDR ;
MOVWF EEADR ; Data Memory Address to read
MOVLW DATA_EE_DATA ;
MOVWF EEDATA ; Data Memory Value to write
BCF EECON1, EEPGD ; Point to DATA memory
BCF EECON1, CFGS ; Access program FLASH or Data EEPROM memory
BSF EECON1, WREN ; Enable writes

BCF INTCON, GIE ; Disable interrupts
Required MOVLW 55h ;
Sequence MOVWF EECON2 ; Write 55h

MOVLW AAh ;
MOVWF EECON2 ; Write AAh
BSF EECON1, WR ; Set WR bit to begin write
BSF INTCON, GIE ; Enable interrupts

. ; user code execution

.

.
BCF EECON1, WREN ; Disable writes on write complete (EEIF set)
 2002-2013 Microchip Technology Inc. Preliminary DS30485B-page 63

PIC18FXX39
Example 7-3 shows the sequence to do a 16 x 16
unsigned multiply. Equation 7-1 shows the algorithm
that is used. The 32-bit result is stored in four registers,
RES3:RES0.

EQUATION 7-1: 16 x 16 UNSIGNED
MULTIPLICATION
ALGORITHM

EXAMPLE 7-3: 16 x 16 UNSIGNED
MULTIPLY ROUTINE

Example 7-4 shows the sequence to do a 16 x 16
signed multiply. Equation 7-2 shows the algorithm
used. The 32-bit result is stored in four registers,
RES3:RES0. To account for the sign bits of the argu-
ments, each argument pairs Most Significant bit (MSb)
is tested and the appropriate subtractions are done.

EQUATION 7-2: 16 x 16 SIGNED
MULTIPLICATION
ALGORITHM

EXAMPLE 7-4: 16 x 16 SIGNED
MULTIPLY ROUTINE

RES3:RES0 = ARG1H:ARG1L  ARG2H:ARG2L
= (ARG1H  ARG2H  216) +

(ARG1H  ARG2L  28) +
(ARG1L  ARG2H  28) +
(ARG1L  ARG2L)

MOVF ARG1L, W
MULWF ARG2L ; ARG1L * ARG2L ->

; PRODH:PRODL
MOVFF PRODH, RES1 ;
MOVFF PRODL, RES0 ;

;
MOVF ARG1H, W
MULWF ARG2H ; ARG1H * ARG2H ->

; PRODH:PRODL
MOVFF PRODH, RES3 ;
MOVFF PRODL, RES2 ;

;
MOVF ARG1L, W
MULWF ARG2H ; ARG1L * ARG2H ->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

;
MOVF ARG1H, W ;
MULWF ARG2L ; ARG1H * ARG2L ->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

RES3:RES0
= ARG1H:ARG1L  ARG2H:ARG2L
= (ARG1H  ARG2H  216) +

(ARG1H  ARG2L  28) +
(ARG1L  ARG2H  28) +
(ARG1L  ARG2L) +
(-1  ARG2H<7>  ARG1H:ARG1L  216) +
(-1  ARG1H<7>  ARG2H:ARG2L  216)

MOVF ARG1L, W
MULWF ARG2L ; ARG1L * ARG2L ->

; PRODH:PRODL
MOVFF PRODH, RES1 ;
MOVFF PRODL, RES0 ;

;
MOVF ARG1H, W
MULWF ARG2H ; ARG1H * ARG2H ->

; PRODH:PRODL
MOVFF PRODH, RES3 ;
MOVFF PRODL, RES2 ;

;
MOVF ARG1L, W
MULWF ARG2H ; ARG1L * ARG2H ->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

;
MOVF ARG1H, W ;
MULWF ARG2L ; ARG1H * ARG2L ->

; PRODH:PRODL
MOVF PRODL, W ;
ADDWF RES1, F ; Add cross
MOVF PRODH, W ; products
ADDWFC RES2, F ;
CLRF WREG ;
ADDWFC RES3, F ;

;
BTFSS ARG2H, 7 ; ARG2H:ARG2L neg?
BRA SIGN_ARG1 ; no, check ARG1
MOVF ARG1L, W ;
SUBWF RES2 ;
MOVF ARG1H, W ;
SUBWFB RES3

;
SIGN_ARG1

BTFSS ARG1H, 7 ; ARG1H:ARG1L neg?
BRA CONT_CODE ; no, done
MOVF ARG2L, W ;
SUBWF RES2 ;
MOVF ARG2H, W ;
SUBWFB RES3

;
CONT_CODE
 :
DS30485B-page 68 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
8.4 IPR Registers

The IPR registers contain the individual priority bits for
the peripheral interrupts. Due to the number of periph-
eral interrupt sources, there are two Peripheral Inter-
rupt Priority registers (IPR1, IPR2). The operation of
the priority bits requires that the Interrupt Priority
Enable (IPEN) bit be set.

For PIC18FXX39 devices, the Motor Control kernel
requires that the Timer2 to PR2 match interrupt be the
only high priority interrupt. Failure to do this may result
in unpredictable operation of the kernel or the entire
microcontroller.

In practical terms, this means:

• Interrupt priority levels are enabled (IPEN = 1);

• High priority interrupts are enabled
(INTCON<7> = 1);

• Timer2 interrupt is enabled and set as high priority
(PIE1<1> and IPR<1> = 1); and

• all other interrupts are disabled (INTCON or PIR
bits = 0), or set as low priority (IPR bits = 0).

REGISTER 8-8: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

Note: Configuring the interrupts is automatically
done by the API method void
ProMPT_Init(PWMfrequency). It is the
user’s responsibility to make certain that
this method is called at the very beginning
of the application.

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 U-1 R/W-1 R/W-1

PSPIP(1,2) ADIP(2) RCIP(2) TXIP(2) SSPIP(2) — TMR2IP(3) TMR1IP(2)

bit 7 bit 0

bit 7 PSPIP(1,2): Parallel Slave Port Read/Write Interrupt Priority bit
1 = High priority
0 = Low priority

bit 6 ADIP(2): A/D Converter Interrupt Priority bit
1 = High priority
0 = Low priority

bit 5 RCIP(2): USART Receive Interrupt Priority bit
1 = High priority
0 = Low priority

bit 4 TXIP(2): USART Transmit Interrupt Priority bit
1 = High priority
0 = Low priority

bit 3 SSPIP(2): Master Synchronous Serial Port Interrupt Priority bit
1 = High priority
0 = Low priority

bit 2 Unimplemented: Read as ‘1’

bit 1 TMR2IP(3): TMR2 to PR2 Match Interrupt Priority bit
1 = High priority
0 = Low priority

bit 0 TMR1IP(2): TMR1 Overflow Interrupt Priority bit
1 = High priority
0 = Low priority

Note 1: This bit is reserved on PIC18F2X39 devices.

2: Maintain this bit cleared (= 0).

3: This bit is reserved for use by the ProMPT kernel; always maintain this bit set (= 1).

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

- n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
DS30485B-page 78 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
FIGURE 9-2: BLOCK DIAGRAM OF
RA4/T0CKI PIN

FIGURE 9-3: BLOCK DIAGRAM OF
RA6 PIN

Data
Bus

WR TRISA

RD PORTA

Data Latch

TRIS Latch

RD TRISA

Schmitt
Trigger
Input
Buffer

N

VSS

I/O pin(1)

TMR0 Clock Input

QD

QCK

QD

QCK

EN

Q D

EN

RD LATA

WR LATA
or PORTA

Note 1: I/O pin has protection diode to VSS only.

Data
Bus

QD

QCK

Q D

EN

P

N

WR LATA

WR

Data Latch

TRIS Latch

RD TRISA

RD PORTA

VSS

VDD

I/O pin(1)

Note 1: I/O pins have protection diodes to VDD and VSS.

or
PORTA

RD LATA

ECRA6 or

ECRA6 or

Enable

TTL
Input
Buffer

RCRA6

RCRA6 Enable

TRISA

QD

QCK
DS30485B-page 84 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
16.4.4 CLOCK STRETCHING

Both 7- and 10-bit Slave modes implement automatic
clock stretching during a transmit sequence.

The SEN bit (SSPCON2<0>) allows clock stretching to
be enabled during receives. Setting SEN will cause
the SCL pin to be held low at the end of each data
receive sequence.

16.4.4.1 Clock Stretching for 7-bit Slave
Receive Mode (SEN = 1)

In 7-bit Slave Receive mode, on the falling edge of the
ninth clock at the end of the ACK sequence, if the BF
bit is set, the CKP bit in the SSPCON1 register is auto-
matically cleared, forcing the SCL output to be held
low. The CKP being cleared to ‘0’ will assert the SCL
line low. The CKP bit must be set in the user’s ISR
before reception is allowed to continue. By holding the
SCL line low, the user has time to service the ISR and
read the contents of the SSPBUF before the master
device can initiate another receive sequence. This will
prevent buffer overruns from occurring (see
Figure 16-13).

16.4.4.2 Clock Stretching for 10-bit Slave
Receive Mode (SEN = 1)

In 10-bit Slave Receive mode, during the address
sequence, clock stretching automatically takes place
but CKP is not cleared. During this time, if the UA bit is
set after the ninth clock, clock stretching is initiated.
The UA bit is set after receiving the upper byte of the
10-bit address, and following the receive of the second
byte of the 10-bit address with the R/W bit cleared to
‘0’. The release of the clock line occurs upon updating
SSPADD. Clock stretching will occur on each data
receive sequence, as described in 7-bit mode.

16.4.4.3 Clock Stretching for 7-bit Slave
Transmit Mode

7-bit Slave Transmit mode implements clock stretching
by clearing the CKP bit after the falling edge of the
ninth clock, if the BF bit is clear. This occurs,
regardless of the state of the SEN bit.

The user’s ISR must set the CKP bit before transmis-
sion is allowed to continue. By holding the SCL line
low, the user has time to service the ISR and load the
contents of the SSPBUF before the master device can
initiate another transmit sequence (see Figure 16-9).

16.4.4.4 Clock Stretching for 10-bit Slave
Transmit Mode

In 10-bit Slave Transmit mode, clock stretching is con-
trolled during the first two address sequences by the
state of the UA bit, just as it is in 10-bit Slave Receive
mode. The first two addresses are followed by a third
address sequence, which contains the high order bits
of the 10-bit address and the R/W bit set to ‘1’. After
the third address sequence is performed, the UA bit is
not set, the module is now configured in Transmit
mode, and clock stretching is controlled by the BF flag,
as in 7-bit Slave Transmit mode (see Figure 16-11).

Note 1: If the user reads the contents of the
SSPBUF before the falling edge of the
ninth clock, thus clearing the BF bit, the
CKP bit will not be cleared and clock
stretching will not occur.

2: The CKP bit can be set in software,
regardless of the state of the BF bit. The
user should be careful to clear the BF bit
in the ISR before the next receive
sequence, in order to prevent an overflow
condition.

Note: If the user polls the UA bit and clears it by
updating the SSPADD register before the
falling edge of the ninth clock occurs, and if
the user hasn’t cleared the BF bit by read-
ing the SSPBUF register before that time,
then the CKP bit will still NOT be asserted
low. Clock stretching on the basis of the
state of the BF bit only occurs during a data
sequence, not an address sequence.

Note 1: If the user loads the contents of SSPBUF,
setting the BF bit before the falling edge of
the ninth clock, the CKP bit will not be
cleared and clock stretching will not occur.

2: The CKP bit can be set in software,
regardless of the state of the BF bit.
DS30485B-page 144 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
16.4.6 MASTER MODE

Master mode is enabled by setting and clearing the
appropriate SSPM bits in SSPCON1 and by setting the
SSPEN bit. In Master mode, the SCL and SDA lines
are manipulated by the MSSP hardware.

Master mode of operation is supported by interrupt
generation on the detection of the START and STOP
conditions. The STOP (P) and START (S) bits are
cleared from a RESET or when the MSSP module is
disabled. Control of the I2C bus may be taken when the
P bit is set or the bus is IDLE, with both the S and P bits
clear.

In Firmware Controlled Master mode, user code con-
ducts all I2C bus operations based on START and
STOP bit conditions.

Once Master mode is enabled, the user has six
options.

1. Assert a START condition on SDA and SCL.

2. Assert a Repeated START condition on SDA
and SCL.

3. Write to the SSPBUF register initiating
transmission of data/address.

4. Configure the I2C port to receive data.

5. Generate an Acknowledge condition at the end
of a received byte of data.

6. Generate a STOP condition on SDA and SCL.

The following events will cause SSP interrupt flag bit,
SSPIF, to be set (SSP interrupt if enabled):

• START condition

• STOP condition

• Data transfer byte transmitted/received

• Acknowledge Transmit

• Repeated START

FIGURE 16-16: MSSP BLOCK DIAGRAM (I2C MASTER MODE)

Note: The MSSP Module, when configured in I2C
Master mode, does not allow queueing of
events. For instance, the user is not
allowed to initiate a START condition and
immediately write the SSPBUF register to
initiate transmission before the START
condition is complete. In this case, the
SSPBUF will not be written to and the
WCOL bit will be set, indicating that a write
to the SSPBUF did not occur.

Read Write

SSPSR

START bit, STOP bit,

START bit Detect

SSPBUF

Internal
Data Bus

Set/Reset, S, P, WCOL (SSPSTAT)

Shift
Clock

MSb LSb

SDA

Acknowledge
Generate

STOP bit Detect
Write Collision Detect

Clock Arbitration
State Counter for
end of XMIT/RCV

SCL

SCL in

Bus Collision

SDA in

R
e

ce
iv

e
 E

n
a

b
le

C
lo

ck
 C

n
tl

C
lo

ck
 A

rb
itr

a
te

/W
C

O
L

 D
e

te
ct

(h
o

ld
 o

ff
cl

o
ck

 s
o

u
rc

e
)

SSPADD<6:0>

Baud

Set SSPIF, BCLIF
Reset ACKSTAT, PEN (SSPCON2)

Rate
Generator

SSPM3:SSPM0
 2002-2013 Microchip Technology Inc. Preliminary DS30485B-page 149

PIC18FXX39
16.4.6.1 I2C Master Mode Operation

The master device generates all of the serial clock
pulses and the START and STOP conditions. A trans-
fer is ended with a STOP condition, or with a Repeated
START condition. Since the Repeated START condi-
tion is also the beginning of the next serial transfer, the
I2C bus will not be released.

In Master Transmitter mode, serial data is output
through SDA, while SCL outputs the serial clock. The
first byte transmitted contains the slave address of the
receiving device (7 bits) and the Read/Write (R/W) bit.
In this case, the R/W bit will be logic '0'. Serial data is
transmitted 8 bits at a time. After each byte is transmit-
ted, an Acknowledge bit is received. START and STOP
conditions are output to indicate the beginning and the
end of a serial transfer.

In Master Receive mode, the first byte transmitted con-
tains the slave address of the transmitting device
(7 bits) and the R/W bit. In this case, the R/W bit will be
logic '1'. Thus, the first byte transmitted is a 7-bit slave
address followed by a '1' to indicate the receive bit.
Serial data is received via SDA, while SCL outputs the
serial clock. Serial data is received 8 bits at a time. After
each byte is received, an Acknowledge bit is transmit-
ted. START and STOP conditions indicate the
beginning and end of transmission.

The baud rate generator used for the SPI mode opera-
tion is used to set the SCL clock frequency for either
100 kHz, 400 kHz or 1 MHz I2C operation. See
Section 16.4.7 (“Baud Rate Generator”), for more
detail.

A typical transmit sequence would go as follows:

1. The user generates a START condition by set-
ting the START enable bit, SEN
(SSPCON2<0>).

2. SSPIF is set. The MSSP module will wait the
required start time before any other operation
takes place.

3. The user loads the SSPBUF with the slave
address to transmit.

4. Address is shifted out the SDA pin until all 8 bits
are transmitted.

5. The MSSP module shifts in the ACK bit from the
slave device and writes its value into the
SSPCON2 register (SSPCON2<6>).

6. The MSSP module generates an interrupt at the
end of the ninth clock cycle by setting the SSPIF
bit.

7. The user loads the SSPBUF with eight bits of
data.

8. Data is shifted out the SDA pin until all 8 bits are
transmitted.

9. The MSSP module shifts in the ACK bit from the
slave device and writes its value into the
SSPCON2 register (SSPCON2<6>).

10. The MSSP module generates an interrupt at the
end of the ninth clock cycle by setting the SSPIF
bit.

11. The user generates a STOP condition by setting
the STOP enable bit PEN (SSPCON2<2>).

12. Interrupt is generated once the STOP condition
is complete.
DS30485B-page 150 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
16.4.9 I2C MASTER MODE REPEATED
START CONDITION TIMING

A Repeated START condition occurs when the RSEN
bit (SSPCON2<1>) is programmed high and the I2C
logic module is in the IDLE state. When the RSEN bit is
set, the SCL pin is asserted low. When the SCL pin is
sampled low, the baud rate generator is loaded with the
contents of SSPADD<5:0> and begins counting. The
SDA pin is released (brought high) for one baud rate
generator count (TBRG). When the baud rate generator
times out, if SDA is sampled high, the SCL pin will be
de-asserted (brought high). When SCL is sampled
high, the baud rate generator is reloaded with the con-
tents of SSPADD<6:0> and begins counting. SDA and
SCL must be sampled high for one TBRG. This action is
then followed by assertion of the SDA pin (SDA = 0) for
one TBRG, while SCL is high. Following this, the RSEN
bit (SSPCON2<1>) will be automatically cleared and
the baud rate generator will not be reloaded, leaving
the SDA pin held low. As soon as a START condition is
detected on the SDA and SCL pins, the S bit
(SSPSTAT<3>) will be set. The SSPIF bit will not be set
until the baud rate generator has timed out.

Immediately following the SSPIF bit getting set, the
user may write the SSPBUF with the 7-bit address in
7-bit mode, or the default first address in 10-bit mode.
After the first eight bits are transmitted and an ACK is
received, the user may then transmit an additional eight
bits of address (10-bit mode) or eight bits of data (7-bit
mode).

16.4.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated
START sequence is in progress, the WCOL is set and
the contents of the buffer are unchanged (the write
doesn’t occur).

FIGURE 16-20: REPEAT START CONDITION WAVEFORM

Note 1: If RSEN is programmed while any other
event is in progress, it will not take effect.

2: A bus collision during the Repeated
START condition occurs if:

• SDA is sampled low when SCL goes
 from low to high.

• SCL goes low before SDA is
 asserted low. This may indicate that
 another master is attempting to
 transmit a data "1".

Note: Because queueing of events is not
allowed, writing of the lower 5 bits of
SSPCON2 is disabled until the Repeated
START condition is complete.

SDA

SCL

Sr = Repeated START

Write to SSPCON2

Write to SSPBUF occurs hereFalling edge of ninth clock
End of Xmit

At completion of START bit,
hardware clears RSEN bit

1st bit

Set S (SSPSTAT<3>)

TBRG

TBRG

SDA = 1,

SDA = 1,

SCL (no change).

SCL = 1
occurs here.

TBRG TBRG TBRG

 and sets SSPIF
DS30485B-page 154 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
16.4.17.3 Bus Collision During a STOP
Condition

Bus collision occurs during a STOP condition if:

a) After the SDA pin has been de-asserted and
allowed to float high, SDA is sampled low after
the BRG has timed out.

b) After the SCL pin is de-asserted, SCL is
sampled low before SDA goes high.

The STOP condition begins with SDA asserted low.
When SDA is sampled low, the SCL pin is allowed to
float. When the pin is sampled high (clock arbitration),
the baud rate generator is loaded with SSPADD<6:0>
and counts down to ‘0’. After the BRG times out, SDA
is sampled. If SDA is sampled low, a bus collision has
occurred. This is due to another master attempting to
drive a data '0' (Figure 16-31). If the SCL pin is sampled
low before SDA is allowed to float high, a bus collision
occurs. This is another case of another master
attempting to drive a data '0' (Figure 16-32).

FIGURE 16-31: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 16-32: BUS COLLISION DURING A STOP CONDITION (CASE 2)

SDA

SCL

BCLIF

PEN

P

SSPIF

TBRG TBRG TBRG

SDA asserted low

SDA sampled
low after TBRG,
Set BCLIF

'0'

'0'

SDA

SCL

BCLIF

PEN

P

SSPIF

TBRG TBRG TBRG

Assert SDA SCL goes low before SDA goes high,
Set BCLIF

'0'

'0'
 2002-2013 Microchip Technology Inc. Preliminary DS30485B-page 163

PIC18FXX39
17.1 USART Baud Rate Generator
(BRG)

The BRG supports both the Asynchronous and Syn-
chronous modes of the USART. It is a dedicated 8-bit
baud rate generator. The SPBRG register controls the
period of a free running 8-bit timer. In Asynchronous
mode, bit BRGH (TXSTA<2>) also controls the baud
rate. In Synchronous mode, bit BRGH is ignored.
Table 17-1 shows the formula for computation of the
baud rate for different USART modes, which only apply
in Master mode (internal clock).

Given the desired baud rate and FOSC, the nearest
integer value for the SPBRG register can be calculated
using the formula in Table 17-1. From this, the error in
baud rate can be determined.

Example 17-1 shows the calculation of the baud rate
error for the following conditions:

• FOSC = 16 MHz

• Desired Baud Rate = 9600

• BRGH = 0

• SYNC = 0

It may be advantageous to use the high baud rate
(BRGH = 1) even for slower baud clocks. This is
because the FOSC/(16(X + 1)) equation can reduce the
baud rate error in some cases.

Writing a new value to the SPBRG register causes the
BRG timer to be reset (or cleared). This ensures the
BRG does not wait for a timer overflow before
outputting the new baud rate.

17.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times
by a majority detect circuit to determine if a high or a
low level is present at the RX pin.

EXAMPLE 17-1: CALCULATING BAUD RATE ERROR

TABLE 17-1: BAUD RATE FORMULA

TABLE 17-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Desired Baud Rate = FOSC / (64 (X + 1))

Solving for X:

X = ((FOSC / Desired Baud Rate) / 64) – 1
X = ((16000000 / 9600) / 64) – 1
X = [25.042] = 25

Calculated Baud Rate = 16000000 / (64 (25 + 1))
= 9615

Error = (Calculated Baud Rate – Desired Baud Rate)
 Desired Baud Rate
= (9615 – 9600) / 9600
= 0.16%

SYNC BRGH = 0 (Low Speed) BRGH = 1 (High Speed)

0
1

(Asynchronous) Baud Rate = FOSC/(64(X+1))
(Synchronous) Baud Rate = FOSC/(4(X+1))

Baud Rate = FOSC/(16(X+1))
N/A

Legend: X = value in SPBRG (0 to 255)

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on

POR, BOR

Value on
All Other
RESETS

TXSTA CSRC TX9 TXEN SYNC — BRGH TRMT TX9D 0000 -010 0000 -010

RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 0000 -00x 0000 -00x

SPBRG Baud Rate Generator Register 0000 0000 0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.
DS30485B-page 168 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
FIGURE 19-2: LOW VOLTAGE DETECT (LVD) BLOCK DIAGRAM

The LVD module has an additional feature that allows
the user to supply the trip voltage to the module from
an external source. This mode is enabled when bits
LVDL3:LVDL0 are set to ‘1111’. In this state, the com-
parator input is multiplexed from the external input pin,

LVDIN (Figure 19-3). This gives users flexibility,
because it allows them to configure the Low Voltage
Detect interrupt to occur at any voltage in the valid
operating range.

FIGURE 19-3: LOW VOLTAGE DETECT (LVD) WITH EXTERNAL INPUT BLOCK DIAGRAM

LVDIF

VDD

1
6

 t
o

 1
 M

U
X

LVDEN

LVD Control
Register

Internally Generated
Reference Voltage

LVDIN

1.2V Typical

–

+

LVD

EN

LVD Control

1
6

 t
o

 1
 M

U
X

BGAP

BODEN

LVDEN

VxEN

LVDIN

Register

VDD
VDD

Externally Generated
Trip Point –

+

DS30485B-page 190 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
FIGURE 20-2: WAKE-UP FROM SLEEP THROUGH INTERRUPT(1,2)

20.4 Program Verification and
Code Protection

The overall structure of the code protection on the
PIC18 FLASH devices differs significantly from other
PIC devices. The user program memory is divided on
binary boundaries into individual blocks, each of which
has three separate code protection bits associated with
it:

• Code Protect bit (CPn)

• Write Protect bit (WRTn)

• External Block Table Read bit (EBTRn)

The code protection bits are located in Configuration
Registers 5L through 7H. Their locations within the
registers are summarized in Table 20-3.

In the PIC18FXX39 family, program memory is divided
into segments of 8 Kbytes. The first block in turn
divided into a boot block of 512 bytes and a separately
protected remainder (Block 0) of 7.5 Kbytes. This
means for PIC18FXX39 devices, that there may be up
to five blocks, depending on the program memory size.
The organization of the blocks and their associated
code protection bits are shown in Figure 20-3.

For PIC18FX439 devices, program memory is divided
into three blocks: a boot block, Block 0 (7.5 Kbytes)
and Block 1 (8 Kbytes). Block 1 is further divided in
half; the upper portion above 3000h is reserved, and
unavailable to user applications. The entire block can
be protected as a whole by bits CP1, WRT1 and
EBTR1. By default, Block 1 is not code protected.

For PIC18FX539 devices, program memory is divided
into five blocks: the boot block, Block 0 (7.5 Kbytes),
and Blocks 1 through 3 (8 Kbytes). Code protection is
implemented for the boot block and Blocks 0 through 2.
There is no provision for code protection for Block 3.

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

OSC1

CLKO(4)

INT pin

INTF Flag
(INTCON<1>)

GIEH bit
(INTCON<7>)

INSTRUCTION FLOW

PC

Instruction
Fetched

Instruction
Executed

PC PC+2 PC+4

Inst(PC) = SLEEP

Inst(PC - 1)

Inst(PC + 2)

SLEEP

Processor in
SLEEP

Interrupt Latency(3)

Inst(PC + 4)

Inst(PC + 2)

Inst(0008h) Inst(000Ah)

Inst(0008h)Dummy Cycle

PC + 4 0008h 000Ah

Dummy Cycle

TOST(2)

PC+4

Note 1: XT, HS or LP Oscillator mode assumed.
2: GIE = 1 assumed. In this case, after wake-up, the processor jumps to the interrupt routine. If GIE = 0, execution will continue in-line.
3: TOST = 1024 TOSC (drawing not to scale). This delay will not occur for RC and EC Osc modes.
4: CLKO is not available in these Osc modes, but shown here for timing reference.

Note: The reserved segments of the program
memory space are used by the Motor Con-
trol kernel. For the kernel to function prop-
erly, this area must not be write protected.
If users are developing applications that
require code protection for PIC18FX439
devices, they should restrict program code
(or at least those sections requiring protec-
tion) to below the 1FFFh memory
boundary.
DS30485B-page 206 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39

CPFSGT Compare f with W, skip if f > W

Syntax: [label] CPFSGT f [,a]

Operands: 0  f  255
a  [0,1]

Operation: (f) W),
skip if (f) > (W)
(unsigned comparison)

Status Affected: None

Encoding: 0110 010a ffff ffff

Description: Compares the contents of data
memory location 'f' to the contents
of the W by performing an
unsigned subtraction.
If the contents of 'f' are greater than
the contents of WREG, then the
fetched instruction is discarded and
a NOP is executed instead, making
this a two-cycle instruction. If ‘a’ is
0, the Access Bank will be
selected, overriding the BSR value.
If ‘a’ = 1, then the bank will be
selected as per the BSR value
(default).

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register 'f'
Process

Data
No

operation

If skip:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation

No
operation

No
operation

No
operation

No
operation

Example: HERE CPFSGT REG, 0
NGREATER :
GREATER :

Before Instruction
PC = Address (HERE)
W = ?

After Instruction

If REG  W;
PC = Address (GREATER)

If REG  W;
PC = Address (NGREATER)

CPFSLT Compare f with W, skip if f < W

Syntax: [label] CPFSLT f [,a]

Operands: 0  f  255
a  [0,1]

Operation: (f) –W),
skip if (f) < (W)
(unsigned comparison)

Status Affected: None

Encoding: 0110 000a ffff ffff

Description: Compares the contents of data
memory location 'f' to the contents
of W by performing an unsigned
subtraction.
If the contents of 'f' are less than
the contents of W, then the fetched
instruction is discarded and a NOP
is executed instead, making this a
two-cycle instruction. If ‘a’ is 0, the
Access Bank will be selected. If ‘a’
is 1, the BSR will not be overridden
(default).

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register 'f'
Process

Data
No

operation

If skip:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4
No

operation
No

operation
No

operation
No

operation

No
operation

No
operation

No
operation

No
operation

Example: HERE CPFSLT REG, 1
NLESS :
LESS :

Before Instruction
PC = Address (HERE)
W = ?

After Instruction

If REG < W;
PC = Address (LESS)
If REG  W;
PC = Address (NLESS)
 2002-2013 Microchip Technology Inc. Preliminary DS30485B-page 229

PIC18FXX39

GOTO Unconditional Branch

Syntax: [label] GOTO k

Operands: 0  k  1048575

Operation: k  PC<20:1>

Status Affected: None

Encoding:
1st word (k<7:0>)
2nd word(k<19:8>)

1110
1111

1111
k19kkk

k7kkk
kkkk

kkkk0
kkkk8

Description: GOTO allows an unconditional
branch anywhere within entire
2 Mbyte memory range. The 20-bit
value ‘k’ is loaded into PC<20:1>.
GOTO is always a two-cycle
instruction.

Words: 2

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read literal

'k'<7:0>,
No

operation
Read literal
’k’<19:8>,

Write to PC

No
operation

No
operation

No
operation

No
operation

Example: GOTO THERE

After Instruction
PC = Address (THERE)

INCF Increment f

Syntax: [label] INCF f [,d [,a]

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) + 1  dest

Status Affected: C, DC, N, OV, Z

Encoding: 0010 10da ffff ffff

Description: The contents of register 'f' are
incremented. If 'd' is 0, the result is
placed in W. If 'd' is 1, the result is
placed back in register 'f' (default).
If ‘a’ is 0, the Access Bank will be
selected, overriding the BSR value.
If ‘a’ = 1, then the bank will be
selected as per the BSR value
(default).

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register 'f'
Process

Data
Write to

destination

Example: INCF CNT, 1, 0

Before Instruction
CNT = 0xFF
Z = 0
C = ?
DC = ?

After Instruction
CNT = 0x00
Z = 1
C = 1
DC = 1
DS30485B-page 232 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39

MOVFF Move f to f

Syntax: [label] MOVFF fs,fd

Operands: 0  fs  4095
0  fd  4095

Operation: (fs)  fd

Status Affected: None

Encoding:
1st word (source)
2nd word (destin.)

1100
1111

ffff
ffff

ffff
ffff

ffffs
ffffd

Description: The contents of source register 'fs'
are moved to destination register
'fd'. Location of source 'fs' can be
anywhere in the 4096 byte data
space (000h to FFFh), and location
of destination 'fd' can also be any-
where from 000h to FFFh.
Either source or destination can be
W (a useful special situation).
MOVFF is particularly useful for
transferring a data memory location
to a peripheral register (such as the
transmit buffer or an I/O port).

The MOVFF instruction cannot use
the PCL, TOSU, TOSH or TOSL as
the destination register.

Note: The MOVFF instruction
should not be used to mod-
ify interrupt settings while
any interrupt is enabled.
See Section 8.0 for more
information.

Words: 2

Cycles: 2 (3)

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register 'f'
(src)

Process
Data

No
operation

Decode No
operation

No dummy
read

No
operation

Write
register 'f'

(dest)

Example: MOVFF REG1, REG2

Before Instruction
REG1 = 0x33
REG2 = 0x11

After Instruction
REG1 = 0x33,
REG2 = 0x33

MOVLB Move literal to low nibble in BSR

Syntax: [label] MOVLB k

Operands: 0  k  255

Operation: k  BSR

Status Affected: None

Encoding: 0000 0001 kkkk kkkk

Description: The 8-bit literal 'k' is loaded into
the Bank Select Register (BSR).

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read literal

'k'
Process

Data
Write

literal 'k' to
BSR

Example: MOVLB 5

Before Instruction
BSR register = 0x02

After Instruction
BSR register = 0x05
DS30485B-page 236 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39

RLNCF Rotate Left f (no carry)

Syntax: [label] RLNCF f [,d [,a]

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f<n>)  dest<n+1>,
(f<7>)  dest<0>

Status Affected: N, Z

Encoding: 0100 01da ffff ffff

Description: The contents of register 'f' are
rotated one bit to the left. If 'd' is 0,
the result is placed in W. If 'd' is 1,
the result is stored back in register
'f' (default). If ‘a’ is 0, the Access
Bank will be selected, overriding
the BSR value. If ‘a’ is 1, then the
bank will be selected as per the
BSR value (default).

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register 'f'
Process

Data
Write to

destination

Example: RLNCF REG, 1, 0

Before Instruction
REG = 1010 1011

After Instruction
REG = 0101 0111

register f

RRCF Rotate Right f through Carry

Syntax: [label] RRCF f [,d [,a]

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f<n>)  dest<n-1>,
(f<0>)  C,
(C)  dest<7>

Status Affected: C, N, Z

Encoding: 0011 00da ffff ffff

Description: The contents of register 'f' are
rotated one bit to the right through
the Carry Flag. If 'd' is 0, the result
is placed in W. If 'd' is 1, the result
is placed back in register 'f'
(default). If ‘a’ is 0, the Access
Bank will be selected, overriding
the BSR value. If ‘a’ is 1, then the
bank will be selected as per the
BSR value (default).

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register 'f'
Process

Data
Write to

destination

Example: RRCF REG, 0, 0

Before Instruction
REG = 1110 0110
C = 0

After Instruction
REG = 1110 0110

W = 0111 0011
C = 0

C register f
DS30485B-page 244 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
FIGURE 24-15: TYPICAL AND MAXIMUM VOL vs. IOL (VDD = 3V, -40C TO +125C)

FIGURE 24-16: MINIMUM AND MAXIMUM VIN vs. VDD (ST INPUT, -40C TO +125C)

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10 15 20 25

IOL (-mA)

V
O

L
 (

V
)

Max

Typ (25C)

Typical: statistical mean @ 25°C
Maximum: mean + 3 (-40°C to 125°C)
Minimum: mean – 3 (-40°C to 125°C)

Typ (+25°C)

Max

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

VDD (V)

V
IN

 (
V

)

VIH Max

VIH Min

VIL Max

VIL Min

Typical: statistical mean @ 25°C
Maximum: mean + 3 (-40°C to 125°C)
Minimum: mean – 3 (-40°C to 125°C)
DS30485B-page 294 Preliminary  2002-2013 Microchip Technology Inc.

PIC18FXX39
25.2 Package Details
The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)

1510515105Mold Draft Angle Bottom

1510515105Mold Draft Angle Top

10.928.898.13.430.350.320eBOverall Row Spacing §

0.560.480.41.022.019.016BLower Lead Width

1.651.331.02.065.053.040B1Upper Lead Width

0.380.290.20.015.012.008cLead Thickness

3.433.303.18.135.130.125LTip to Seating Plane

35.1834.6734.161.3851.3651.345DOverall Length

7.497.246.99.295.285.275E1Molded Package Width

8.267.877.62.325.310.300EShoulder to Shoulder Width

0.38.015A1Base to Seating Plane

3.433.303.18.135.130.125A2Molded Package Thickness

4.063.813.56.160.150.140ATop to Seating Plane

2.54.100pPitch

2828nNumber of Pins

MAXNOMMINMAXNOMMINDimension Limits

MILLIMETERSINCHES*Units

2

1

D

n

E1

c

eB



E



p

L

A2

B

B1

A

A1

Notes:

JEDEC Equivalent: MO-095
Drawing No. C04-070

* Controlling Parameter

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
.010” (0.254mm) per side.

§ Significant Characteristic

Note: For the most current package drawings, please see the Microchip Packaging Specification located
at http://www.microchip.com/packaging
 2002-2013 Microchip Technology Inc. Preliminary DS30485B-page 299

PIC18FXX39
APPENDIX D: MIGRATION FROM
HIGH-END TO
ENHANCED DEVICES

A detailed discussion of the migration pathway and dif-
ferences between the high-end MCU devices (i.e.,
PIC17CXXX) and the enhanced devices (i.e.,
PIC18FXXX) is provided in AN726, “PIC17CXXX to
PIC18CXXX Migration”. This Application Note is
available as Literature Number DS00726.
 2002-2013 Microchip Technology Inc. Preliminary DS30485B-page 307

