

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI
Peripherals	LED, LVD, POR, PWM
Number of I/O	26
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 13x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68hc908jl8cfa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Chapter 2 Memory

2.1 Introduction

The CPU08 can address 64-kbytes of memory space. The memory map, shown in Figure 2-1, includes:

- 8,192 bytes of user FLASH memory
- 36 bytes of user-defined vectors
- 959 bytes of monitor ROM

2.2 I/O Section

Addresses \$0000–\$003F, shown in Figure 2-2, contain most of the control, status, and data registers. Additional I/O registers have the following addresses:

- \$FE00; Break Status Register, BSR
- \$FE01; Reset Status Register, RSR
- \$FE02; Reserved
- \$FE03; Break Flag Control Register, BFCR
- \$FE04; Interrupt Status Register 1, INT1
- \$FE05; Interrupt Status Register 2, INT2
- \$FE06; Interrupt Status Register 3, INT3
- \$FE07; Reserved
- \$FE08; FLASH Control Register, FLCR
- \$FE09; Reserved
- \$FE0A; Reserved
- \$FE0B; Reserved
- \$FE0C; Break Address Register High, BRKH
- \$FE0D; Break Address Register Low, BRKL
- \$FE0E; Break Status and Control Register, BRKSCR
- \$FE0F; Reserved
- \$FFCF; FLASH Block Protect Register, FLBPR (FLASH register)
- \$FFD0; Mask Option Register, MOR (FLASH register)
- \$FFFF; COP Control Register, COPCTL

2.3 Monitor ROM

The 959 bytes at addresses \$FC00-\$FDFF and \$FE10-\$FFCE are reserved ROM addresses that contain the instructions for the monitor functions. (See Chapter 7 Monitor ROM (MON).)

Monitor ROM

Addr.	Register Name	_	Bit 7	6	5	4	3	2	1	Bit 0
	Interrupt Status Register 1	Read:	IF6	IF5	IF4	IF3	0	IF1	0	0
\$FE04	(INT1)	Write:	R	R	R	R	R	R	R	R
	(Reset:	0	0	0	0	0	0	0	0
	Interrunt Status Register 2	Read:	IF14	IF13	IF12	IF11	0	0	IF8	IF7
\$FE05	(INT2)	Write:	R	R	R	R	R	R	R	R
	()	Reset:	0	0	0	0	0	0	0	0
	Interrupt Status Register 3	Read:	0	0	0	0	0	0	0	IF15
\$FE06	(INT3)	Write:	R	R	R	R	R	R	R	R
		Reset:	0	0	0	0	0	0	0	0
\$FE07	Reserved	Read: Write:	R	R	R	R	R	R	R	R
	ELASH Control Dogistor	Read:	0	0	0	0		MASS	EBASE	PGM
\$FE08	(FLCR)	Write:						INIAGO	LINAGE	
		Reset:	0	0	0	0	0	0	0	0
\$FE09		Read:	R	R	в	R	R	R	В	в
↓ ↓	Reserved	Write:								
\$FE0B		r			1				1	
	Break Address High	Read:	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
\$FE0C	Register	Write:								
	(BRKH)	Reset:	0	0	0	0	0	0	0	0
*====	Break Address low	Read:	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
\$FE0D	Kegister	write:	0							
		Reset:	0	0	0	0	0	0	0	0
¢FFAF	Break Status and Control	Read:	BRKE	BRKA	0	0	0	0	0	0
⇒reue	(BBKSCB)	Pocot:	0	0	0	0	0	0	0	0
		nesei.	U	0	0	0	0	0	0	U
	FLASH Block Protect	Read:	BPR7	BPR6	BPR5	BPR4	BPR3	BPR2	BPR1	BPB0
\$FFCF	Register	Write:		2						2
	(FLBPR)"	Reset:			Unaf	ected by rese	et; \$FF when	blank		1
\$FFD0	Mask Option Register	Read: Write:	OSCSEL	R	R	R	R	R	R	R
		Unaffected by reset; \$FF when blank								
# Non-vola	atile FLASH registers; write by	r program	nming.							
	Read: Low byte of reset vector									
\$FFFF	COP Control Register	Write:			Writing	g clears COP	counter (any	value)		
	(COPCIL)	Reset:				Unaffecte	d by reset	,		
ι	J = Unaffected	X = Indet	X = Indeterminate							

Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 5)

FLASH Program Operation

Figure 2-4. FLASH Programming Flowchart

Table 4-1. Instruction Set Summary

Source	Operation	Description		E	ife C(ct (CR	on		dress ode	code	erand	vcles
гопп			v	н	I	Ν	z	С	Ρq W	do	ď	S
BSR rel	Branch to Subroutine	$\begin{array}{l} PC \leftarrow (PC) + 2; push (PCL) \\ SP \leftarrow (SP) - 1; push (PCH) \\ SP \leftarrow (SP) - 1 \\ PC \leftarrow (PC) + \mathit{rel} \end{array}$	-	_	-	_	-	_	REL	AD	rr	4
CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel CBEQ opr,X+,rel CBEQ X+,rel CBEQ opr,SP,rel	Compare and Branch if Equal	$\begin{array}{l} PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (X) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 2 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 4 + rel ? (A) - (M) = \$00 \end{array}$	_	_	_	_	_	_	DIR IMM IMM IX1+ IX+ SP1	31 41 51 61 71 9E61	dd rr ii rr ii rr ff rr rr ff rr	5 4 4 5 4 6
CLC	Clear Carry Bit	$C \leftarrow 0$	-	-	-	-	-	0	INH	98		1
CLI	Clear Interrupt Mask	l ← 0	-	-	0	-	-	-	INH	9A		2
CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP	Clear	$\begin{array}{c} M \leftarrow \$00\\ A \leftarrow \$00\\ X \leftarrow \$00\\ H \leftarrow \$00\\ M \leftarrow \$00\\ M \leftarrow \$00\\ M \leftarrow \$00\\ M \leftarrow \$00\\ \end{array}$	0	_	_	0	1	_	DIR INH INH IX1 IX SP1	3F 4F 5F 8C 6F 7F 9E6F	dd ff ff	3 1 1 3 2 4
CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP	Compare A with M	(A) – (M)	¢	_	_	\$	\$	\$	IMM DIR EXT IX2 IX1 IX SP1 SP2	A1 B1 C1 E1 F1 9EE1 9ED1	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
COM opr COMA COMX COM opr,X COM ,X COM opr,SP	Complement (One's Complement)	$\begin{array}{l} M \leftarrow (\overline{M}) = \$FF - (M) \\ A \leftarrow (\overline{A}) = \$FF - (M) \\ X \leftarrow (\overline{X}) = \$FF - (M) \\ M \leftarrow (\overline{M}) = \$FF - (M) \end{array}$	0	_	_	\$	\$	1	DIR INH INH IX1 IX SP1	33 43 53 63 73 9E63	dd ff ff	4 1 4 3 5
CPHX # <i>opr</i> CPHX <i>opr</i>	Compare H:X with M	(H:X) – (M:M + 1)	\$	-	_	\$	\$	\$	IMM DIR	65 75	ii ii+1 dd	3 4
CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP	Compare X with M	(X) – (M)	\$	_	_	\$	\$	\$	IMM DIR EXT IX2 IX1 IX SP1 SP2	A3 B3 C3 D3 E3 F3 9EE3 9ED3	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
DAA	Decimal Adjust A	(A) ₁₀	υ	-	–	\$	\$	\$	INH	72		2

Central Processor Unit (CPU)

Source	Operation	Description	Effect on CCR						dress ode	code	erand	cles
Form			v	н	I	Ν	z	С	Ado	do	ope	с С
DBNZ opr,rel DBNZA rel DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel	Decrement and Branch if Not Zero	$\begin{array}{l} A \leftarrow (A) - 1 \text{ or } M \leftarrow (M) - 1 \text{ or } X \leftarrow (X) - 1 \\ PC \leftarrow (PC) + 3 + rel ? (result) \neq 0 \\ PC \leftarrow (PC) + 2 + rel ? (result) \neq 0 \\ PC \leftarrow (PC) + 2 + rel ? (result) \neq 0 \\ PC \leftarrow (PC) + 3 + rel ? (result) \neq 0 \\ PC \leftarrow (PC) + 2 + rel ? (result) \neq 0 \\ PC \leftarrow (PC) + 2 + rel ? (result) \neq 0 \\ PC \leftarrow (PC) + 4 + rel ? (result) \neq 0 \end{array}$	_	_	_	_	_	_	DIR INH INH IX1 IX SP1	3B 4B 5B 6B 7B 9E6B	dd rr rr rr ff rr rr ff rr	5 3 3 5 4 6
DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP	Decrement	$\begin{array}{c} M \leftarrow (M) - 1 \\ A \leftarrow (A) - 1 \\ X \leftarrow (X) - 1 \\ M \leftarrow (M) - 1 \end{array}$	\$	_	_	\$	\$	_	DIR INH INH IX1 IX SP1	3A 4A 5A 6A 7A 9E6A	dd ff ff	4 1 4 3 5
DIV	Divide	A ← (H:A)/(X) H ← Remainder	-	-	-	-	\$	\$	INH	52		7
EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP	Exclusive OR M with A	A ← (A ⊕ M)	0	_	_	\$	\$	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A8 B8 C8 D8 E8 F8 9EE8 9ED8	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
INC opr INCA INCX INC opr,X INC ,X INC opr,SP	Increment	$\begin{array}{c} M \leftarrow (M) + 1 \\ A \leftarrow (A) + 1 \\ X \leftarrow (X) + 1 \\ M \leftarrow (M) + 1 \\ M \leftarrow (M) + 1 \\ M \leftarrow (M) + 1 \end{array}$	\$	_	_	\$	\$	_	DIR INH INH IX1 IX SP1	3C 4C 5C 6C 7C 9E6C	dd ff ff	4 1 4 3 5
JMP opr JMP opr JMP opr,X JMP opr,X JMP ,X	Jump	$PC \leftarrow Jump \; Address$	_	_	_	_	_	_	DIR EXT IX2 IX1 IX	BC CC DC EC FC	dd hh II ee ff ff	2 3 4 3 2
JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X	Jump to Subroutine	PC ← (PC) + n (n = 1, 2, or 3) Push (PCL); SP ← (SP) - 1 Push (PCH); SP ← (SP) - 1 PC ← Unconditional Address	_	_	_	-	_	_	DIR EXT IX2 IX1 IX	BD CD DD ED FD	dd hh II ee ff ff	4 5 6 5 4
LDA #opr LDA opr LDA opr LDA opr,X LDA opr,X LDA ,X LDA opr,SP LDA opr,SP	Load A from M	A ← (M)	0	_	_	\$	\$	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A6 B6 C6 D6 E6 F6 9EE6 9ED6	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
LDHX # <i>opr</i> LDHX <i>opr</i>	Load H:X from M	H:X ← (M:M + 1)	0	_	_	\$	\$	-	imm Dir	45 55	ii jj dd	3 4

Table 4-1. Instruction Set Summary

Central Processor Unit (CPU)

SIM Bus Clock Control and Generation

		c								
	Interrupt Status Degister 1	Read:	IF6	IF5	IF4	IF3	0	IF1	0	0
 \$FE04 \$FE05 Interrupt Status Register 2 (INT1) 	Write:	R	R	R	R	R	R	R	R	
	(((((((((((((((((((((((((((((((((((((((Reset:	0	0	0	0	0	0	0	0
	Read:	IF14	IF13	IF12	IF11	0	0	IF8	IF7	
	Write:	R	R	R	R	R	R	R	R	
	(11112)	Reset:	0	0	0	0	0	0	0	0
	Interrupt Status Degister 2	Read:	0	0	0	0	0	0	0	IF15
\$FE06	(INT3)	Write:	R	R	R	R	R	R	R	R
	(1110)	Reset:	0	0	0	0	0	0	0	0
				= Unimplem	ented		R	= Reserved		

Figure 5-2. SIM I/O Register Summary

5.2 SIM Bus Clock Control and Generation

The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, OSCOUT, as shown in Figure 5-3.

Figure 5-3. SIM Clock Signals

5.2.1 Bus Timing

In user mode, the internal bus frequency is the oscillator frequency divided by four.

5.2.2 Clock Start-Up from POR or LVI Reset

When the power-on reset module or the low-voltage inhibit module generates a reset, the clocks to the CPU and peripherals are inactive and held in an inactive phase until after the 4096 ICLK cycle POR timeout has completed. The RST pin is driven low by the SIM during this entire period. The IBUS clocks start upon completion of the timeout.

5.2.3 Clocks in Stop Mode and Wait Mode

Upon exit from stop mode by an interrupt, break, or reset, the SIM allows ICLK to clock the SIM counter. The CPU and peripheral clocks do not become active until after the stop delay time-out. This time-out is selectable as 4096 or 32 ICLK cycles. (See 5.6.2 Stop Mode.)

In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.

PIN — External Reset Bit

1 = Last reset caused by external reset pin (\overline{RST})

0 = POR or read of RSR

COP — Computer Operating Properly Reset Bit

- 1 = Last reset caused by COP counter
- 0 = POR or read of RSR
- ILOP Illegal Opcode Reset Bit
 - 1 = Last reset caused by an illegal opcode
 - 0 = POR or read of RSR

ILAD — Illegal Address Reset Bit (opcode fetches only)

- 1 = Last reset caused by an opcode fetch from an illegal address
- 0 = POR or read of RSR

MODRST — Monitor Mode Entry Module Reset bit

- 1 = Last reset caused by monitor mode entry when vector locations \$FFFE and \$FFFF are \$FF after POR while $\overline{IRQ} = V_{DD}$
- 0 = POR or read of RSR

LVI — Low Voltage Inhibit Reset bit

- 1 = Last reset caused by LVI circuit
- 0 = POR or read of RSR

5.7.3 Break Flag Control Register (BFCR)

The break control register contains a bit that enables software to clear status bits while the MCU is in a break state.

Figure 5-22. Break Flag Control Register (BFCR)

BCFE — Break Clear Flag Enable Bit

This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set.

1 = Status bits clearable during break

0 = Status bits not clearable during break

NOTE

The internal oscillator is a free running oscillator and is available after each POR or reset. It is turned-off in stop mode by setting the STOP_ICLKDIS bit in CONFIG2 (see 3.4 Configuration Register 2 (CONFIG2)).

6.4 I/O Signals

The following paragraphs describe the oscillator I/O signals.

6.4.1 Crystal Amplifier Input Pin (OSC1)

OSC1 pin is an input to the crystal oscillator amplifier or the input to the RC oscillator circuit.

6.4.2 Crystal Amplifier Output Pin (OSC2/RCCLK/PTA6/KBI6)

For the XTAL oscillator, OSC2 pin is the output of the crystal oscillator inverting amplifier.

For the RC oscillator, OSC2 pin can be configured as a general purpose I/O pin PTA6, or the output of the RC oscillator, RCCLK.

Oscillator	OSC2 pin function						
XTAL Inverting OSC1							
RC	Controlled by PTA6EN bit in PTAPUE (\$000D) PTA6EN = 0: RCCLK output PTA6EN = 1: PTA6/KBI6						

6.4.3 Oscillator Enable Signal (SIMOSCEN)

The SIMOSCEN signal comes from the system integration module (SIM) and enables/disables the XTAL oscillator circuit or the RC-oscillator.

6.4.4 XTAL Oscillator Clock (XTALCLK)

XTALCLK is the XTAL oscillator output signal. It runs at the full speed of the crystal (f_{XCLK}) and comes directly from the crystal oscillator circuit. Figure 6-2 shows only the logical relation of XTALCLK to OSC1 and OSC2 and may not represent the actual circuitry. The duty cycle of XTALCLK is unknown and may depend on the crystal and other external factors. Also, the frequency and amplitude of XTALCLK can be unstable at start-up.

6.4.5 RC Oscillator Clock (RCCLK)

RCCLK is the RC oscillator output signal. Its frequency is directly proportional to the time constant of the external R and C. Figure 6-3 shows only the logical relation of RCCLK to OSC1 and may not represent the actual circuitry.

6.4.6 Oscillator Out 2 (2OSCOUT)

2OSCOUT is same as the input clock (XTALCLK or RCCLK). This signal is driven to the SIM module.

Table 7-8. READSP (Read Stack Pointer) Command

Description	Reads stack pointer							
Operand	None							
Data Returned	Returns stack pointer in high byte:low byte order							
Opcode	\$0C							
Command Sequence								
SENT TO MONITOR								
ЕСНО	RESULT							

Table 7-9. RUN (Run User Program) Command

Description	Executes RTI instruction							
Operand	None							
Data Returned	None							
Opcode	\$28							
Command Sequence								
SENT TO MONITOR	RUN X							

7.4 Security

A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host can bypass the security feature at monitor mode entry by sending eight security bytes that match the bytes at locations \$FFF6–\$FFFD. Locations \$FFF6–\$FFFD contain user-defined data.

NOTE

Do not leave locations \$FFF6-\$FFFD blank. For security reasons, program locations \$FFF6-\$FFFD even if they are not used for vectors.

During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security bytes on pin PTB0. If the received bytes match those at locations \$FFF6-\$FFFD, the host bypasses the security feature and can read all FLASH locations and execute code from FLASH. Security remains bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed and security code entry is not required. (See Figure 7-7.)

NP

Timer Interface Module (TIM)

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0	
\$0034	TIM2 Counter Modulo Register Low	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0	
	(T2MODL)	Reset:	1	1	1	1	1	1	1	1	
¢0025	TIM2 Channel 0 Status	Read: Write:	CHOF	CH0IE	MS0B	MS0A	ELS0B	ELS0A	TOV0	CH0MAX	
\$UU3D	(T2SC0)	Reset:	0	0	0	0	0	0	0	0	
\$0036	TIM2 Channel 0 Register High	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8	
	(T2CH0H)	Reset:			Indeterminate after reset						
\$0037	TIM2 Channel 0 Register Low	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0	
	(T2CH0L)	Reset:				Indetermina	te after reset				
	TIM2 Channel 1 Status	Read:	CH1F	CHIE	0	MS1A	ELS1B	FI S1A	TOV1	CH1MAX	
\$0038	and Control Register	Write:	0	OHIL		MOTA	LLOID	LLOIA	1001		
	(T2SC1)	Reset:	0	0	0	0	0	0	0	0	
\$0039	TIM2 Channel 1 Register High	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8	
	(T2CH1H)	Reset:				Indetermina	te after reset				
\$003A	TIM2 Channel 1 Register Low	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0	
	(T2CH1L)	Reset:				Indetermina	te after reset				
				= Unimplem	nented						

Figure 8-2. TIM I/O Register Summary (Sheet 2 of 2)

8.4.1 TIM Counter Prescaler

The TIM1 clock source can be one of the seven prescaler outputs; TIM2 clock source can be one of the seven prescaler outputs or the TIM2 clock pin, T2CLK. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register select the TIM clock source.

8.4.2 Input Capture

With the input capture function, the TIM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input captures can generate TIM CPU interrupt requests.

8.4.3 Output Compare

With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU interrupt requests.

8.4.3.1 Unbuffered Output Compare

Any output compare channel can generate unbuffered output compare pulses as described in 8.4.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM channel registers.

An unsynchronized write to the TIM channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIM may pass the new value before it is written.

Use the following methods to synchronize unbuffered changes in the output compare value on channel x:

- When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value.
- When changing to a larger output compare value, enable TIM overflow interrupts and write the new
 value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the
 current counter overflow period. Writing a larger value in an output compare interrupt routine (at
 the end of the current pulse) could cause two output compares to occur in the same counter
 overflow period.

8.4.3.2 Buffered Output Compare

Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the output.

Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin.

NOTE

In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered output compares.

8.4.4 Pulse Width Modulation (PWM)

By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time between overflows is the period of the PWM signal.

As Figure 8-3 shows, the output compare value in the TIM channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM

TSTOP — TIM Stop Bit

This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM counter until software clears the TSTOP bit.

1 = TIM counter stopped

0 = TIM counter active

NOTE

Do not set the TSTOP bit before entering wait mode if the TIM is required to exit wait mode.

TRST — TIM Reset Bit

Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on any other registers. Counting resumes from \$0000. TRST is cleared automatically after the TIM counter is reset and always reads as logic 0. Reset clears the TRST bit.

1 = Prescaler and TIM counter cleared

0 = No effect

NOTE

Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value of \$0000.

PS[2:0] — Prescaler Select Bits

These read/write bits select one of the seven prescaler outputs as the input to the TIM counter as Table 8-2 shows. Reset clears the PS[2:0] bits.

PS2	PS1	PS0	TIM Clock Source				
0	0	0	Internal bus clock ÷ 1				
0	0	1	Internal bus clock ÷ 2				
0	1	0	Internal bus clock ÷ 4				
0	1	1	Internal bus clock ÷ 8				
1	0	0	Internal bus clock ÷ 16				
1	0	1	Internal bus clock ÷ 32				
1	1	0	Internal bus clock ÷ 64				
1	1	1	T2CLK (for TIM2 only)				

Table 8-2. Prescaler Selection

8.9.2 TIM Counter Registers

The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter. Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers.

NOTE

If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL retains the value latched during the break.

MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1

Freescale Semiconductor

Serial Communications Interface (SCI)

NOTE

When queueing an idle character, return the TE bit to logic 1 before the stop bit of the current character shifts out to the TxD pin. Setting TE after the stop bit appears on TxD causes data previously written to the SCDR to be lost.

Toggle the TE bit for a queued idle character when the SCTE bit becomes set and just before writing the next byte to the SCDR.

9.4.2.5 Inversion of Transmitted Output

The transmit inversion bit (TXINV) in SCI control register 1 (SCC1) reverses the polarity of transmitted data. All transmitted values, including idle, break, start, and stop bits, are inverted when TXINV is at logic 1. (See **9.8.1 SCI Control Register 1**.)

9.4.2.6 Transmitter Interrupts

These conditions can generate CPU interrupt requests from the SCI transmitter:

- SCI transmitter empty (SCTE) The SCTE bit in SCS1 indicates that the SCDR has transferred a character to the transmit shift register. SCTE can generate a transmitter CPU interrupt request. Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate transmitter CPU interrupt requests.
- Transmission complete (TC) The TC bit in SCS1 indicates that the transmit shift register and the SCDR are empty and that no break or idle character has been generated. The transmission complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to generate transmitter CPU interrupt requests.

9.4.3 Receiver

Figure 9-5 shows the structure of the SCI receiver.

9.4.3.1 Character Length

The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCC1) determines character length. When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2) is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth bit (bit 7).

9.4.3.2 Character Reception

During an SCI reception, the receive shift register shifts characters in from the RxD pin. The SCI data register (SCDR) is the read-only buffer between the internal data bus and the receive shift register.

After a complete character shifts into the receive shift register, the data portion of the character transfers to the SCDR. The SCI receiver full bit, SCRF, in SCI status register 1 (SCS1) becomes set, indicating that the received byte can be read. If the SCI receive interrupt enable bit, SCRIE, in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt request.

Functional Description

ADCO — ADC Continuous Conversion Bit

When set, the ADC will convert samples continuously and update the ADR register at the end of each conversion. Only one conversion is allowed when this bit is cleared. Reset clears the ADCO bit.

- 1 = Continuous ADC conversion
- 0 = One ADC conversion

ADCH[4:0] — ADC Channel Select Bits

ADCH[4:0] form a 5-bit field which is used to select one of the ADC channels. The five channel select bits are detailed in the following table. Care should be taken when using a port pin as both an analog and a digital input simultaneously to prevent switching noise from corrupting the analog signal. (See Table 10-1.)

The ADC subsystem is turned off when the channel select bits are all set to one. This feature allows for reduced power consumption for the MCU when the ADC is not used. Reset sets all of these bits to a logic 1.

NOTE

Recovery from the disabled state requires one conversion cycle to stabilize.

ADCH4	ADCH3	ADCH2	ADCH1	ADCH0	ADC Channel	Input Select
0	0	0	0	0	ADC0	PTB0
0	0	0	0	1	ADC1	PTB1
0	0	0	1	0	ADC2	PTB2
0	0	0	1	1	ADC3	PTB3
0	0	1	0	0	ADC4	PTB4
0	0	1	0	1	ADC5	PTB5
0	0	1	1	0	ADC6	PTB6
0	0	1	1	1	ADC7	PTB7
0	1	0	0	0	ADC8	PTD3
0	1	0	0	1	ADC9	PTD2
0	1	0	1	0	ADC10	PTD1
0	1	0	1	1	ADC11	PTD0
0	1	1	0	0	ADC12	ADC12/T2CLK
0	1	1	0	1		
:	:	:	:	:	—	Unused ⁽¹⁾
1	1	0	1	0		
1	1	0	1	1	—	Reserved
1	1	1	0	0	—	Reserved
1	1	1	0	1		V _{DD} ⁽²⁾
1	1	1	1	0		V _{SS} ⁽²⁾
1	1	1	1	1		ADC power off

Table 10-1. MUX Channel Select

1. If any unused channels are selected, the resulting ADC conversion will be unknown.

2. The voltage levels supplied from internal reference nodes as specified in the table are used to verify the operation of the ADC converter both in production test and for user applications.

Figure 11-11. Data Direction Register D (DDRD)

DDRD[7:0] — Data Direction Register D Bits

These read/write bits control port D data direction. Reset clears DDRD[7:0], configuring all port D pins as inputs.

1 = Corresponding port D pin configured as output

0 = Corresponding port D pin configured as input

NOTE

Avoid glitches on port D pins by writing to the port D data register before changing data direction register D bits from 0 to 1. Figure 11-12 shows the port D I/O logic.

Figure 11-12. Port D I/O Circuit

When DDRDx is a logic 1, reading address \$0003 reads the PTDx data latch. When DDRDx is a logic 0, reading address \$0003 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 11-4 summarizes the operation of the port D pins.

Table 11-4. Port D Pin Functions

		I/O Pin Mode	Accesses to DDRD	Accesses to PTD			
שחשש שוו	110 01		Read/Write	Read	Write		
0	X ⁽¹⁾	Input, Hi-Z ⁽²⁾	DDRD[7:0]	Pin	PTD[7:0] ⁽³⁾		
1	Х	Output	DDRD[7:0]	PTD[7:0]	PTD[7:0]		

1. X = don't care.

2. Hi-Z = high impedance.

3. Writing affects data register, but does not affect the input.

Electrical Specifications

17.6 5V Control Timing

Table 17-5. Control Timing (5V)

Characteristic ⁽¹⁾	Symbol	Min	Max	Unit
Internal operating frequency	f _{OP}	_	8	MHz
RST input pulse width low ⁽²⁾	t _{RL}	750	—	ns
TIM2 external clock input	f _{T2CLK}	_	4	MHz
IRQ interrupt pulse width low (edge-triggered) ⁽³⁾	t _{ILIH}	100	—	ns
IRQ interrupt pulse period ⁽³⁾	t _{ILIL}	Note ⁽⁴⁾	—	t _{CYC}

1. V_{DD} = 4.5 to 5.5 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H; timing shown with respect to 20% V_{DD} and 70% V_{SS}, unless otherwise noted.

2. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.

3. Values are based on characterization results, not tested in production.

4. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 t_{CYC}.

Figure 17-1. RST and IRQ Timing

17.7 5V Oscillator Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Internal oscillator clock frequency	f _{ICLK}		50 k ⁽¹⁾		Hz
External reference clock to OSC1 ⁽²⁾	f _{OSC}	dc		32M	Hz
Crystal reference frequency (3)	f _{XTALCLK}		—	32M	Hz
Crystal load capacitance (4)	CL	—	—	—	
Crystal fixed capacitance ⁽³⁾	C ₁	—	$2 \times C_L$	—	
Crystal tuning capacitance ⁽³⁾	C ₂	—	$2 \times C_L$	—	
Feedback bias resistor	R _B	—	10 MΩ	—	
Series resistor ^{(3), (5)}	R _S	—	—	—	
External RC clock frequency	f _{RCCLK}	2M	—	12M	Hz
RC oscillator external R	R _{EXT}	See Figure 17-2			Ω
RC oscillator external C	C _{EXT}	—	10	—	pF

1. Typical value reflect average measurements at midpoint of voltage range, 25 °C only. See Figure 17-5 for plot.

2. No more than 10% duty cycle deviation from 50%.

3. Fundamental mode crystals only.

4. Consult crystal vendor data sheet.

5. Not required for high frequency crystals.

Ordering Information