

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI
Peripherals	LED, LVD, POR, PWM
Number of I/O	26
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 13x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68hc908jl8cfae

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9.4.3.2	Character Reception
9.4.3.3	Data Sampling
9.4.3.4	Framing Errors
9.4.3.5	Baud Rate Tolerance
9.4.3.6	Receiver Wakeup
9.4.3.7	Receiver Interrupts
9.4.3.8	Error Interrupts
9.5	Low-Power Modes
9.5.1	Wait Mode
9.5.2	Stop Mode
9.6	SCI During Break Module Interrupts 133
9.7	I/O Signals
9.7.1	TxD (Transmit Data)
9.7.2	RxD (Receive Data)
9.8	I/O Registers
9.8.1	SCI Control Register 1
9.8.2	SCI Control Register 2 136
9.8.3	SCI Control Register 3 138
9.8.4	SCI Status Register 1
9.8.5	SCI Status Register 2
9.8.6	SCI Data Register
9.8.7	SCI Baud Rate Register 143

Chapter 10 Analog-to-Digital Converter (ADC)

10.1	Introduction	45
10.2	Features	45
10.3	Functional Description	45
10.3.1	ADC Port I/O Pins 14	46
10.3.2	Voltage Conversion	47
10.3.3	Conversion Time	47
10.3.4	Continuous Conversion	47
10.3.5	Accuracy and Precision	47
10.4	Interrupts 14	47
10.5	Low-Power Modes	47
10.5 10.5.1	Low-Power Modes	47 47
10.5 10.5.1 10.5.2	Low-Power Modes	47 47 48
10.5 10.5.1 10.5.2 10.6	Low-Power Modes 14 Wait Mode 14 Stop Mode 14 I/O Signals 14	47 47 48 48
10.5 10.5.1 10.5.2 10.6 10.6.1	Low-Power Modes 14 Wait Mode 14 Stop Mode 14 I/O Signals 14 ADC Voltage In (ADCVIN) 14	47 47 48 48 48
10.5 10.5.1 10.5.2 10.6 10.6.1 10.7	Low-Power Modes 14 Wait Mode 14 Stop Mode 14 I/O Signals 14 ADC Voltage In (ADCVIN) 14 I/O Registers 14	47 47 48 48 48 48
10.5 10.5.1 10.5.2 10.6 10.6.1 10.7 10.7.1	Low-Power Modes 14 Wait Mode 14 Stop Mode 14 I/O Signals 14 ADC Voltage In (ADCVIN) 14 I/O Registers 14 ADC Status and Control Register 14	47 47 48 48 48 48 48 48
10.5 10.5.1 10.5.2 10.6 10.6.1 10.7 10.7.1 10.7.2	Low-Power Modes 14 Wait Mode 14 Stop Mode 14 I/O Signals 14 ADC Voltage In (ADCVIN) 14 I/O Registers 14 ADC Status and Control Register 14 ADC Data Register 14 ADC Data Register 14	47 48 48 48 48 48 48 50

Random-Access Memory (RAM)

2.4 Random-Access Memory (RAM)

Addresses \$0060 through \$015F are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space.

NOTE

For correct operation, the stack pointer must point only to RAM locations.

Within page zero are 160 bytes of RAM. Because the location of the stack RAM is programmable, all page zero RAM locations can be used for I/O control and user data or code. When the stack pointer is moved from its reset location at \$00FF, direct addressing mode instructions can access efficiently all page zero RAM locations. Page zero RAM, therefore, provides ideal locations for frequently accessed global variables.

Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU registers.

NOTE

For M6805 compatibility, the H register is not stacked.

During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls.

NOTE

Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation.

2.5 FLASH Memory

This sub-section describes the operation of the embedded FLASH memory. The FLASH memory can be read, programmed, and erased from a single external supply. The program and erase operations are enabled through the use of an internal charge pump.

2.6 Functional Description

The FLASH memory consists of an array of 8,192 bytes for user memory plus a block of 36 bytes for user interrupt vectors. *An erased bit reads as logic 1 and a programmed bit reads as a logic 0*. The FLASH memory page size is defined as 64 bytes, and is the minimum size that can be erased in a page erase operation. Program and erase operations are facilitated through control bits in FLASH control register (FLCR).

The address ranges for the FLASH memory are:

- \$DC00-\$FBFF; user memory; 12,288 bytes
- \$FFDC-\$FFFF; user interrupt vectors; 36 bytes

Programming tools are available from Freescale. Contact your local Freescale representative for more information.

NOTE

A security feature prevents viewing of the FLASH contents.⁽¹⁾

MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1

Freescale Semiconductor

^{1.} No security feature is absolutely secure. However, Motorola's strategy is to make reading or copying the FLASH difficult for unauthorized users.

FLASH Program Operation

Figure 2-4. FLASH Programming Flowchart

FLASH Block Protect Register

The resultant 16-bit address is used for specifying the start address of the FLASH memory for block protection. The FLASH is protected from this start address to the end of FLASH memory, at \$FFFF. With this mechanism, the protect start address can be XX00, XX40, XX80, or XXC0 (at page boundaries — 64 bytes) within the FLASH memory.

Examples of protect start address:

BPR[7:0]	Start of Address of Protect Range ⁽¹⁾
\$00–\$70	The entire FLASH memory is protected.
\$71 (0111 0001)	\$DC40 (11 01 1100 01 00 0000)
\$72 (0111 0010)	\$DC80 (11 01 1100 10 00 0000)
\$73 (0111 0011)	\$DCC0 (11 01 1100 11 00 0000)
and so on	
\$FD (1111 1101)	\$FF40 (11 11 1111 01 00 0000)
\$FE (1111 1110)	\$FF80 (11 11 1111 10 00 0000)
\$FF	The entire FLASH memory is not protected.

1. The end address of the protected range is always \$FFFF.

After the I bit is cleared, the highest-priority interrupt request is serviced first.

A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI).

N — Negative flag

The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result.

1 = Negative result

0 = Non-negative result

Z — Zero flag

The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of \$00.

1 = Zero result

0 = Non-zero result

C — Carry/Borrow Flag

The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and branch, shift, and rotate — also clear or set the carry/borrow flag.

1 = Carry out of bit 7

0 = No carry out of bit 7

4.4 Arithmetic/Logic Unit (ALU)

The ALU performs the arithmetic and logic operations defined by the instruction set.

Refer to the *CPU08 Reference Manual* (Freescale document order number CPU08RM/AD) for a description of the instructions and addressing modes and more detail about the architecture of the CPU.

4.5 Low-Power Modes

The WAIT and STOP instructions put the MCU in low power-consumption standby modes.

4.5.1 Wait Mode

The WAIT instruction:

- Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.
- Disables the CPU clock

4.5.2 Stop Mode

The STOP instruction:

- Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.
- Disables the CPU clock

After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.

Central Processor Unit (CPU)

4.6 CPU During Break Interrupts

If a break module is present on the MCU, the CPU starts a break interrupt by:

- Loading the instruction register with the SWI instruction
- Loading the program counter with \$FFFC:\$FFFD or with \$FEFC:\$FEFD in monitor mode

The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.

A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation if the break interrupt has been deasserted.

4.7 Instruction Set Summary

Table 4-1 provides a summary of the M68HC08 instruction set.

4.8 Opcode Map

The opcode map is provided in Table 4-2.

Source	Operation	Description			Effect on CCR					code	erand	ycles
FOIII			۷	Н	I	Ν	z	С	Ado M	do	op	ပ်
ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC ,X ADC opr,SP ADC opr,SP	Add with Carry	A ← (A) + (M) + (C)	\$	¢	_	\$	\$	\$	IMM DIR EXT IX2 IX1 IX SP1 SP2	A9 B9 C9 D9 E9 F9 9EE9 9ED9	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
ADD #opr ADD opr ADD opr ADD opr,X ADD opr,X ADD ,X ADD opr,SP ADD opr,SP	Add without Carry	A ← (A) + (M)	\$	\$	_	\$	\$	\$	IMM DIR EXT IX2 IX1 IX SP1 SP2	AB BB CB DB EB FB 9EEB 9EDB	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
AIS #opr	Add Immediate Value (Signed) to SP	$SP \leftarrow (SP) + (16 \mathrel{\scriptstyle{\scriptstyle \ll}} M)$	-	-	_	-	-	-	IMM	A7	ii	2
AIX #opr	Add Immediate Value (Signed) to H:X	$H:X \leftarrow (H:X) + (16 \mathrel{\scriptstyle{\scriptstyle \ll}} M)$	-	-	_	-	-	-	IMM	AF	ii	2

Table 4-1. Instruction Set Summary

MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1

	Table 4-2. Opcode Map																		
	Bit Mani	pulation	Branch			Read-Mo	dify-Write		-	Con	trol		-	-	Register	/Memory			-
	DIR	DIR	REL	DIR	INH	INH	IX1	SP1	IX	INH	INH	IMM	DIR	EXT	IX2	SP2	IX1	SP1	IX
MSB LSB	0	1	2	3	4	5	6	9E6	7	8	9	Α	В	С	D	9ED	Е	9EE	F
0	5 BRSET0 3 DIR	4 BSET0 2 DIR	3 BRA 2 REL	4 NEG 2 DIR	1 NEGA 1 INH	1 NEGX 1 INH	4 NEG 2 IX1	5 NEG 3 SP1	3 NEG 1 IX	7 RTI 1 INH	3 BGE 2 REL	2 SUB 2 IMM	3 SUB 2 DIR	4 SUB 3 EXT	4 SUB 3 IX2	5 SUB 4 SP2	3 SUB 2 IX1	4 SUB 3 SP1	2 SUB 1 IX
1	5 BRCLR0 3 DIR	4 BCLR0 2 DIR	3 BRN 2 REL	5 CBEQ 3 DIR	4 CBEQA 3 IMM	4 CBEQX 3 IMM	5 CBEQ 3 IX1+	6 CBEQ 4 SP1	4 CBEQ 2 IX+	4 RTS 1 INH	3 BLT 2 REL	2 CMP 2 IMM	3 CMP 2 DIR	4 CMP 3 EXT	4 CMP 3 IX2	5 CMP 4 SP2	3 CMP 2 IX1	4 CMP 3 SP1	2 CMP 1 IX
2	5 BRSET1 3 DIR	4 BSET1 2 DIR	3 BHI 2 REL		5 MUL 1 INH	7 DIV 1 INH	3 NSA 1 INH		2 DAA 1 INH		3 BGT 2 REL	SBC 2 IMM	3 SBC 2 DIR	BBC 3 EXT	4 SBC 3 IX2	SBC 4 SP2	3 SBC 2 IX1	4 SBC 3 SP1	2 SBC 1 IX
3	5 BRCLR1 3 DIR	4 BCLR1 2 DIR	3 BLS 2 REL	4 COM 2 DIR	1 COMA 1 INH	1 COMX 1 INH	4 COM 2 IX1	5 COM 3 SP1	3 COM 1 IX	9 SWI 1 INH	3 BLE 2 REL	CPX 2 IMM	3 CPX 2 DIR	CPX 3 EXT	4 CPX 3 IX2	5 CPX 4 SP2	3 CPX 2 IX1	4 CPX 3 SP1	2 CPX 1 IX
4	5 BRSET2 3 DIR	4 BSET2 2 DIR	3 BCC 2 REL	4 LSR 2 DIR	1 LSRA 1 INH	1 LSRX 1 INH	4 LSR 2 IX1	5 LSR 3 SP1	3 LSR 1 IX	2 TAP 1 INH	2 TXS 1 INH	2 AND 2 IMM	3 AND 2 DIR	4 AND 3 EXT	4 AND 3 IX2	5 AND 4 SP2	3 AND 2 IX1	4 AND 3 SP1	2 AND 1 IX
5	5 BRCLR2 3 DIR	4 BCLR2 2 DIR	BCS 2 REL	4 STHX 2 DIR	3 LDHX 3 IMM	4 LDHX 2 DIR	3 CPHX 3 IMM		4 CPHX 2 DIR	1 TPA 1 INH	TSX 1 INH	BIT 2 IMM	3 BIT 2 DIR	BIT 3 EXT	4 BIT 3 IX2	5 BIT 4 SP2	3 BIT 2 IX1	4 BIT 3 SP1	2 BIT 1 IX
6	5 BRSET3 3 DIR	4 BSET3 2 DIR	3 BNE 2 REL	4 ROR 2 DIR	1 RORA 1 INH	1 RORX 1 INH	4 ROR 2 IX1	5 ROR 3 SP1	3 ROR 1 IX	2 PULA 1 INH		2 LDA 2 IMM	3 LDA 2 DIR	4 LDA 3 EXT	4 LDA 3 IX2	5 LDA 4 SP2	3 LDA 2 IX1	4 LDA 3 SP1	2 LDA 1 IX
7	5 BRCLR3 3 DIR	4 BCLR3 2 DIR	3 BEQ 2 REL	4 ASR 2 DIR	1 ASRA 1 INH	1 ASRX 1 INH	4 ASR 2 IX1	5 ASR 3 SP1	3 ASR 1 IX	2 PSHA 1 INH	1 TAX 1 INH	AIS 2 IMM	3 STA 2 DIR	STA 3 EXT	4 STA 3 IX2	5 STA 4 SP2	3 STA 2 IX1	4 STA 3 SP1	2 STA 1 IX
8	5 BRSET4 3 DIR	4 BSET4 2 DIR	BHCC 2 REL	4 LSL 2 DIR	1 LSLA 1 INH	1 LSLX 1 INH	4 LSL 2 IX1	5 LSL 3 SP1	3 LSL 1 IX	2 PULX 1 INH	1 CLC 1 INH	EOR 2 IMM	3 EOR 2 DIR	4 EOR 3 EXT	4 EOR 3 IX2	EOR 4 SP2	3 EOR 2 IX1	4 EOR 3 SP1	EOR 1 IX
9	5 BRCLR4 3 DIR	4 BCLR4 2 DIR	3 BHCS 2 REL	4 ROL 2 DIR	1 ROLA 1 INH	1 ROLX 1 INH	4 ROL 2 IX1	5 ROL 3 SP1	3 ROL 1 IX	2 PSHX 1 INH	1 SEC 1 INH	2 ADC 2 IMM	3 ADC 2 DIR	4 ADC 3 EXT	4 ADC 3 IX2	5 ADC 4 SP2	3 ADC 2 IX1	4 ADC 3 SP1	2 ADC 1 IX
Α	5 BRSET5 3 DIR	4 BSET5 2 DIR	3 BPL 2 REL	4 DEC 2 DIR	1 DECA 1 INH	1 DECX 1 INH	4 DEC 2 IX1	5 DEC 3 SP1	3 DEC 1 IX	2 PULH 1 INH	2 CLI 1 INH	2 ORA 2 IMM	3 ORA 2 DIR	4 ORA 3 EXT	4 ORA 3 IX2	5 ORA 4 SP2	3 ORA 2 IX1	4 ORA 3 SP1	2 ORA 1 IX
в	5 BRCLR5 3 DIR	4 BCLR5 2 DIR	3 BMI 2 REL	5 DBNZ 3 DIR	3 DBNZA 2 INH	3 DBNZX 2 INH	5 DBNZ 3 IX1	6 DBNZ 4 SP1	4 DBNZ 2 IX	2 PSHH 1 INH	2 SEI 1 INH	ADD 2 IMM	3 ADD 2 DIR	4 ADD 3 EXT	4 ADD 3 IX2	5 ADD 4 SP2	3 ADD 2 IX1	4 ADD 3 SP1	2 ADD 1 IX
С	5 BRSET6 3 DIR	4 BSET6 2 DIR	3 BMC 2 REL	4 INC 2 DIR	1 INCA 1 INH	1 INCX 1 INH	4 INC 2 IX1	5 INC 3 SP1	3 INC 1 IX	1 CLRH 1 INH	1 RSP 1 INH		2 JMP 2 DIR	3 JMP 3 EXT	4 JMP 3 IX2		3 JMP 2 IX1		2 JMP 1 IX
D	5 BRCLR6 3 DIR	4 BCLR6 2 DIR	3 BMS 2 REL	3 TST 2 DIR	1 TSTA 1 INH	1 TSTX 1 INH	3 TST 2 IX1	4 TST 3 SP1	2 TST 1 IX		1 NOP 1 INH	4 BSR 2 REL	4 JSR 2 DIR	5 JSR 3 EXT	6 JSR 3 IX2		5 JSR 2 IX1		4 JSR 1 IX
Е	5 BRSET7 3 DIR	4 BSET7 2 DIR	3 BIL 2 REL		5 MOV 3 DD	4 MOV 2 DIX+	4 MOV 3 IMD		4 MOV 2 IX+D	1 STOP 1 INH	*	2 LDX 2 IMM	3 LDX 2 DIR	4 LDX 3 EXT	4 LDX 3 IX2	5 LDX 4 SP2	3 LDX 2 IX1	4 LDX 3 SP1	2 LDX 1 IX
F	5 BRCLR7 3 DIR	4 BCLR7 2 DIR	3 BIH 2 REL	3 CLR 2 DIR	1 CLRA 1 INH	1 CLRX 1 INH	3 CLR 2 IX1	4 CLR 3 SP1	CLR 1 IX	1 WAIT 1 INH	TXA 1 INH	2 AIX 2 IMM	3 STX 2 DIR	3 STX 3 EXT	4 3 STX 3 IX2	5 STX 4 SP2	3 STX 2 IX1	4 3 STX 3 SP1	2 STX 1 IX

- Indexed, No Offset Indexed, 8-Bit Offset DIR Direct ÏX1
- EXT Extended DD Direct-Direct
 - IX2 Indexed, 16-Bit Offset IMD Immediate-Direct

SP1 Stack Pointer, 8-Bit Offset SP2 Stack Pointer, 16-Bit Offset IX+ Indexed, No Offset with

- Post Increment IX1+ Indexed, 1-Byte Offset with
- Post Increment

LSB Low Byte of Opcode in Hexadecimal 0

MSB

High Byte of Opcode in Hexadecimal 0

5 Cycles BRSET0 Opcode Mnemonic 3 DIR Number of Bytes / Addressing Mode

IX+D Indexed-Direct DIX+ Direct-Indexed *Pre-byte for stack pointer indexed instructions

59

System Integration Module (SIM)

5.3.2.2 Computer Operating Properly (COP) Reset

An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an internal reset and sets the COP bit in the reset status register (RSR). The SIM actively pulls down the RST pin for all internal reset sources.

To prevent a COP module time-out, write any value to location \$FFFF. Writing to location \$FFFF clears the COP counter and stages 12 through 5 of the SIM counter. The SIM counter output, which occurs at least every $(2^{12} - 2^4)$ ICLK cycles, drives the COP counter. The COP should be serviced as soon as possible out of reset to guarantee the maximum amount of time before the first time-out.

The COP module is disabled if the $\overline{\text{RST}}$ pin or the $\overline{\text{IRQ}}$ pin is held at V_{TST} while the MCU is in monitor mode. The COP module can be disabled only through combinational logic conditioned with the high voltage signal on the $\overline{\text{RST}}$ or the $\overline{\text{IRQ}}$ pin. This prevents the COP from becoming disabled as a result of external noise. During a break state, V_{TST} on the $\overline{\text{RST}}$ pin disables the COP module.

5.3.2.3 Illegal Opcode Reset

The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the reset status register (RSR) and causes a reset.

If the stop enable bit, STOP, in the mask option register is logic zero, the SIM treats the STOP instruction as an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the $\overline{\text{RST}}$ pin for all internal reset sources.

5.3.2.4 Illegal Address Reset

An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the reset status register (RSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively pulls down the RST pin for all internal reset sources.

5.3.2.5 Low-Voltage Inhibit (LVI) Reset

The low-voltage inhibit module (LVI) asserts its output to the SIM when the V_{DD} voltage falls to the LVI trip voltage V_{TRIP}. The LVI bit in the reset status register (RSR) is set, and the external reset pin ($\overline{\text{RST}}$) is

held low while the SIM counter counts out 4096 ICLK cycles. Sixty-four ICLK cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. The SIM actively pulls down the RST pin for all internal reset sources.

5.4 SIM Counter

The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as a prescaler for the computer operating properly module (COP). The SIM counter uses 12 stages for counting, followed by a 13th stage that triggers a reset of SIM counters and supplies the clock for the COP module. The SIM counter is clocked by the falling edge of ICLK.

5.4.1 SIM Counter During Power-On Reset

The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized, it enables the oscillator to drive the bus clock state machine.

5.4.2 SIM Counter During Stop Mode Recovery

The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the mask option register. If the SSREC bit is a logic one, then the stop recovery is reduced from the normal delay of 4096 ICLK cycles down to 32 ICLK cycles. This is ideal for applications using canned oscillators that do not require long start-up times from stop mode. External crystal applications should use the full stop recovery time, that is, with SSREC cleared in the configuration register 1 (CONFIG1).

5.4.3 SIM Counter and Reset States

External reset has no effect on the SIM counter. (See 5.6.2 Stop Mode for details.) The SIM counter is free-running after all reset states. (See 5.3.2 Active Resets from Internal Sources for counter control and internal reset recovery sequences.)

5.5 Exception Control

Normal, sequential program execution can be changed in three different ways:

- Interrupts
 - Maskable hardware CPU interrupts
 - Non-maskable software interrupt instruction (SWI)
- Reset
- Break interrupts

5.5.1 Interrupts

An interrupt temporarily changes the sequence of program execution to respond to a particular event. Figure 5-8 flow charts the handling of system interrupts.

Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared).

Monitor ROM (MON)

		ORG	RAM
	:		
FILE_PI	R:		
BUS_SPI)	DS.B	1; Indicates 4x bus frequency
DATASIZ	ΣE	DS.B	1; Data size to be programmed
START_A	DDR	DS.W	1; FLASH starting address
DATAARF	RAY	DS.B	15; Reserved data array
EE_WRII	Έ	EQU	\$FD3F
FLASH_S	START	EQU	\$EF00
		ORG	FLASH
INITIAI	ISATION	1:	
	MOV	#20,	BUS_SPD
	MOV	#15 <i>,</i>	DATASIZE
	LDHX	#FLASH_S	TART
	STHX	START_AD	DR
	RTS		
MAIN:			
	BSR	INITIALI	SATION
	:		
	:		
	LHDX	#FILE_PT	'R
	JSR	EE_WRITE	
			NOTE

The EE_WRITE routine is unable to check for incorrect data blocks, such as the FLASH page boundary address and data size. It is the responsibility of the user to ensure the starting address indicated in the data block is at the FLASH page boundary and the data size is 2 to 15. If the FLASH page is already programmed with a data array with a different size, the EE_WRITE call will be ignored.

8.4.3.1 Unbuffered Output Compare

Any output compare channel can generate unbuffered output compare pulses as described in 8.4.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM channel registers.

An unsynchronized write to the TIM channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIM may pass the new value before it is written.

Use the following methods to synchronize unbuffered changes in the output compare value on channel x:

- When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value.
- When changing to a larger output compare value, enable TIM overflow interrupts and write the new
 value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the
 current counter overflow period. Writing a larger value in an output compare interrupt routine (at
 the end of the current pulse) could cause two output compares to occur in the same counter
 overflow period.

8.4.3.2 Buffered Output Compare

Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the output.

Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin.

NOTE

In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered output compares.

8.4.4 Pulse Width Modulation (PWM)

By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time between overflows is the period of the PWM signal.

As Figure 8-3 shows, the output compare value in the TIM channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM

NOTE

Before enabling a TIM channel register for input capture operation, make sure that the TCHx pin is stable for at least two bus clocks.

TOVx — Toggle On Overflow Bit

When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no effect.

Reset clears the TOVx bit.

1 = Channel x pin toggles on TIM counter overflow

0 = Channel x pin does not toggle on TIM counter overflow

NOTE

When TOVx is set, a TIM counter overflow takes precedence over a channel x output compare if both occur at the same time.

CHxMAX — Channel x Maximum Duty Cycle Bit

When the TOVx bit is at logic 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100%. As Figure 8-11 shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared.

Figure 8-11. CHxMAX Latency

8.9.5 TIM Channel Registers

These read/write registers contain the captured TIM counter value of the input capture function or the output compare value of the output compare function. The state of the TIM channel registers after reset is unknown.

In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is read.

In output compare mode (MSxB:MSxA \neq 0:0), writing to the high byte of the TIM channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is written.

- 1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI) in SCI control register 1 (SCC1).
- 2. Enable the transmitter by writing a logic 1 to the transmitter enable bit (TE) in SCI control register 2 (SCC2).
- 3. Clear the SCI transmitter empty bit by first reading SCI status register 1 (SCS1) and then writing to the SCDR.
- 4. Repeat step 3 for each subsequent transmission.

At the start of a transmission, transmitter control logic automatically loads the transmit shift register with a preamble of logic 1s. After the preamble shifts out, control logic transfers the SCDR data into the transmit shift register. A logic 0 start bit automatically goes into the least significant bit position of the transmit shift register. A logic 1 stop bit goes into the most significant bit position.

The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data bus. If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a transmitter CPU interrupt request.

When the transmit shift register is not transmitting a character, the TxD pin goes to the idle condition, logic 1. If at any time software clears the ENSCI bit in SCI control register 1 (SCC1), the transmitter and receiver relinquish control of the port pin.

9.4.2.3 Break Characters

Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break character. A break character contains all logic 0s and has no start, stop, or parity bit. Break character length depends on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic continuously loads break characters into the transmit shift register. After software clears the SBK bit, the shift register finishes transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the end of a break character guarantees the recognition of the start bit of the next character.

The SCI recognizes a break character when a start bit is followed by eight or nine logic 0 data bits and a logic 0 where the stop bit should be.

Receiving a break character has these effects on SCI registers:

- Sets the framing error bit (FE) in SCS1
- Sets the SCI receiver full bit (SCRF) in SCS1
- Clears the SCI data register (SCDR)
- Clears the R8 bit in SCC3
- Sets the break flag bit (BKF) in SCS2
- May set the overrun (OR), noise flag (NF), parity error (PE), or reception in progress flag (RPF) bits

9.4.2.4 Idle Characters

An idle character contains all logic 1s and has no start, stop, or parity bit. Idle character length depends on the M bit in SCC1. The preamble is a synchronizing idle character that begins every transmission.

If the TE bit is cleared during a transmission, the TxD pin becomes idle after completion of the transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle character to be sent after the character currently being transmitted.

Serial Communications Interface (SCI)

9.4.3.3 Data Sampling

The receiver samples the RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency 16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at the following times (see Figure 9-6):

- After every start bit
- After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit samples at RT8, RT9, and RT10 returns a valid logic 1 and the majority of the next RT8, RT9, and RT10 samples returns a valid logic 0)

To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.

Figure 9-6. Receiver Data Sampling

To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7. Table 9-2 summarizes the results of the start bit verification samples.

RT3, RT5, and RT7 Samples	Start Bit Verification	Noise Flag		
000	Yes	0		
001	Yes	1		
010	Yes	1		
011	No	0		
100	Yes	1		
101	No	0		
110	No	0		
111	No	0		

Table 9-2	2. Start	Bit V	erification
-----------	----------	-------	-------------

Start bit verification is not successful if any two of the three verification samples are logic 1s. If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins.

TE — Transmitter Enable Bit

Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 logic 1s from the transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes any transmission in progress before the TxD returns to the idle condition (logic 1). Clearing and then setting TE during a transmission queues an idle character to be sent after the character currently being transmitted. Reset clears the TE bit.

1 = Transmitter enabled

0 = Transmitter disabled

NOTE

Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1.

RE — Receiver Enable Bit

Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not affect receiver interrupt flag bits. Reset clears the RE bit.

1 = Receiver enabled

0 = Receiver disabled

NOTE

Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1.

RWU — Receiver Wakeup Bit

This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled. The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out of the standby state and clears the RWU bit. Reset clears the RWU bit.

1 = Standby state

0 = Normal operation

SBK — Send Break Bit

Setting and then clearing this read/write bit transmits a break character followed by a logic 1. The logic 1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter continuously transmits break characters with no logic 1s between them. Reset clears the SBK bit.

1 = Transmit break characters

0 = No break characters being transmitted

NOTE

Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling SBK before the preamble begins causes the SCI to send a break character instead of a preamble.

NP,

Break Module (BREAK)

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$FE00	Break Status Register (BSR)	Read: Write:	R	R	R	R	R	R	SBSW See note	R
		Reset:							0	
\$FE03	Break Flag Control Register	Read: Write:	BCFE	R	R	R	R	R	R	R
	(BFCR)	Reset:	0							
\$FE0C	Break Address High Register	Read: Write:	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
	(BRKH)	Reset:	0	0	0	0	0	0	0	0
\$FE0D	Break Address low Register	Read: Write:	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	(BRKL)	Reset:	0	0	0	0	0	0	0	0
	Break Status and Control	Read:	BDKE		0	0	0	0	0	0
\$FE0E	Register	Write:	DHKE	DULVA						
	(BRKSCR)	Reset:	0	0	0	0	0	0	0	0
Note: Writing a logic 0 clears SBSW.				= Unimp	lemented	R	= Res	served		

Figure 16-2. Break I/O Register Summary

16.3.1 Flag Protection During Break Interrupts

The system integration module (SIM) controls whether or not module status bits can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. (See 5.7.3 Break Flag Control Register (BFCR) and see the Break Interrupts subsection for each module.)

16.3.2 CPU During Break Interrupts

The CPU starts a break interrupt by:

- Loading the instruction register with the SWI instruction
- Loading the program counter with \$FFFC:\$FFFD (\$FEFC:\$FEFD in monitor mode)

The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.

16.3.3 TIM During Break Interrupts

A break interrupt stops the timer counter.

16.3.4 COP During Break Interrupts

The COP is disabled during a break interrupt when V_{TST} is present on the \overline{RST} pin.

Break Module (BREAK)

Figure 16-5. Break Address Register Low (BRKL)

16.4.3 Break Status Register

The break status register contains a flag to indicate that a break caused an exit from stop or wait mode.

SBSW — SIM Break Stop/Wait

This status bit is useful in applications requiring a return to wait or stop mode after exiting from a break interrupt. Clear SBSW by writing a logic zero to it. Reset clears SBSW.

1 = Stop mode or wait mode was exited by break interrupt

0 = Stop mode or wait mode was not exited by break interrupt

SBSW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it. The following code is an example of this.

```
; This code works if the H register has been pushed onto the stack in the break
; service routine software. This code should be executed at the end of the
; break service routine software.
 HIBYTE
          EQU
                  5
                  6
 LOBYTE
          EQU
;
          If not SBSW, do RTI
                                    ; See if wait mode or stop mode was exited
          BRCLR
                 SBSW,BSR, RETURN
                                     ; by break.
          TST
                  LOBYTE, SP
                                     ; If RETURNLO is not zero,
                  DOLO
                                     ; then just decrement low byte.
          BNE
          DEC
                 HIBYTE, SP
                                     ; Else deal with high byte, too.
 DOLO
                  LOBYTE, SP
                                     ; Point to WAIT/STOP opcode.
          DEC
          PULH
                                     ; Restore H register.
 RETURN
          RTI
```


Electrical Specifications

17.3 Functional Operating Range

Characteristic	Symbol	Va	Unit	
Operating temperature range	T _A	-40 to +125	-40 to +85	°C
Operating voltage range	V _{DD}	 5 ±10%	3±10% 5±10%	V

Table 17-2. Operating Range

17.4 Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance			
20-pin PDIP		70	
20-pin SOIC		70	
28-pin PDIP	θ_{JA}	70	°C/W
28-pin SOIC		70	
32-pin SDIP		70	
32-pin LQFP		95	
I/O pin power dissipation	P _{I/O}	User determined	W
Power dissipation ⁽¹⁾	P _D	$\begin{split} P_D &= (I_DD \times V_DD) + P_I/O = \\ K/(T_J + 273 \ ^\circC) \end{split}$	W
Constant ⁽²⁾	к	$P_{D} x (T_{A} + 273 \text{ °C}) + P_{D}^{2} \times \theta_{JA}$	W/∘C
Average junction temperature	Т _Ј	$T_A + (P_D \times \theta_{JA})$	°C

Table 17-3. Thermal Characteristics

1. Power dissipation is a function of temperature.

2. K constant unique to the device. K can be determined for a known T_A and measured P_D . With this value of K, P_D and T_J can be determined for any value of T_A .

17.12 Timer Interface Module Characteristics

Characteristic	Symbol	Min	Max	Unit
Input capture pulse width	t _{⊤IH,} t _{⊤IL}	1/f _{OP}	_	
Input clock pulse width (T2CLK pulse width)	t _{LMIN,} t _{HMIN}	(1/f _{OP}) + 5ns	_	

17.13 ADC Characteristics

Characteristic	Symbol	Min	Мах	Unit	Comments
Supply voltage	V _{DDAD}	2.7 (V _{DD} min)	5.5 (V _{DD} max)	V	
Input voltages	V _{ADIN}	V _{SS}	V _{DD}	V	
Resolution	B _{AD}	8	8	Bits	
Absolute accuracy	A _{AD}	± 0.5	± 1.5	LSB	Includes quantization
ADC internal clock	f _{ADIC}	0.5	1.048	MHz	t _{AIC} = 1/f _{ADIC} , tested only at 1 MHz
Conversion range	R _{AD}	V _{SS}	V _{DD}	V	
Power-up time	t _{ADPU}	16		t _{AIC} cycles	
Conversion time	t _{ADC}	14	15	t _{AIC} cycles	
Sample time ⁽¹⁾	t _{ADS}	5		t _{AIC} cycles	
Zero input reading ⁽²⁾	Z _{ADI}	00	01	Hex	$V_{IN} = V_{SS}$
Full-scale reading ⁽³⁾	F _{ADI}	FE	FF	Hex	$V_{IN} = V_{DD}$
Input capacitance	C _{ADI}	—	(20) 8	pF	Not tested
Input leakage ⁽³⁾ Port B/port D	_	_	± 1	μΑ	

Table 17-11. ADC Characteristics (5V and 3V)

1. Source impedances greater than 10 kΩ adversely affect internal RC charging time during input sampling.

 Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions.
 The external system error caused by input leakage current is approximately equal to the product of R source and input current.

Appendix A MC68HC08JL8

A.1 Introduction

This section introduces the MC68HC08JL8, the ROM part equivalent to the MC68HC908JL8/JK8. The entire data book applies to this ROM device, with exceptions outlined in this appendix.

	MC68HC08JL8	MC68HC908JL8
Memory (\$DC00-\$FBFF)	8,192 bytes ROM	8,192 bytes FLASH
User vectors (\$FFDC-\$FFFF)	36 bytes ROM	36 bytes FLASH
Registers at \$FE08 and \$FFCF	Not used; locations are reserved.	FLASH related registers. \$FE08 — FLCR \$FFCF — FLBPR
Mask option register (\$FFD0)	Defined by mask; read only.	Read/write FLASH register.
Monitor ROM (\$FC00–\$FDFF and \$FE10–\$FFCE)	<pre>\$FC00-\$FDFF: Not used. \$FE10-\$FFCE: Used for testing purposes only.</pre>	Used for testing and FLASH programming/erasing.
Available Packages	20-pin PDIP (MC68HC08JK8) 20-pin SOIC (MC68HC08JK8) 28-pin PDIP 28-pin SOIC 32-pin SDIP 32-pin LQFP	20-pin PDIP (MC68HC908JK8) 20-pin SOIC (MC68HC908JK8) 28-pin PDIP 28-pin SOIC 32-pin SDIP 32-pin LQFP

Table A-1. Summary of MC68HC08JL8 and MC68HC908JL8 Differences

A.2 MCU Block Diagram

Figure A-1 shows the block diagram of the MC68HC08JL8.

A.3 Memory Map

The MC68HC08JL8 has 8,192 bytes of user ROM from \$DC00 to \$FBFF, and 36 bytes of user ROM vectors from \$FFDC to \$FFFF. On the MC68HC908JL8, these memory locations are FLASH memory.

Figure A-2 shows the memory map of the MC68HC08JL8.