

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI
Peripherals	LED, LVD, POR, PWM
Number of I/O	15
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 13x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	28-PDIP
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc908jl8mpe

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MC68HC908JL8 MC68HC908JK8 MC68HC908KL8 MC68HC08JL8 MC68HC08JK8

Data Sheet

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://www.freescale.com

The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. This product incorporates SuperFlash® technology licensed from SST.

© Freescale Semiconductor, Inc., 2005. All rights reserved.

Chapter 1 General Description

1.1 Introduction

The MC68HC908JL8 is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types.

Generic Part	Description	Pin Count
MC68HC908JL8	FLASH part	28 or 32
MC68HC908JK8	FLASH part	20
MC68HC08JL8	ROM part for MC68HC908JL8	28 or 32
MC68HC08JK8	ROM part for MC68HC908JK8	20
MC68HC908KL8	ADC-less MC68HC908JL8	28 or 32

Table	1-1.	Summary	v of	Devices
10010		Gaillia		000000

1.2 Features

Features of the MC68HC908JL8 include the following:

- High-performance M68HC08 architecture
- Fully upward-compatible object code with M6805, M146805, and M68HC05 Families
- · Low-power design; fully static with stop and wait modes
- Maximum internal bus frequency:
 - 8-MHz at 5V operating voltage
 - 4-MHz at 3V operating voltage
- Oscillator options:
 - Crystal or resonator
 - RC oscillator
- 8,192 bytes user program FLASH memory with security⁽¹⁾ feature
- 256 bytes of on-chip RAM
- Two 16-bit, 2-channel timer interface modules (TIM1 and TIM2) with selectable input capture, output compare, and PWM capability on each channel; external clock input option on TIM2
- 13-channel, 8-bit analog-to-digital converter (ADC)
- Serial communications interface module (SCI)
 - 26 general-purpose input/output (I/O) ports:
 - 8 keyboard interrupt with internal pull-up

^{1.} No security feature is absolutely secure. However, Motorola's strategy is to make reading or copying the FLASH difficult for unauthorized users.

Memory

\$0000 ↓	I/O REGISTERS 64 BYTES
\$003F	
\$0040 ↓	RESERVED
\$005F	32 BYTES
\$0060	BAM
↓ \$015F	256 BYTES
\$0160	
↓	55.968 BYTES
\$DBFF	
\$DC00 ↓	FLASH MEMORY
\$FBFF	8,192 BYTES
\$FC00	MONITOR ROM
↓ \$FDFF	512 BYTES
\$FE00	BREAK STATUS REGISTER (BSR)
\$FE01	RESET STATUS REGISTER (RSR)
\$FE02	RESERVED
\$FE03	BREAK FLAG CONTROL REGISTER (BFCR)
\$FE04	INTERRUPT STATUS REGISTER 1 (INT1)
\$FE05	INTERRUPT STATUS REGISTER 2 (INT2)
\$FE06	INTERRUPT STATUS REGISTER 3 (INT3)
\$FE07	RESERVED
\$FE08	FLASH CONTROL REGISTER (FLCR)
\$FE09 ↓	RESERVED
\$FF0B	
\$FE0C	BREAK ADDRESS HIGH REGISTER (BRKH)
\$FE0D	BREAK ADDRESS LOW REGISTER (BRKL)
\$FE0E	BREAK STATUS AND CONTROL REGISTER (BRKSCR)
\$FE0F	RESERVED
\$FE10	MONITOR ROM
↓ \$FFCE	447 BYTES
\$FFCF	FLASH BLOCK PROTECT REGISTER (FLBPR)
\$FFD0	MASK OPTION REGISTER (MOR)
\$FFD1	BESERVED
↓ \$EEDB	11 BYTES
↓ ↓	USER FLASH VECTORS
\$FFFF	30 01123

Figure 2-1. Memory Map

Table 2-1.	Vector	Addresses
------------	--------	-----------

Vector Priority	INT Flag	Address	Vector
Lowest		\$FFD0	Net Lood
▲		↓ \$FFDD	Not Used
		\$FFDE	ADC Conversion Complete Vector (High)
	1110	\$FFDF	ADC Conversion Complete Vector (Low)
		\$FFE0	Keyboard Interrupt Vector (High)
	1614	\$FFE1	Keyboard Interrupt Vector (Low)
	1512	\$FFE2	SCI Transmit Vector (High)
	1113	\$FFE3	SCI Transmit Vector (Low)
	IE10	\$FFE4	SCI Receive Vector (High)
	11 12	\$FFE5	SCI Receive Vector (Low)
	IE11	\$FFE6	SCI Error Vector (High)
		\$FFE7	SCI Error Vector (Low)
	IF10 ↓ IF9	_	Not Used
	IEO	\$FFEC	TIM2 Overflow Vector (High)
	11 0	\$FFED	TIM2 Overflow Vector (Low)
	IE7	\$FFEE	TIM2 Channel 1 Vector (High)
	IF7	\$FFEF	TIM2 Channel 1 Vector (Low)
	IE6	\$FFF0	TIM2 Channel 0 Vector (High)
	11 0	\$FFF1	TIM2 Channel 0 Vector (Low)
	IES	\$FFF2	TIM1 Overflow Vector (High)
	11 3	\$FFF3	TIM1 Overflow Vector (Low)
	IE4	\$FFF4	TIM1 Channel 1 Vector (High)
		\$FFF5	TIM1 Channel 1 Vector (Low)
	IE3	\$FFF6	TIM1 Channel 0 Vector (High)
	11 0	\$FFF7	TIM1 Channel 0 Vector (Low)
	IF2	—	Not Used
	IF1	\$FFFA	IRQ Vector (High)
	11 1	\$FFFB	IRQ Vector (Low)
		\$FFFC	SWI Vector (High)
		\$FFFD	SWI Vector (Low)
		\$FFFE	Reset Vector (High)
₩ Highest	_	\$FFFF	Reset Vector (Low)

Chapter 4 Central Processor Unit (CPU)

4.1 Introduction

The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The *CPU08 Reference Manual* (Freescale document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture.

4.2 Features

- Object code fully upward-compatible with M68HC05 Family
- 16-bit stack pointer with stack manipulation instructions
- 16-Bit Index Register with X-Register Manipulation Instructions
- 8-MHz CPU Internal Bus Frequency
- 64-Kbyte Program/Data Memory Space
- 16 Addressing Modes
- Memory-to-Memory Data Moves without Using Accumulator
- Fast 8-Bit by 8-Bit Multiply and 16-Bit by 8-Bit Divide Instructions
- Enhanced Binary-Coded Decimal (BCD) Data Handling
- Modular Architecture with Expandable Internal Bus Definition for Extension of Addressing Range beyond 64 Kbytes
- Low-Power Stop and Wait Modes

Table 4-1. Instruction Set Summary

Source	Operation	Description	Effect on CCR						dress ode	code	erand	rcles	
гопп			V H I N Z		VHINZC		INZC		С	βq M	ор	ď	С С
AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP	Logical AND	A ← (A) & (M)	0	_	_	\$	\$	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A4 B4 C4 D4 E4 F4 9EE4 9ED4	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5	
ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP	Arithmetic Shift Left (Same as LSL)	C - 0 b7 b0	¢	_	_	\$	\$	\$	DIR INH INH IX1 IX SP1	38 48 58 68 78 9E68	dd ff ff	4 1 4 3 5	
ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP	Arithmetic Shift Right		÷	_	_	\$	\$	\$	DIR INH INH IX1 IX SP1	37 47 57 67 77 9E67	dd ff ff	4 1 4 3 5	
BCC rel	Branch if Carry Bit Clear	$PC \leftarrow (PC) + 2 + rel ? (C) = 0$	-	I	-	-		Ι	REL	24	rr	3	
BCLR n, opr	Clear Bit n in M	Mn ← 0	_	_	_	_	_	_	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	11 13 15 17 19 1B 1D 1F	dd dd dd dd dd dd dd dd dd	4 4 4 4 4 4 4	
BCS rel	Branch if Carry Bit Set (Same as BLO)	PC ← (PC) + 2 + <i>rel</i> ? (C) = 1		-	-	-	-	-	REL	25	rr	3	
BEQ rel	Branch if Equal	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (Z) = 1$	1	-	-	-	-	Ι	REL	27	rr	3	
BGE opr	Branch if Greater Than or Equal To (Signed Operands)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (N \oplus V) = 0$	-	-	-	1	-	-	REL	90	rr	3	
BGT <i>opr</i>	Branch if Greater Than (Signed Operands)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (Z) \mid (N \oplus V) = 0$	-	-	-	-	I	-	REL	92	rr	3	
BHCC rel	Branch if Half Carry Bit Clear	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (H) = 0$	-	_	-	-	-	-	REL	28	rr	3	
BHCS rel	Branch if Half Carry Bit Set	PC ← (PC) + 2 + <i>rel</i> ? (H) = 1	1	-	-	-	-	Ι	REL	29	rr	3	
BHI <i>rel</i>	Branch if Higher	$PC \leftarrow (PC) + 2 + rel? (C) \mid (Z) = 0$	_	_	_	_	_	_	REL	22	rr	3	
BHS rel	Branch if Higher or Same (Same as BCC)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (C) = 0$	-	_	_	_	_	_	REL	24	rr	3	
BIH <i>rel</i>	Branch if IRQ Pin High	$PC \leftarrow (PC) + 2 + \mathit{rel} ? \overline{IRQ} = 1$	-	_	_	-	-	-	REL	2F	rr	3	
BIL rel	Branch if IRQ Pin Low	$PC \leftarrow (PC) + 2 + \mathit{rel} ? \overline{IRQ} = 0$	_	_	_	-	_	_	REL	2E	rr	3	

Table 4-1. Instruction Set Summary

Source	Operation	Description	Effec CC				on		dress ode	code	erand	ycles
гопп			v	н	I	Ν	z	С	Ρq W	do	ď	S
BSR rel	Branch to Subroutine	$\begin{array}{l} PC \leftarrow (PC) + 2; push (PCL) \\ SP \leftarrow (SP) - 1; push (PCH) \\ SP \leftarrow (SP) - 1 \\ PC \leftarrow (PC) + \mathit{rel} \end{array}$	-	_	-	_	-	_	REL	AD	rr	4
CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel CBEQ opr,X+,rel CBEQ X+,rel CBEQ opr,SP,rel	Compare and Branch if Equal	$\begin{array}{l} PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (X) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 2 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 4 + rel ? (A) - (M) = \$00 \end{array}$	_	_	_	_	_	_	DIR IMM IMM IX1+ IX+ SP1	31 41 51 61 71 9E61	dd rr ii rr ii rr ff rr rr ff rr	5 4 4 5 4 6
CLC	Clear Carry Bit	$C \leftarrow 0$	-	-	-	-	-	0	INH	98		1
CLI	Clear Interrupt Mask	l ← 0	-	-	0	-	-	-	INH	9A		2
CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP	Clear	$\begin{array}{c} M \leftarrow \$00\\ A \leftarrow \$00\\ X \leftarrow \$00\\ H \leftarrow \$00\\ M \leftarrow \$00\\ M \leftarrow \$00\\ M \leftarrow \$00\\ M \leftarrow \$00\\ \end{array}$	0	_	_	0	1	_	DIR INH INH IX1 IX SP1	3F 4F 5F 8C 6F 7F 9E6F	dd ff ff	3 1 1 3 2 4
CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP	Compare A with M	(A) – (M)	¢	_	_	\$	\$	\$	IMM DIR EXT IX2 IX1 IX SP1 SP2	A1 B1 C1 E1 F1 9EE1 9ED1	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
COM opr COMA COMX COM opr,X COM ,X COM opr,SP	Complement (One's Complement)	$\begin{array}{l} M \leftarrow (\overline{M}) = \$FF - (M) \\ A \leftarrow (\overline{A}) = \$FF - (M) \\ X \leftarrow (\overline{X}) = \$FF - (M) \\ M \leftarrow (\overline{M}) = \$FF - (M) \end{array}$	0	_	_	\$	\$	1	DIR INH INH IX1 IX SP1	33 43 53 63 73 9E63	dd ff ff	4 1 4 3 5
CPHX # <i>opr</i> CPHX <i>opr</i>	Compare H:X with M	(H:X) – (M:M + 1)	\$	-	_	\$	\$	\$	IMM DIR	65 75	ii ii+1 dd	3 4
CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP	Compare X with M	(X) – (M)	\$	_	_	\$	\$	\$	IMM DIR EXT IX2 IX1 IX SP1 SP2	A3 B3 C3 D3 E3 F3 9EE3 9ED3	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
DAA	Decimal Adjust A	(A) ₁₀	υ	-	–	\$	\$	\$	INH	72		2

Central Processor Unit (CPU)

Source	Operation	Description	on Effec			ct (CR	dress ode			code	erand	rcles
Form			v	н	I	Ν	z	С	Ado	do	ope	с С
DBNZ opr,rel DBNZA rel DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel	Decrement and Branch if Not Zero	$\begin{array}{l} A \leftarrow (A) - 1 \text{ or } M \leftarrow (M) - 1 \text{ or } X \leftarrow (X) - 1 \\ PC \leftarrow (PC) + 3 + rel ? (result) \neq 0 \\ PC \leftarrow (PC) + 2 + rel ? (result) \neq 0 \\ PC \leftarrow (PC) + 2 + rel ? (result) \neq 0 \\ PC \leftarrow (PC) + 3 + rel ? (result) \neq 0 \\ PC \leftarrow (PC) + 2 + rel ? (result) \neq 0 \\ PC \leftarrow (PC) + 2 + rel ? (result) \neq 0 \\ PC \leftarrow (PC) + 4 + rel ? (result) \neq 0 \end{array}$	_	_	_	_	_	_	DIR INH INH IX1 IX SP1	3B 4B 5B 6B 7B 9E6B	dd rr rr rr ff rr rr ff rr	5 3 3 5 4 6
DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP	Decrement	$\begin{array}{c} M \leftarrow (M) - 1 \\ A \leftarrow (A) - 1 \\ X \leftarrow (X) - 1 \\ M \leftarrow (M) - 1 \end{array}$	\$	_	_	\$	\$	_	DIR INH INH IX1 IX SP1	3A 4A 5A 6A 7A 9E6A	dd ff ff	4 1 4 3 5
DIV	Divide	A ← (H:A)/(X) H ← Remainder	-	-	-	-	\$	\$	INH	52		7
EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP	Exclusive OR M with A	A ← (A ⊕ M)	0	_	_	\$	\$	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A8 B8 C8 D8 E8 F8 9EE8 9ED8	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
INC opr INCA INCX INC opr,X INC ,X INC opr,SP	Increment	$\begin{array}{c} M \leftarrow (M) + 1 \\ A \leftarrow (A) + 1 \\ X \leftarrow (X) + 1 \\ M \leftarrow (M) + 1 \\ M \leftarrow (M) + 1 \\ M \leftarrow (M) + 1 \end{array}$	\$	_	_	\$	\$	_	DIR INH INH IX1 IX SP1	3C 4C 5C 6C 7C 9E6C	dd ff ff	4 1 4 3 5
JMP opr JMP opr JMP opr,X JMP opr,X JMP ,X	Jump	$PC \leftarrow Jump \; Address$	_	_	_	_	_	_	DIR EXT IX2 IX1 IX	BC CC DC EC FC	dd hh II ee ff ff	2 3 4 3 2
JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X	Jump to Subroutine	PC ← (PC) + n (n = 1, 2, or 3) Push (PCL); SP ← (SP) - 1 Push (PCH); SP ← (SP) - 1 PC ← Unconditional Address	_	_	_	-	_	_	DIR EXT IX2 IX1 IX	BD CD DD ED FD	dd hh II ee ff ff	4 5 6 5 4
LDA #opr LDA opr LDA opr LDA opr,X LDA opr,X LDA ,X LDA opr,SP LDA opr,SP	Load A from M	A ← (M)	0	_	_	\$	\$	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A6 B6 C6 E6 F6 9EE6 9ED6	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
LDHX # <i>opr</i> LDHX <i>opr</i>	Load H:X from M	H:X ← (M:M + 1)	0	_	_	\$	\$	-	imm Dir	45 55	ii jj dd	3 4

Table 4-1. Instruction Set Summary

Central Processor Unit (CPU)

System Integration Module (SIM)

5.3.2.2 Computer Operating Properly (COP) Reset

An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an internal reset and sets the COP bit in the reset status register (RSR). The SIM actively pulls down the RST pin for all internal reset sources.

To prevent a COP module time-out, write any value to location \$FFFF. Writing to location \$FFFF clears the COP counter and stages 12 through 5 of the SIM counter. The SIM counter output, which occurs at least every $(2^{12} - 2^4)$ ICLK cycles, drives the COP counter. The COP should be serviced as soon as possible out of reset to guarantee the maximum amount of time before the first time-out.

The COP module is disabled if the $\overline{\text{RST}}$ pin or the $\overline{\text{IRQ}}$ pin is held at V_{TST} while the MCU is in monitor mode. The COP module can be disabled only through combinational logic conditioned with the high voltage signal on the $\overline{\text{RST}}$ or the $\overline{\text{IRQ}}$ pin. This prevents the COP from becoming disabled as a result of external noise. During a break state, V_{TST} on the $\overline{\text{RST}}$ pin disables the COP module.

5.3.2.3 Illegal Opcode Reset

The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the reset status register (RSR) and causes a reset.

If the stop enable bit, STOP, in the mask option register is logic zero, the SIM treats the STOP instruction as an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the $\overline{\text{RST}}$ pin for all internal reset sources.

5.3.2.4 Illegal Address Reset

An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the reset status register (RSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively pulls down the RST pin for all internal reset sources.

5.3.2.5 Low-Voltage Inhibit (LVI) Reset

The low-voltage inhibit module (LVI) asserts its output to the SIM when the V_{DD} voltage falls to the LVI trip voltage V_{TRIP}. The LVI bit in the reset status register (RSR) is set, and the external reset pin ($\overline{\text{RST}}$) is

System Integration Module (SIM)

Figure 5-11. Interrupt Recognition Example

The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation.

NOTE

To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, software should save the H register and then restore it prior to exiting the routine.

5.5.1.2 SWI Instruction

The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the interrupt mask (I bit) in the condition code register.

NOTE

A software interrupt pushes PC onto the stack. A software interrupt does not push PC – 1, as a hardware interrupt does.

5.5.2 Interrupt Status Registers

The flags in the interrupt status registers identify maskable interrupt sources. Table 5-3 summarizes the interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be useful for debugging.

Timer Interface Module (TIM)

to clear the channel pin on output compare if the state of the PWM pulse is logic 1. Program the TIM to set the pin if the state of the PWM pulse is logic 0.

The value in the TIM counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing \$00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is \$000. See 8.9.1 TIM Status and Control Register.

Figure 8-3. PWM Period and Pulse Width

The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing \$0080 (128) to the TIM channel registers produces a duty cycle of 128/256 or 50%.

8.4.4.1 Unbuffered PWM Signal Generation

Any output compare channel can generate unbuffered PWM pulses as described in 8.4.4 Pulse Width Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the old value currently in the TIM channel registers.

An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The TIM may pass the new value before it is written.

Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:

- When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value.
- When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period.

Timer Interface Module (TIM)

cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. Toggling on output compare can also cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value.

5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP.

Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM status control register 0 (TSCR0) controls and monitors the PWM signal from the linked channels.

Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle output.

Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty cycle output. (See 8.9.4 TIM Channel Status and Control Registers.)

8.5 Interrupts

The following TIM sources can generate interrupt requests:

- TIM overflow flag (TOF) The TOF bit is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE, enables TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control register.
- TIM channel flags (CH1F:CH0F) The CHxF bit is set when an input capture or output compare occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE = 1. CHxF and CHxIE are in the TIM channel x status and control register.

8.6 Low-Power Modes

The WAIT and STOP instructions put the MCU in low power- consumption standby modes.

8.6.1 Wait Mode

The TIM remains active after the execution of a WAIT instruction. In wait mode, the TIM registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode.

If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction.

8.6.2 Stop Mode

The TIM is inactive after the execution of a STOP instruction. The STOP instruction does not affect register conditions or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode after an external interrupt.

Functional Description

Input/Output (I/O) Ports

11.3 Port B

Port B is an 8-bit special function port that shares all of its port pins with the analog-to-digital converter (ADC) module, see Chapter 10

11.3.1 Port B Data Register (PTB)

The port B data register contains a data latch for each of the eight port B pins.

Address:	\$0001							
	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	PTB7	PTB6	PTB5	PTB4	PTB3	PTB2	PTB1	PTB0
Reset:				Unaffecte	d by reset			
Alternative Functions:	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC2	ADC0
					/==			

Figure 11-7. Port B Data Register (PTB)

PTB[7:0] — Port B Data Bits

These read/write bits are software programmable. Data direction of each port B pin is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data.

ADC7-ADC0 — ADC channels 7 to 0

ADC7–ADC0 are pins used for the input channels to the analog-to-digital converter module. The channel select bits, ADCH[4:0], in the ADC status and control register define which port pin will be used as an ADC input and overrides any control from the port I/O logic. See Chapter 10 Analog-to-Digital Converter (ADC).

11.3.2 Data Direction Register B (DDRB)

Data direction register B determines whether each port B pin is an input or an output. Writing a logic 1 to a DDRB bit enables the output buffer for the corresponding port B pin; a logic 0 disables the output buffer.

Figure 11-8. Data Direction Register B (DDRB)

DDRB[7:0] — Data Direction Register B Bits

These read/write bits control port B data direction. Reset clears DDRB[7:0], configuring all port B pins as inputs.

1 = Corresponding port B pin configured as output

0 = Corresponding port B pin configured as input

NOTE

Avoid glitches on port B pins by writing to the port B data register before changing data direction register B bits from 0 to 1. Figure 11-9 shows the port B I/O logic.

Input/Output (I/O) Ports

When DDREx is a logic 1, reading address \$0008 reads the PTEx data latch. When DDREx is a logic 0, reading address \$0008 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 11-5 summarizes the operation of the port E pins.

		I/O Pin Mode	Accesses to DDRE	Access	es to PTE
	FIEDI	VO FIII MODE	Read/Write	Read	Write
0	X ⁽¹⁾	Input, Hi-Z ⁽²⁾	DDRE[1:0]	Pin	PTE[1:0] ⁽³⁾
1	Х	Output	DDRE[1:0]	PTE[1:0]	PTE[1:0]

Table 11-5. Port E Pin Functions

1. X = don't care.

2. Hi-Z = high impedance.

3. Writing affects data register, but does not affect the input.

Chapter 17 Electrical Specifications

17.1 Introduction

This section contains electrical and timing specifications.

17.2 Absolute Maximum Ratings

Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it.

NOTE

This device is not guaranteed to operate properly at the maximum ratings. Refer to Sections 17.5 and 17.8 for guaranteed operating conditions.

Characteristic ⁽¹⁾	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +6.0	V
Input voltage	V _{IN}	V_{SS} =0.3 to V_{DD} +0.3	V
Mode entry voltage, IRQ pin	V _{TST}	V _{SS} -0.3 to +8.5	V
Maximum current per pin excluding $\rm V_{DD}$ and $\rm V_{SS}$	I	±25	mA
Storage temperature	T _{STG}	-55 to +150	°C
Maximum current out of V _{SS}	I _{MVSS}	100	mA
Maximum current into V _{DD}	I _{MVDD}	100	mA

Table 17-1. Absolute Maximum Ratings

1. Voltages referenced to V_{SS}.

NOTE

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that V_{IN} and V_{OUT} be constrained to the range $V_{SS} \leq (V_{IN} \text{ or } V_{OUT}) \leq V_{DD}$. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either V_{SS} or V_{DD} .)

Electrical Specifications

Table 17-7	. DC Elec	trical Cha	racteristics	(3V)
------------	-----------	------------	--------------	------

Characteristic ⁽¹⁾	Symbol	Min	Typ ⁽²⁾	Max	Unit
Capacitance Ports (as input or output)	C _{OUT} C _{IN}		_	12 8	pF
POR rearm voltage ⁽⁶⁾	V _{POR}	0	—	100	mV
POR rise time ramp rate ⁽⁷⁾	R _{POR}	0.035	—	—	V/ms
Monitor mode entry voltage	V _{TST}	$1.5 \times V_{DD}$	—	8.5	V
Pullup resistors ⁽⁸⁾ PTD6, PTD7 RST, IRQ, PTA0–PTA7	R _{PU1} R _{PU2}	1.8 16	3.3 26	4.8 36	kΩ kΩ
Low-voltage inhibit, trip voltage (No hysteresis implemented for 3V LVI)	V _{LVI3}	2.18	2.49	2.68	V

1. V_{DD} = 2.7 to 3.3 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H , unless otherwise noted.

2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.

3. Run (operating) I_{DD} measured using external square wave clock source ($f_{OP} = 4$ MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. $C_L = 20$ pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run I_{DD} . Measured with all modules enabled.

4. Wait \bar{I}_{DD} measured using external square wave clock source ($f_{OP} = 4MHz$). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. C_L = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait I_{DD}.

5. Stop I_{DD} measured with OSC1 grounded; no port pins sourcing current. LVI is disabled.

6. Maximum is highest voltage that POR is guaranteed.

7. If minimum V_{DD} is not reached before the internal POR reset is released, \overline{RST} must be driven low externally until minimum V_{DD} is reached.

8. R_{PU1} and R_{PU2} are measured at $V_{DD} = 5.0$ V.

17.9 3V Control Timing

Table	17-8.	Control	Timing	(3V)
-------	-------	---------	--------	------

Characteristic ⁽¹⁾	Symbol	Min	Max	Unit
Internal operating frequency	f _{OP}	_	4	MHz
RST input pulse width low ⁽²⁾	t _{RL}	1.5	—	μS
TIM2 external clock input	f _{T2CLK}	_	2	MHz
IRQ interrupt pulse width low (edge-triggered) ⁽³⁾	t _{ILIH}	200	—	ns
IRQ interrupt pulse period ⁽³⁾	t _{ILIL}	Note ⁽⁴⁾	—	t _{CYC}

1. V_{DD} = 2.7 to 3.3 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H; timing shown with respect to 20% V_{DD} and 70% V_{DD}, unless otherwise noted.

2. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.

3. Values are based on characterization results, not tested in production.

4. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 t_{CYC}.

B.4 Reserved Registers

The following registers are reserved location on the MC68HC908KL8.

Addr.	Register Name	_	Bit 7	6	5	4	3	2	1	Bit 0
\$003C	Reserved	Read: Write:	R	R	R	R	R	R	R	R
		Reset:								
\$003D	Reserved	Read: Write:	R	R	R	R	R	R	R	R
		Reset:								
\$003E	Reserved	Read: Write:	R	R	R	R	R	R	R	R
		Reset:								

Figure B-4. Reserved Registers

B.5 Reserved Vectors

The following are reserved interrupt vectors on the MC68HC908KL8.

Table B-2. Reserved Vectors

Vector Priority	INT Flag	Address	Vector
_	IF15	\$FFDE	Reserved
		\$FFDF	Reserved

B.6 MC68HC908KL8 Order Numbers

Table B-3. MC68HC908KL8 Order Numbers

MC Order Number	Operating Temperature Range	Package
MC68HC908KL8CP	−40 °C to +85 °C	28-pin PDIP
MC68HC908KL8CDW	−40 °C to +85 °C	28-pin SOIC
MC68HC908KL8CSP	−40 °C to +85 °C	32-pin SDIP