

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	19
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f318c8t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		6.3.10	EMC characteristics
		6.3.11	Electrical sensitivity characteristics
		6.3.12	I/O current injection characteristics
		6.3.13	I/O port characteristics
		6.3.14	NRST pin characteristics
		6.3.15	NPOR pin characteristics
		6.3.16	Timer characteristics
		6.3.17	Communications interfaces
		6.3.18	ADC characteristics
		6.3.19	DAC electrical specifications
		6.3.20	Comparator characteristics
		6.3.21	Operational amplifier characteristics
		6.3.22	Temperature sensor characteristics
		6.3.23	V _{BAT} monitoring characteristics
7	Packa	age info	rmation
	7.1	WLCSP	49 package information 109
	7.2	LQFP48	B package information
	7.3	UFQFP	N32 package information116
	7.4	Therma	I characteristics
		7.4.1	Reference document 119
		7.4.2	Selecting the product temperature range
8	Part r	numberi	ng 122
9	Revis	ion hist	ory

3.8 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable except for analog inputs.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

Fast I/O handling allows I/O toggling up to 36 MHz.

3.9 Direct memory access (DMA)

The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-tomemory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each of the 7 DMA channels is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, timers, DAC and ADC.

3.10 Interrupts and events

3.10.1 Nested vectored interrupt controller (NVIC)

The STM32F318x8 devices embed a nested vectored interrupt controller (NVIC) able to handle up to 60 maskable interrupt channels and 16 priority levels.

The NVIC benefits are the following:

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.21 Infrared transmitter

The STM32F318x8 devices provide an infrared transmitter solution. The solution is based on internal connections between TIM16 and TIM17 as shown in the figure below.

TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be sent. The infrared output signal is available on PB9 or PA13.

To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must be properly configured to generate correct waveforms. All standard IR pulse modulation modes can be obtained by programming the two timers output compare channels.

Figure 3. Infrared transmitter

STM32F318C8 STM32F318K8

Pinouts and pin description

					Table 14	4. Alterna	ate funct	ions for	Port B (c	continue	d)					
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Port & pin name	SYS_AF	TIM2/TIM15/TIM16 /TIM17/EVENT	I2C3/TIM1/TIM2/TIM15	I2C3/TIM15/TSC	12C1/12C2/TIM1/ TIM16/TIM17	SPI2/I2S2/ SPI3/I2S3/Infrared	SPI2/I2S2/SPI3/ I2S3/TIM1/Infrared	USART1/USART2/USART3/ GPCOMP6	12C3/GPCOMP2 /GPCOMP4/GPCOMP6	TIM1/TIM15	TIM2/TIM17	TIM1	TIM1		I	EVENT
PB10	-	TIM2 _CH3	-	TSC _SYNC	-	-	-	USART3 _TX	-	-	-	-	-	-	-	EVENT OUT
PB11	-	TIM2 _CH4	-	TSC _G6_IO1	-	-	-	USART3 _RX	-	-	-	-	-	-	-	EVENT OUT
PB12	-	-	-	TSC _G6_IO2	I2C2 _SMBAL	SPI2_NS S/I2S2_ WS	TIM1 _BKIN	USART3 _CK	-	-	-	-	-	-	-	EVENT OUT
PB13	-	-	-	TSC _G6_IO3	-	SPI2_SC K/ I2S2_CK	TIM1 _CH1N	USART3 _CTS	-	-	-	-	-	-	-	EVENT OUT
PB14	-	TIM15 _CH1	-	TSC _G6_IO4	-	SPI2_MI SO/I2S2 ext_SD	TIM1 _CH2N	USART3 _RTS _DE	-	-	-	-	-	-	-	EVENT OUT
PB15	RTC _REFIN	TIM15 _CH2	TIM15 _CH1N	-	TIM1 _CH3N	SPI2_M OSI/ I2S2_SD	-	-	-	-	-	-	-	-	-	EVENT OUT

DocID026294 Rev 5

43/125

সি

44
1
5

	Table 15. Alternate functions for Port F										
Port 8	AF0	AF0 AF1 AF2 AF3		AF3	AF4	AF5	AF6	AF7			
pin name	SYS_AF	TIM2/TIM15/ TIM16/TIM17/ EVENT	I2C3/TIM1/TIM2/ TIM15	I2C3/TIM15/TSC	I2C1/I2C2/TIM1/ TIM16/TIM17	SPI2/I2S2/ SPI3/I2S3/ Infrared	SPI2/I2S2/SPI3/ I2S3/TIM1/ Infrared	USART1/USAR T2/USART3/ GPCOMP6			
PF0	-	-	-	-	I2C2_SDA	SPI2_NSS/ I2S2_WS	TIM1_CH3N	-			
PF1	-	-	-	-	I2C2_SCL	SPI2_SCK/ I2S2_CK	-	-			

6.1.6 Power supply scheme

Figure 10. Power supply scheme

Caution: Each power supply pair (for example V_{DD}/V_{SS}, V_{DDA}/V_{SSA}) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 17: Voltage characteristics*, *Table 18: Current characteristics*, and *Table 19: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit	
V _{DD} -V _{SS}	External main supply voltage (including V_{DD} and $V_{\text{BAT}})$	-0.3	1.95	V	
V _{DDA} -V _{SS}	External main supply voltage	-0.3	4.0	V	
V _{DD} –V _{DDA}	Allowed voltage difference for $V_{DD} > V_{DDA}$	-	0.4	V	
	Input voltage on FT and FTf pins	V _{SS} -0.3	V _{DD} + 4.0		
	Input voltage on TTa and TT pins	V _{SS} - 0.3	4.0		
V _{IN} ⁽²⁾	Input voltage on POR pin	V _{SS} - 0.3	V _{DDA} + 4.0	V	
	Input voltage on any other pin	V _{SS} - 0.3	4.0		
$ \begin{array}{ c c c c } V_{DD} - V_{SS} & \begin{array}{ c c c } External main supply voltage (including V_{DD} and \\ V_{BAT}) & -0.3 \end{array} \\ \hline \\ V_{DDA} - V_{SS} & \begin{array}{ c c } External main supply voltage & -0.3 \end{array} \\ \hline \\ V_{DD} - V_{DDA} & \begin{array}{ c c } Allowed voltage difference for V_{DD} > V_{DDA} & - \end{array} \\ \hline \\ & \begin{array}{ c } Input voltage on FT and FTf pins & V_{SS} - 0.3 \end{array} \\ \hline \\ Input voltage on TTa and TT pins & V_{SS} - 0.3 \end{array} \\ \hline \\ & \begin{array}{ c } Input voltage on POR pin & V_{SS} - 0.3 \end{array} \\ \hline \\ Input voltage on any other pin & V_{SS} - 0.3 \end{array} \\ \hline \\ & \begin{array}{ c } Input voltage on Boot0 pin & 0 \end{array} \\ \hline \\ & \begin{array}{ c } \Delta V_{DDx} & Variations between different V_{DD} power pins & - \end{array} \\ \hline \\ & \begin{array}{ c } V_{SSX} - V_{SS} & Variations between all the different ground pins & - \end{array} \\ \hline \\ & \begin{array}{ c } V_{ESD(HBM)} & \begin{array}{ c } Electrostatic discharge voltage (human body model) & see Section 6. \\ sensitivity charlematrix \\ \end{array} \end{array}$	9				
ΔV _{DDx}	Variations between different V _{DD} power pins	-	50	m\/	
$ V_{SSX} - V_{SS} $	Variations between all the different ground pins	-	50	111V	
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6.3. sensitivity charac	11: Electrical cteristics	V	

Table 17	. Voltage	characteristics ⁽¹⁾
----------	-----------	--------------------------------

All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range. The following relationship must be respected between V_{DDA} and V_{DD}: V_{DDA} must power on before or at the same time as V_{DD} in the power up sequence. V_{DDA} must be greater than or equal to V_{DD}.

2. V_{IN} maximum must always be respected. Refer to *Table 18: Current characteristics* for the maximum allowed injected current values.

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	Total current into sum of all VDD_x power lines (source)	130	
ΣI_{VSS}	Total current out of sum of all VSS_x ground lines (sink)	-130	
I _{VDD}	Maximum current into each V _{DD_x} power line (source) ⁽¹⁾	100	
I _{VSS}	Maximum current out of each V_{SS_x} ground line (sink) ⁽¹⁾	-100	
I _{IO(PIN)}	Output current sunk by any I/O and control pin	25	
IO(PIN)	Output current sourced by any I/O and control pin	-25	
ΣI	Total output current sunk by sum of all IOs and control pins ⁽²⁾	80	
[∠] 'IO(PIN)	Total output current sourced by sum of all IOs and control pins ⁽²⁾	-80	
	Injected current on TT, FT, FTf and B pins ⁽³⁾	-5/+0	
I _{INJ(PIN)}	Injected current on TC and RST pin ⁽⁴⁾	+/-5	
	Injected current on TTa pins ⁽⁵⁾	+/-5	1
$\Sigma I_{INJ(PIN)}$	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	+/-25	1

Table 18. Current characteristics

1. All main power (V_{DD}, V_{DDA}) and ground (V_{SS} and V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 17: Voltage characteristics* for the maximum allowed input voltage values.

 A positive injection is induced by V_{IN} > V_{DDA} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ}(PIN) must never be exceeded. Refer also to *Table 17: Voltage characteristics* for the maximum allowed input voltage values. Negative injection disturbs the analog performance of the device. See note ⁽²⁾ below *Table 61*.

 When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 19. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

					V _{DDA}	= 2.4 \	/	V _{DDA} = 3.6 V				
Symbol	Parameter	Conditions (1)	f _{HCLK}	Typ	М	ax @ T _/	(2)	Typ	М	(2)	Unit	
				ιyρ	25 °C	85 °C	105 °C	176	25 °C	85 °C	105 °C	
			72 MHz	225	248 ⁽³⁾	261	266 ⁽³⁾	248	270 ⁽³⁾	290	296 ⁽³⁾	
	Supply current in		64 MHz	198	221	234	239	219	241	258	263	
			48 MHz	149	169	178	182	163	182	196	200	
		HSE bypass	32 MHz	102	120	128	131	112	131	139	142	
		ent in	24 MHz	79	96	101	104	87	104	110	112	
I	Run mode,		8 MHz	3.1	4.1	4.1	5.1	3.1	4.1	4.1	5.1	
'DDA	executing		1 MHz	3.1	4.1	4.1	5.1	3.1	4.1	4.1	5.1	μΛ
	from Flash		64 MHz	263	287	301	306	292	317	333	339	
			48 MHz	214	236	248	252	237	260	272	277	
		HSI clock	32 MHz	167	187	196	199	185	206	216	219	
			24 MHz	144	164	171	173	161	179	188	191	
			8 MHz	67	81	85	86	77	91	93	95	

Table 25. Typical and maximum current consumption from the $\mathrm{V}_{\mathrm{DDA}}$ supply

1. Current consumption from the V_{DDA} supply is independent of whether the peripherals are on or off. Furthermore when the PLL is off, I_{DDA} is independent from the frequency.

2. Data based on characterization results, not tested in production.

3. Data based on characterization results and tested in production with code executing from RAM.

Table 26. Typical and maximum V_{DD} consumption in Stop mode

Symbol	Parameter	Conditions	Typ @V _{DD} (V _{DD} = 1.8 V V _{DDA} = 3.3 V)	Мах			
			1.8 V	T _A = 25°C	T _A = 85°C	T _A = 105°C	
I _{DD}	Supply current in Stop mode	All oscillators off	3.11	7.3	160	359	μA

Table 27. Typical and maximum V_{DDA} consumption in Stop mode

Symbol	Parameter			Typ @V _{DD} (V _{DD} = 1.8 V)							Мах		
		Conditions	1.8 V	2.0 V	2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25°C	T _A = 85°C	T _A = 105°C	Unit
I _{DDA}	Supply current in Stop mode	All oscillators off	0.70	0.71	0.73	0.76	0.81	0.87	0.94	1.6	2.1	2.7	μA

		Conditions		Ту		
Symbol	Parameter		^f нc∟k	Peripherals enabled	Peripherals disabled	Unit
			72 MHz	27.5	5.6	
			64 MHz	24.5	5.0	
			48 MHz	18.5	3.82	
			32 MHz	12.5	2.62	
			24 MHz	9.4	2.02	
	Supply current in		16 MHz	6.3	1.42	mA
'DD	V _{DD} supply		8 MHz	3.08	0.65	
			4 MHz	1.93	0.55	
			2 MHz	1.24	0.48	
			1 MHz	0.90	0.44	
		Running from HSE	500 kHz	0.73	0.42	
		crystal clock 8 MHz,	125 kHz	0.59	0.41	
		code executing from	72 MHz	237.3		
		FIASTI OF RAIM	64 MHz	208.7]
			48 MHz	154.6		
			32 MHz	105.1		
			24 MHz	81.3		
I (1)	Supply current in		16 MHz	57	. .7	
'DDA `´	V_{DDA} supply		8 MHz	0.8	87	μΛ
			4 MHz	0.8	87	
			2 MHz	0.8	87	
			1 MHz	0.87		
			500 kHz	0.8	87	
			125 kHz	0.8	87	

Table 30 Typical	current consumption in	Sleep mode .co	ode running from	Flash or RAM
Table Ju. Typical	current consumption in	i oleep moue, co	oue running nom	I Idolf OF INAM

 When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.

Symbol	Parameter	Conditions ⁽¹⁾	I/O toggling frequency (f _{SW})	Тур	Unit
			2 MHz	0.10	
			4 MHz	0.17	
		$V_{DD} = 1.8 V$	8 MHz	0.40	
		$C_{ext} = 0 \text{ pr}$ $C = C_{INT} + C_{EXT} + C_S$	18 MHz	0.78	
			36 MHz	1.51	
			48 MHz	2.06	
			2 MHz	0.14	
			4 MHz	0.25	
		$V_{DD} = 1.8 V$	8 MHz	0.57	
	I/O current	$C_{ext} = 10 \text{ pr}$ $C = C_{INT} + C_{EXT} + C_S$	18 MHz	1.16	- mA
			36 MHz	2.45	
			48 MHz	3.03	
l		Vpp = 1.8 V	2 MHz	0.19	
I/O curre I _{SW} consumpt	consumption		4 MHz	0.36	
	V I/O current consumption $V_{DD} = 1.8 V$ $C_{ext} = 22 pF$	F 8 MHz 0.75	0.75		
		$V_{DD} = 1.8 V$ $C_{ext} = 22 \text{ pF}$ $C = C_{INT} + C_{EXT} + C_S$ $\frac{2 \text{ MHz}}{4 \text{ MHz}}$ $\frac{4 \text{ MHz}}{8 \text{ MHz}}$	18 MHz	1.59	
			36 MHz	3.25	
			2 MHz	0.23	
		Vpp = 1.8 V	4 MHz	0.45	
		$C_{ext} = 33 \text{ pF}$	8 MHz	0.94	
		$C = C_{INT} + C_{EXT} + C_{S}$	18 MHz	1.97	
			36 MHz	3.62	
			2 MHz	0.28	
		$V_{DD} = 1.8 V$	4 MHz	0.55	
		$C_{ext} = 47 \text{ pr}$ $C = C_{INT} + C_{EXT} + C_S$	8 MHz	1.15	
			18 MHz	2.42	

Table 31	Switching	output I/O	current	consumption
Table ST.	Switching	output I/O	current	consumption

1. CS = 5 pF (estimated value).

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 37*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit	
I _{DD}	LSE current consumption	LSEDRV[1:0]=00 lower driving capability	-	0.5	0.9		
		LSEDRV[1:0]=01 medium low driving capability	-	-	1		
		LSEDRV[1:0]=10 medium high driving capability	-	-	1.3	μΑ	
		LSEDRV[1:0]=11 higher driving capability	-	-	1.6		
g _m		LSEDRV[1:0]=00 lower driving capability	5	-	-	μΑ/V	
	Oscillator transconductance	LSEDRV[1:0]=01 medium low driving capability	8	-	-		
		LSEDRV[1:0]=10 medium high driving capability	15	-	-		
		LSEDRV[1:0]=11 25 -		-	-		
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DD} is stabilized	-	2	-	S	

Table 37. LSE oscillator characteristics (f_{LSE} = 32.768 kHz)

1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

2. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Figure 16. Typical application with a 32.768 kHz crystal

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table	46.	Electrical	sensitivities
TUDIC	TV .	LICOUIDUI	30113111411103

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105$ °C conforming to JESD78A	2 level A

6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of $-5 \mu A/+0 \mu A$ range), or other functional failure (for example reset occurrence or oscillator frequency deviation).

The test results are given in Table 47

		Functional s	usceptibility		
Symbol	Description	Negative injection	Positive injection	Unit	
	Injected current on BOOT0	-0	NA		
I _{INJ}	Injected current on PC0 pin (TTa pin)	-0	+5]	
	Injected current PC0, PC1, PC2, PC3, PA0, PA1, PA2, PA3, PA4, PA6, PA7, PC4, PB0, PB10, PB11, PB13 with induced leakage current on other pins from this group less than -100 μ A or more than +100 μ A	-5	+5	mA	
	Injected current on any other TT, FT, FTf and NPOR pins	-5	NA		
	Injected current on all other TC, TTa and RESET pins	-5	+5		

Table 47. I/O current injection susceptibility

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 18*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 18*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 49* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 20*. All I/Os (FT, TTa and TC unless otherwise specified) are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +4 mA 1.65 V < V _{DD} < 1.95 V	-	0.4	
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin	I _{IO} = -4 mA 1.65 V < V _{DD} < 1.95 V	V _{DD} -0.4	-	V
V _{OLFM+} ⁽¹⁾⁽³⁾	Output low level voltage for an FTf I/O pin in FM+ mode	I _{IO} = +10 mA V _{DD} = 1.65 V to 1.95 V	-	0.4	

Table 49. Output voltage characteristics

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 18* and the sum of I_{IO} (I/O ports and control pins) must not exceed $\Sigma I_{IO(PIN)}$.

2. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in *Table 18* and the sum of I_{IO} (I/O ports and control pins) must not exceed $\Sigma I_{IO(PIN)}$.

3. Guaranteed by design, not tested in production.

6.3.16 Timer characteristics

The parameters given in Table 53 are guaranteed by design.

Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Table 55. TIMX A Characteristics						
Symbol	Parameter	Conditions	Min	Мах	Unit	
		-	1	-	t _{TIMxCLK}	
t _{res(TIM)}	Timer resolution time	f _{TIMxCLK} = 72 MHz	13.9	-	ns	
、		f _{TIMxCLK} = 144 MHz, x = 1, 15,16, 17	6.95	-	ns	
feve	Timer external clock	-	0	f _{TIMxCLK} /2	MHz	
'EXT	frequency on CH1 to CH4	f _{TIMxCLK} = 72 MHz	0	36	MHz	
Pos	Timer resolution	TIMx (except TIM2)	-	16	bit	
I COTIM		TIM2	-	32		
		-	1	65536	t _{TIMxCLK}	
t _{COUNTER}	16-bit counter clock period	f _{TIMxCLK} = 72 MHz	0.0139	910	μs	
		f _{TIMxCLK} = 144 MHz, x= 1/15/16/17	0.0069	455	μs	
		-	-	65536 × 65536	t _{TIMxCLK}	
t _{MAX} COUNT	Maximum possible count	f _{TIMxCLK} = 72 MHz	-	59.65	S	
^I MAX_COUNT	with 32-dil counter	f _{TIMxCLK} = 144 MHz, x= 1/15/16/17	-	29.825	S	

Table 53.	$TIMx^{(1)(2)}$	characteristics
10010 001	1 1111/	

1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM15, TIM16 and TIM17 timers.

2. Guaranteed by design, not tested in production.

Table 54. IWDG min/max timeout	period at 40 kHz (LSI)	(1)
--------------------------------	------------------------	-----

Prescaler divider	PR[2:0] bits	Min timeout (ms) RL[11:0]= 0x000	Max timeout (ms) RL[11:0]= 0xFFF
/4	0	0.1	409.6
/8	1	0.2	819.2
/16	2	0.4	1638.4
/32	3	0.8	3276.8
/64	4	1.6	6553.6
/128	5	3.2	13107.2
/256	7	6.4	26214.4

 These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Prescaler	WDGTB	Min timeout value	Max timeout value	
1	0	0.05687	3.6409	
2	1	0.1137	7.2817	
4	2	0.2275	14.564	
8	3	0.4551	29.127	

Table 55. WWDG min-max timeout value @72 MHz (PCLK)⁽¹⁾

1. Guaranteed by design, not tested in production.

6.3.17 Communications interfaces

I²C interface characteristics

The I2C interface meets the timings requirements of the I²C-bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.13: I/O port characteristics for the I2C I/Os characteristics.

All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Symbol	Parameter	Min	Мах	Unit
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns

Table 56. I2C analog filter characteristics⁽¹⁾

1. Guaranteed by design, not tested in production.

2. Spikes with widths below $t_{AF(min)}$ are filtered.

3. Spikes with widths above $t_{AF(max)}$ are not filtered

SPI/I²S characteristics

Unless otherwise specified, the parameters given in *Table 57* for SPI or in *Table 58* for I²S are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 20*.

Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Master mode	-	-	18	MHz
		Slave mode	-	-	18	
		Slave mode transmitter/full duplex	-	-	13 ⁽²⁾	
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpcl k	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpcl k	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	Tpclk- 2	Tpclk	Tpclk+ 2	-
t _{su(MI)}	Data input setup time	Master mode	0	-	-	
t _{su(SI)}		Slave mode	1	-	-	
t _{h(MI)}	Data input hold time	Master mode	6.5	-	-	
t _{h(SI)}	Data input noid time	Slave mode	2.5	-	-	ns
t _{a(SO)}	Data output access time	Slave mode	8	-	40	
t _{dis(SO)}	Data output disable time	Slave mode	8	-	14	
t _{v(SO)}	Data output valid time	Slave mode	-	23	38	
t _{v(MO)}		Master mode	-	1.5	4	
t _{h(SO)}	Data output hold time	Slave mode	9.5	-	-	
t _{h(MO)}		Master mode	0	-	-	

Table 57. SPI characteristics	s ⁽¹⁾	
-------------------------------	------------------	--

1. Data based on characterization results, not tested in production.

 2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%.

Symbol	Parameter	Conditions	Min	Max	Unit
t _{v(WS)}	WS valid time	Master mode	-	20	
t _{h(WS)}	WS hold time	Master mode	2	-	
t _{su(WS)}	WS setup time	Slave mode	0	-	
t _{h(WS)}	WS hold time	Slave mode	4	-	
t _{su(SD_MR)}	Data input setup time	Master receiver	1	-	
t _{su(SD_SR)}		Slave receiver	1	-	
t _{h(SD_MR)}	Data input hold time	Master receiver	8	-	ns
t _{h(SD_SR)}		Slave receiver	2.5	-	
t _{v(SD_ST)}	Data output valid time	Slave transmitter (after enable edge)	-	50	
t _{v(SD_MT)}		Master transmitter (after enable edge)	-	22	
t _{h(SD_ST)}	Data output hold time	Slave transmitter (after enable edge)	8	-	
t _{h(SD_MT)}		Master transmitter (after enable edge)	1	-	

Table 58. I2S characteristics⁽¹⁾ (continued)

1. Data based on characterization results, not tested in production.

2. 256xFs maximum is 36 MHz (APB1 Maximum frequency)

Note: Refer to RM0366 Reference Manual I2S Section for more details about the sampling frequency (Fs), fMCK, fCK, DCK values reflect only the digital peripheral behavior, source clock precision might slightly change the values DCK depends mainly on ODD bit value. Digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max (I2SDIV+ODD)/(2*I2SDIV+ODD) and Fs max supported for each mode/condition.

