

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	51
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mu806t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1		Pin	Buffer								
Pin	Name	Туре	Туре	PPS	Description						
T1CK		I	ST	No	Timer1 external clock input.						
T2CK		1	ST	Yes	Timer2 external clock input.						
T3CK		1	ST	Yes	Timer3 external clock input.						
T4CK		I	ST	Yes	Timer4 external clock input.						
T5CK		I	ST	Yes	Timer5 external clock input.						
T6CK		1	ST	Yes	Timer6 external clock input.						
T7CK		1	ST	Yes	Timer7 external clock input.						
T8CK		I	ST	Yes	Timer8 external clock input.						
T9CK		I	ST	Yes	Timer9 external clock input.						
U1CTS		I	ST	Yes	UART1 Clear-to-Send.						
U1RTS		0	—	Yes	UART1 Ready-to-Send.						
U1RX		I	ST	Yes	UART1 receive.						
U1TX		0	—	Yes	UART1 transmit.						
U2CTS		I	ST	Yes	UART2 Clear-to-Send.						
U2RTS		0	—	Yes	UART2 Ready-to-Send.						
U2RX		I	ST	Yes	UART2 receive.						
U2TX		0		Yes	UART2 transmit.						
U3CTS		I	ST	Yes	UART3 Clear-to-Send.						
U3RTS		0	—	Yes	UART3 Ready-to-Send.						
U3RX		I	ST	Yes	UART3 receive.						
U3TX		0		Yes	UART3 transmit.						
U4CTS		I	ST	Yes	UART4 Clear-to-Send.						
U4RTS		0	—	Yes	UART4 Ready-to-Send.						
U4RX		I	ST	Yes	UART4 receive.						
U4TX		0	—	Yes	UART4 transmit.						
SCK1		I/O	ST	Yes	Synchronous serial clock input/output for SPI1.						
SDI1		I	ST	Yes	SPI1 data in.						
SDO1		0	—	Yes	SPI1 data out.						
SS1		I/O	ST	Yes	SPI1 slave synchronization or frame pulse I/O.						
SCK2		I/O	ST	No	Synchronous serial clock input/output for SPI2.						
SDI2		I	ST	No	SPI2 data in.						
SDO2		0		No	SPI2 data out.						
SS2		I/O	ST	Yes	SPI2 slave synchronization or frame pulse I/O.						
SCK3		I/O	ST	Yes	Synchronous serial clock input/output for SPI3.						
SDI3			ST		SPI3 data in.						
SDO3		0		Yes	SPI3 data out.						
SS3		I/O	ST	Yes	SPI3 slave synchronization or frame pulse I/O.						
SCK4		I/O	ST	Yes	Synchronous serial clock input/output for SPI4.						
SDI4		I	ST	Yes	SPI4 data in.						
SDO4		0	—	Yes	SPI4 data out.						
SS4		I/O	ST	Yes	SPI4 slave synchronization or frame pulse I/O.						
Legend:	CMOS = CN										
	ST = Schmit										
	PPS = Perip	heral F	Pin Selec	t	TTL = TTL input buffer						

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: This pin is available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.

- **2:** AVDD must be connected at all times.
- 3: These pins are input only on dsPIC33EPXXXMU8XX and PIC24EPXXXGU8XX devices.
- 4: These pins are only available on dsPIC33EPXXXMU8XX and PIC24EPXXXGU8XX devices.
- 5: The availability of I²C[™] interfaces varies by device. Refer to the "Pin Diagrams" section for availability. Selection (SDAx/SCLx or ASDAx/ASCLx) is made using the device Configuration bits, ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 29.0 "Special Features" for more information.
- 6: Analog functionality is activated by enabling the USB module and is not controlled by the ANSEL register.

4.2.5 X AND Y DATA SPACES

The dsPIC33EPXXX(GP/MC/MU)806/810/814 core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The PIC24EPXXX(GP/GU)806/810/814 devices do not have a Y data space and a Y AGU. For these devices, the entire data space is treated as X data space.

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space. Modulo Addressing and Bit-Reversed Addressing are not present in PIC24EPXXX(GP/ GU)806/810/814 devices.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

4.2.6 DMA RAM

Each dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 device contains 4 Kbytes of dual ported DMA RAM located at the end of Y data RAM and is part of Y data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA Controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU. When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note 1:	DMA	RAM	can	be	used	for	general				
	purpose data storage if the DMA function										
	is not required in an application.										

2: On PIC24EPXXX(GP/GU)806/810/814 devices, DMA RAM is located at the end of X data RAM and is part of X data space.

4.3 Program Memory Resources

Many useful resources related to the Program Memory are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en554310

4.3.1 KEY RESOURCES

- Section 4. "Program Memory" (DS70612) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- Development Tools

4.4 Special Function Register Maps

Table 4-1 through Table 4-72 provide mapping tables for all Special Function Registers (SFRs).

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
N0	0000					•	•		W0 (WR	EG)				•			•	0000
W1	0002								W1									0000
W2	0004								W2									0000
W3	0006								W3									0000
W4	8000								W4									0000
W5	000A		W5											0000				
W6	000C		W6											0000				
W7	000E		W7											0000				
W8	0010								W8									0000
W9	0012								W9									0000
W10	0014								W10									0000
W11	0016								W11									0000
W12	0018												0000					
W13	001A								W13									0000
W14	001C		W14 0										0000					
W15	001E		W15										1000					
SPLIM	0020								SPLIN	Λ								0000
ACCAL	0022								ACCA	L								0000
ACCAH	0024								ACCA	Н								0000
ACCAU	0026			Sig	n-Extensio	n of ACCA<	39>						AC	CAU				0000
ACCBL	0028								ACCB	L								0000
ACCBH	002A								ACCB	Н								0000
ACCBU	002C			Sig	n-Extensio	n of ACCB<	39>						AC	CBU				0000
PCL	002E								PCL								—	0000
PCH	0030	_	_	_	_	_	_	_	—	_				PCH				0000
DSRPAG	0032	_	_	_	_	—	_					DSRP	AG					0001
DSWPAG	0034	_	_	_	_	—	_	—				[DSWPAG					0001
RCOUNT	0036								RCOUN	ΝT								0000
DCOUNT	0038								DCOUN	NT								0000
DOSTARTL	003A							D	OSTARTL								—	0000
DOSTARTH	003C	—	_	—	—	—	—	—	—	—	—			DOST	ARTH			0000
DOENDL	003E								DOENDL			•					—	0000
DOENDH	0040	_	_	_	_	_	_	_	_	_	_			DOE	NDH			0000

TABLE 4-1: CPU CORE REGISTER MAP FOR dsPIC33EPXXX(GP/MC/MU)806/810/814 DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IABLE	4-41.	FER				INFUT	REGIST			5610331					1										
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets							
RPINR0	06A0	_				INT1R<6:0	>			_	—	-	—	—	—	—	—	0000							
RPINR1	06A2	—				INT3R<6:0	>			—				INT2R<6:0>	>			0000							
RPINR2	06A4	—	—	—	—		—	_	—	—	INT4R<6:0>						0000								
RPINR3	06A6	—		T3CKR<6:0>						—				T2CKR<6:0	>			0000							
RPINR4	06A8	—		T5CKR<6:0>						—				T4CKR<6:0	>			0000							
RPINR5	06AA	—		T7CKR<6:0>						—	T6CKR<6:0>					0000									
RPINR6	06AC	—		T9CKR<6:0>						—				T8CKR<6:0	>			0000							
RPINR7	06AE	—		IC2R<6:0>						—				IC1R<6:0>				0000							
RPINR8	06B0	—				IC4R<6:0>				—				IC3R<6:0>				0000							
RPINR9	06B2	—				IC6R<6:0>				—				IC5R<6:0>				0000							
RPINR10	06B4	—	IC8R<6:0>							—				IC7R<6:0>				0000							
RPINR11	06B6	—	OCFBR<6:0>							—				OCFAR<6:0	>			0000							
RPINR12	06B8	—	FLT2R<6:0>					—				FLT1R<6:0>	>			0000									
RPINR13	06BA	_	FLT4R<6:0>							—	FLT3R<6:0>					0000									
RPINR14	06BC	_	QEB1R<6:0>						—			(QEA1R<6:0	>			0000								
RPINR15	06BE	—	HOME1R<6:0>							—			I	NDX1R<6:0	>			0000							
RPINR16	06C0	—		QEB2R<6:0>						—				QEA2R<6:0	>			0000							
RPINR17	06C2	—			F	IOME2R<6:	0>			—	INDX2R<6:0>				0000										
RPINR18	06C4	—			ι	J1CTSR<6:	0>			—	U1RXR<6:0>					0000									
RPINR19	06C6	—			ι	J2CTSR<6:	0>			—	U2RXR<6:0>						0000								
RPINR20	06C8	—				SCK1R<6:0	>			—	SDI1R<6:0>						0000								
RPINR21	06CA	—	—	—	—		—	_	—	—				SS1R<6:0>				0000							
RPINR23	06CE	—	—	—	—		—	_	—	—	SS2R<6:0>						0000								
RPINR24	06D0	—			1	CSCKR<6:0)>		_	—				CSDIR<6:0	>			0000							
RPINR25	06D2	—	—	_	_		—	—	—	—			С	OFSINR<6:	0>			0000							
RPINR26	06D4	—				C2RXR<6:0	>			—				C1RXR<6:0	>			0000							
RPINR27	06D6	—			ι	J3CTSR<6:	0>			—				U3RXR<6:0	>			0000							
RPINR28	06D8	_			ι	J4CTSR<6:	0>			—	U4RXR<6:0>					0000									
RPINR29	06DA	_				SCK3R<6:0	>			—	SDI3R<6:0>					0000									
RPINR30	06DC	_	_	—	—	_	—	—	—	_	SS3R<6:0>						0000								
RPINR31	06DE	_				SCK4R<6:0	>			_	SDI4R<6:0>						0000								
RPINR32	06E0	_	_	—		_	—	—	—	_	SS4R<6:0>					0000									
RPINR33	06E2	_				IC10R<6:03	>			_	IC9R<6:0>				0000										
RPINR34	06E4	_				IC12R<6:0	>			_				IC11R<6:0>	·			0000							

TABLE 4-41: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMU810 DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 5-2:	NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER
---------------	--

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	_	—	—			
bit 15	•						bit 8			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
			NVMAE)RU<7:0>						
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						

bit 15-8	Unimplemented: Read as '0'
511 15-0	

bit 7-0 **NVMADRU<7:0>:** Nonvolatile Memory Upper Write Address bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-3: NVMADR: NONVOLATILE MEMORY ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit	t	U = Unimpler	mented bit, read	d as '0'	

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 NVMADR<15:0>: Nonvolatile Memory Write Address bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
NVMKEY<7:0>									
bit 7	bit 7 bit 0								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register (write-only) bits

REGISTER 9-6:	ACLKDIV3: AUXILIARY CLOCK DIVISOR REGISTER 3 ^(1,2)
---------------	---

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	—	—	_	_	APLLDIV<2:0>		
bit 7	•						bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-3 Unimplemented: Read as '0'

bit 2-0	APLLDIV<2:0>: PLL Feedback Divisor bits (PLL Multiplier Ratio)
	111 = 24
	110 = 21
	101 = 20
	100 = 19
	011 = 18
	010 = 17
	001 = 16
	000 = 15 (default)

Note 1: This register resets only on a Power-on Reset (POR).

2: This register is only available on dsPIC33EPXXXMU8XX and PIC24EPXXXGU8XX devices.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—				CSCKR<6:0>	>						
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
				CSDIR<6:0>							
bit 7							bit C				
Legend:											
R = Readable bit		W = Writable	bit	U = Unimpler	nented bit, read	d as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	Unimpleme	nted: Read as '	0'								
bit 14-8	CSCKR<6:0)>: Assign DCI (Clock Input (C	SCK) to the Co	rresponding RI	Pn/RPIn Pin bit	s				
	(see Table 1	1-2 for input pin	selection num	nbers)							
	1111111 =	Input tied to RP	127								
	•										
	•										
	•	Input tied to CM	D1								
		Input tied to Vss									
bit 7		nted: Read as '									
bit 6-0	•	Assign DCI D)I) to the Corre	sponding RPn/	RPIn Pin hits					
					sponding rain						
	-	(see Table 11-2 for input pin selection numbers)									
		Input tied to CM									

REGISTER 11-24: RPINR24: PERIPHERAL PIN SELECT INPUT REGISTER 24

0000000 = Input tied to Vss

12.1 Timer Resources

Many useful resources related to Timers are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en554310

12.1.1 KEY RESOURCES

- Section 11. "Timers" (DS70362) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- Development Tools

HSC-0	HSC-0	HSC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSTAT ⁽¹⁾	CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽²⁾	MDCS ⁽²⁾
bit 15							bit 8
				DAMO			
R/W-0	R/W-0	R/W-0 DTCP ⁽³⁾	U-0	R/W-0	R/W-0 CAM ^(2,4)	R/W-0 XPRES ⁽⁵⁾	R/W-0
	<1:0>	DICPO	—	MTBS	CAM-,-,-/	XPRES ⁽⁰⁾	-
bit 7							bit
Legend:		HSC = Set or	Cleared in Ha	ardware			
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	1 = Fault inte 0 = No Fault i	ult Interrupt Sta rrupt is pending interrupt is pen- ared by setting) ding				
bit 14	1 = Current-li 0 = No currer	rent-Limit Intern mit interrupt is nt-limit interrupt ared by setting	pending is pending	(1)			
bit 13	1 = Trigger in 0 = No trigger	igger Interrupt terrupt is pendi r interrupt is pe ared by setting	ng nding				
bit 12	1 = Fault inte	t Interrupt Enal rrupt is enablec rrupt is disablec	1	T bit is cleared	d		
bit 11	1 = Current-li	ent-Limit Interru mit interrupt is	enabled				
		mit interrupt is		CLSTAT bit is	cleared		
bit 10		ger Interrupt E					
	0 = Trigger ev	event generate vent interrupts a	are disabled a		bit is cleared		
bit 9	1 = PHASEx/	dent Time Base SPHASEx regise egister provides	sters provide t		od for this PWN ator	1 generator	
bit 8		er Duty Cycle F					
					PWM generate ation for this PV		
2: The	ese bits should	ar the interrupt not be changeo r DTCP to be e	d after the PW	M is enabled ((PTEN = 1).	it in the interrup	t controller.
					-	Alianed mode.	If ITB = $0.$ th

REGISTER 16-11: PWMCONx: PWMx CONTROL REGISTER

- 4: The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
- **5:** To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

REGISTER 16-14: PHASEX: PWMX PRIMARY PHASE SHIFT REGISTER ^(1,2)

R/W-0 R/W	/-0 R/W-0	R/W-0	R/W-0	D M M A		
		1011 0	K/W-U	R/W-0	R/W-0	R/W-0
		PHASE	Ex<15:8>			
bit 15						bit 8
R/W-0 R/W	/-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PHAS	Ex<7:0>			
bit 7						bit 0
Legend:						
R = Readable bit W = Writable bit			U = Unimplei	mented bit, read	as '0'	

bit 15-0 **PHASEx<15:0>:** PWM Phase Shift Value or Independent Time Base Period for the PWM Generator bits

Note 1: If ITB (PWMCONx<9>) = 0, the following applies based on the mode of operation:

'1' = Bit is set

• Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCON<11:10>) = 00, 01 or 10), PHASEx<15:0> = Phase shift value for PWMxH and PWMxL outputs.

'0' = Bit is cleared

- True Independent Output mode (PMOD<1:0> (IOCONx<11:10>) = 11), PHASEx<15:0> = Phase shift value for PWMxH only.
- **2:** If ITB (PWMCONx<9>) = 1, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL.
 - True Independent Output mode (PMOD<1:0> (IOCONx<11:10>) = 11), PHASEx<15:0> = Independent time base period value for PWMxH only.

-n = Value at POR

x = Bit is unknown

24.2 DCI Resources

Many useful resources related to DCI are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en554310

24.2.1 KEY RESOURCES

- Section 20. "Data Converter Interface (DCI)" (DS70356) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- Development Tools

REGISTER 26-4: RTCVAL (WHEN RTCPTR<1:0> = 11): YEAR VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	_	—	—	—	
bit 15 bit 8								

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
	YRTEN	<3:0>			YRONI	E<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7-4	YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit bits
	Contains a value from 0 to 9.
bit 3-0	YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 26-5: RTCVAL (WHEN RTCPTR<1:0> = 10): MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x
_	—	—	MTHTEN0		MTHON	IE<3:0>	
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTE	N<1:0>		DAYON	IE<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit
	Contains a value of 0 or 1.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits
	Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits
	Contains a value from 0 to 3.
hit 3-0	DAYONE<3:0> Binary Coded Decimal Value of Day's Ones Digit hits

bit 3-0 **DAYONE<3:0>:** Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 26-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—	MTHTEN0		MTHO	NE<3:0>	
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	DAYTE	EN<1:0>		DAYO	NE<3:0>	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-13	Unimplemer	nted: Read as	'0'				
bit 12		Binary Coded E alue of 0 or 1.	Decimal Value	of Month's Tens	s Digit bit		

- bit 11-8MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits
Contains a value from 0 to 9.bit 7-6Unimplemented: Read as '0'
- bit 5-4 **DAYTEN<1:0>:** Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3.
- bit 3-0 **DAYONE<3:0>:** Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.
- **Note 1:** A write to this register is only allowed when RTCWREN = 1.

Base Instr #	nstr Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
1	ADD	ADD Acc ⁽¹⁾		Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
1	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (4)	None
		BRA	GE,Expr	Branch if greater than or equal	1	1 (4)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (4)	None
		BRA	GT,Expr	Branch if greater than	1	1 (4)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (4)	None
		BRA	LE,Expr	Branch if less than or equal	1	1 (4)	None
		BRA	LEU, Expr	Branch if unsigned less than or equal	1	1 (4)	None
		BRA	LT,Expr	Branch if less than	1	1 (4)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (4)	None
		BRA	N,Expr	Branch if Negative	1	1 (4)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (4)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (4)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (4)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (4)	None
		BRA	OA, Expr(1)	Branch if Accumulator A overflow	1	1 (4)	None
		BRA	OB, Expr(1)	Branch if Accumulator B overflow	1	1 (4)	None
		BRA	OV, Expr(1)	Branch if Overflow	1	1 (4)	None
		BRA	SA, Expr(1)	Branch if Accumulator A saturated	1	1 (4)	None
		BRA	SB, Expr ⁽¹⁾	Branch if Accumulator B saturated	1	1 (4)	None
		BRA	Expr	Branch Unconditionally	1	4	None
		BRA	Z,Expr	Branch if Zero	1	4 1 (4)	None
		BRA	Z,Expr Wn	Computed Branch	1	4	None
7	BSET	BSET	f,#bit4	Bit Set f	1	4	None

TABLE 30-2 INSTRUCTION SET OVERVIEW

Note 1:

This instruction is available in dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only. Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. 2:

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
8	BSW			Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear		1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Clear Accumulator	1	1	OA,OB,SA,SE
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	$f = \overline{f}$	1	1	N,Z
		СОМ	f,WREG	WREG = f	1	1	N,Z
		СОМ	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
10	CF	CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP		Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CPO	CPO	Wb,Ws f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
15	CFO	CPO	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
20	CFD	CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
22	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
23	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
24	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
						· ·· ·/	L

INSTRUCTION SET OVERVIEW (CONTINUED) TABLE 30-2:

This instruction is available in dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only. Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. 2:

INSTRUCTION SET OVERVIEW (CONTINUED) TABLE 30-2:

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
17	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None
		MOVPAG	#lit9,DSWPAG	Move 9-bit literal to DSWPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None
		MOVPAGW	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAGW	Ws, DSWPAG	Move Ws<8:0> to DSWPAG	1	1	None
		MOVPAGW	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
8	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB ⁽¹⁾	Prefetch and store accumulator	1	1	None
19	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OA SA,SB,SA
		MPY	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd ⁽¹⁾	Square Wm to Accumulator	1	1	OA,OB,OAI SA,SB,SAI
0	MPY.N	MPY.N	Wm*Wn, Acc, Wx, Wxd, Wy, Wyd ⁽¹⁾	-(Multiply Wm by Wn) to Accumulator	1	1	None
51	MSC	MSC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd, AWB(1)	Multiply and Subtract from Accumulator	1	1	OA,OB,OAI SA,SB,SAI
52	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb, Ws, Acc(1)	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb, #lit5, Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb, #lit5, Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

Note 1:

This instruction is available in dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only. Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. 2:

31.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

31.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

31.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

31.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

TABLE 32-48:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

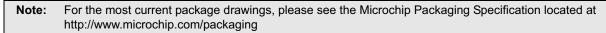
АС СНА		TICS	Standard Op (unless othe Operating ter	erwise st	t ated) e -40°	C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	TscP	Maximum SCKx Input Frequency	_	_	11	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	—	ns	
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120	—	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output, High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	—	—	ns	See Note 4

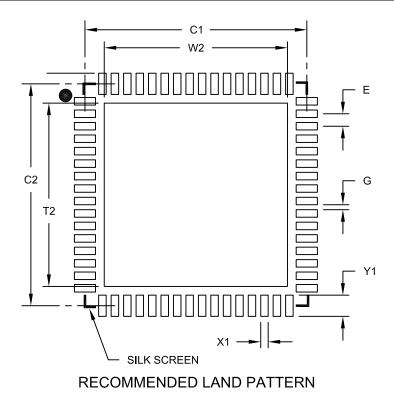
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.


TABLE 32-53: USB OTG MODULE SPECIFICATIONS (dsPIC33EPXXXMU8XX AND PIC24EPXXXGU8XX DEVICES ONLY)


			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
USB313	VUSB3V3 ⁽²⁾	USB Voltage	3.0		3.6	V	Voltage on bus must be in this range for proper USB operation	
USB315	VILUSB	Input Low Voltage for USB Buffer	—	-	0.8	V		
USB316	VIHUSB	Input High Voltage for USB Buffer	2.0	_	-	V		
USB318	VDIFS	Differential Input Sensitivity		_	0.2	V		
USB319	VCM	Differential Common-Mode Range	0.8	_	2.5	V	The difference between D+ and D- must be within this range while VCM is met	
USB320	Zout	Driver Output Impedance	28.0	—	44.0	Ω		
USB321	Vol	Voltage Output Low	0.0	_	0.3	V	14.25 k Ω load connected to 3.6V	
USB322	Voн	Voltage Output High	2.8	_	3.6	V	14.25 k Ω load connected to ground	

Note 1: These parameters are characterized but not tested in manufacturing.

2: If the USB module is not being used, this pin must be connected to VDD.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

	MILLIMETERS					
Dimensior	MIN	NOM	MAX			
Contact Pitch	E		0.50 BSC			
Optional Center Pad Width	W2			7.35		
Optional Center Pad Length	T2			7.35		
Contact Pad Spacing	C1		8.90			
Contact Pad Spacing	C2		8.90			
Contact Pad Width (X64)	X1			0.30		
Contact Pad Length (X64)	Y1			0.85		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A