

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	83
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mu810-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Rese
IFS0	0800	NVMIF	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	000
IFS2	0804	T6IF	DMA4IF	PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	000
IFS3	0806		RTCIF	DMA5IF	DCIIF	DCIEIF	QEI1IF	PSEMIF	C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	000
IFS4	0808		_	_	_	QEI2IF	_	PSESMIF	_	C2TXIF	C1TXIF	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	_	00
IFS5	080A	PWM2IF	PWM1IF	IC9IF	OC9IF	SPI3IF	SPI3EIF	U4TXIF	U4RXIF	U4EIF	USB1IF	_	_	U3TXIF	U3RXIF	U3EIF	_	00
IFS6	080C		_	_	_	_	_	_	_	_	_	_	PWM7IF	PWM6IF	PWM5IF	PWM4IF	PWM3IF	00
IFS7	080E	IC11IF	OC11IF	IC10IF	OC10IF	SPI4IF	SPI4EIF	DMA11IF	DMA10IF	DMA9IF	DMA8IF			_	_		—	00
IFS8	0810		ICDIF	IC16IF	OC16IF	IC15IF	OC15IF	IC14IF	OC14IF	IC13IF	OC13IF	_	DMA14IF	DMA13IF	DMA12IF	IC12IF	OC12IF	000
IEC0	0820	NVMIE	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	00
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	00
IEC2	0824	T6IE	DMA4IE	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	00
IEC3	0826		RTCIE	DMA5IE	DCIIE	DCIEIE	QEI1IE	PSEMIE	C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	00
IEC4	0828	_	—	_	_	QEI2IE	—	PSESMIE	_	C2TXIE	C1TXIE	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	—	00
IEC5	082A	PWM2IE	PWM1IE	IC9IE	OC9IE	SPI3IE	SPI3EIE	U4TXIE	U4RXIE	U4EIE	USB1IE	_	_	U3TXIE	U3RXIE	U3EIE	—	00
IEC6	082C	_	—	_	_	_	—	_	_	_	_	_	PWM7IE	PWM6IE	PWM5IE	PWM4IE	PWM3IE	00
IEC7	082E	IC11IE	OC11IE	IC10IE	OC10IE	SPI4IE	SPI4EIE	DMA11IE	DMA10IE	DMA9IE	DMA8IE	_	_	_	_	_	—	00
IEC8	0830	_	ICDIE	IC16IE	OC16IE	IC15IE	OC15IE	IC14IE	OC14IE	IC13IE	OC13IE	_	DMA14IE	DMA13IE	DMA12IE	IC12IE	OC12IE	00
IPC0	0840	_		T1IP<2:0>		_		OC1IP<2:0>	>	_		IC1IP<2:0>		_	I	NT0IP<2:0>	>	44
IPC1	0842	_		T2IP<2:0>		_		OC2IP<2:0>	`	_		IC2IP<2:0>		_	C	MA0IP<2:0	>	44
IPC2	0844	_		U1RXIP<2:0)>	_		SPI1IP<2:0>	>	_		SPI1EIP<2:0>	•	_		T3IP<2:0>		44
IPC3	0846	_		NVMIP<2:0	>	_		DMA1IP<2:0	>	_		AD1IP<2:0>		_	ι	J1TXIP<2:0	>	44
IPC4	0848	_		CNIP<2:0>	>	_		CMIP<2:0>		_		MI2C1IP<2:0>	>	_	S	612C11P<2:0	>	44
IPC5	084A	_		IC8IP<2:0>	>	_		IC7IP<2:0>		_		AD2IP<2:0>		_	I	NT1IP<2:0>	>	44
IPC6	084C			T4IP<2:0>		_		OC4IP<2:0>	•	_		OC3IP<2:0>		_	C	MA2IP<2:0	>	44
IPC7	084E			U2TXIP<2:0)>	_		U2RXIP<2:0	>	_		INT2IP<2:0>		_		T5IP<2:0>		44
IPC8	0850			C1IP<2:0>		_		C1RXIP<2:0	>	_		SPI2IP<2:0>		_	S	PI2EIP<2:0	>	44
IPC9	0852			IC5IP<2:0>	>	_		IC4IP<2:0>		_		IC3IP<2:0>		_	C	MA3IP<2:0	>	44
IPC10	0854			OC7IP<2:0	>	_		OC6IP<2:0>	•	_		OC5IP<2:0>		_		IC6IP<2:0>		44
IPC11	0856	_		T6IP<2:0>		_		DMA4IP<2:0	>	_		PMPIP<2:0>		_		OC8IP<2:0>	•	44
IPC12	0858	_		T8IP<2:0>		_		MI2C2IP<2:0	>	_		SI2C2IP<2:0>	•	_		T7IP<2:0>		44
IPC13	085A			C2RXIP<2:0)>	—		INT4IP<2:0>	>	_		INT3IP<2:0>		—		T9IP<2:0>		44
IPC14	085C	_		DCIEIP<2:0	>	_		QEI1IP<2:0>	>	_		PSEMIP<2:0>	•	_		C2IP<2:0>		44
IPC15	085E	_	_		_	_		RTCIP<2:0>	,			DMA5IP<2:0>	,	_		DCIIP<2:0>		04

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMU814 DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

ented, read as '0'. Reset values ar

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DC1CON1	0900	_	—	OCSIDL	C	OCTSEL<2:0)>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV		_	—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:()>		0000
OC1RS	0904							Outp	out Compare	e 1 Seconda	ry Register							XXXX
OC1R	0906								Output Co	mpare 1 Reg	gister							XXXX
OC1TMR	0908								Timer Va	alue 1 Regis	ter							XXXX
OC2CON1	090A	_	—	OCSIDL	C	CTSEL<2:0)>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0)>		0000
OC2RS	090E							Out	out Compare	e 2 Seconda	ry Register							XXXX
OC2R	0910								Output Co	mpare 2 Reg	gister							XXXX
OC2TMR	0912								Timer Va	alue 2 Regis	ter							XXXX
OC3CON1	0914	_	—	OCSIDL	C	CTSEL<2:0)>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0)>		0000
OC3RS	0918							Out	out Compare	e 3 Seconda	ry Register							XXXX
OC3R	091A								Output Co	mpare 3 Reg	gister							XXXX
OC3TMR	091C								Timer Va	alue 3 Regis	ter							XXXX
OC4CON1	091E	—	_	OCSIDL	C	CTSEL<2:0)>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV		—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0)>		0000
OC4RS	0922							Outp	out Compare	e 4 Seconda	ry Register							XXXX
OC4R	0924								Output Co	mpare 4 Reg	gister							XXXX
OC4TMR	0926								Timer Va	alue 4 Regis	ter							XXXX
OC5CON1	0928	—	_	OCSIDL	C	CTSEL<2:0)>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC5CON2	092A	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0)>		0000
OC5RS	092C							Outp	out Compare	e 5 Seconda	ry Register							XXXX
OC5R	092D								Output Co	mpare 5 Re	gister							XXXX
OC5TMR	0930								Timer Va	alue 5 Regis	ter							XXXX
OC6CON1	0932	_	_	OCSIDL	C	OCTSEL<2:0)>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC6CON2	0934	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0)>		0000
OC6RS	0936							Out	out Compare	e 6 Seconda	ry Register							XXXX
OC6R	0938								Output Co	mpare 6 Re	gister							XXXX
OC6TMR	093A								Timer Va	alue 6 Regis	ter							XXXX
OC7CON1	093C	_		OCSIDL	C	CTSEL<2:0)>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC7CON2	093E	FLTMD	FLTOUT	FLTTRIEN	OCINV	—		—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0)>		0000
OC7RS	0940							Out	out Compare	e 7 Seconda	ry Register							XXXX
OC7R	0942									mpare 7 Reg								XXXX
OC7TMR	0944								Timer Va	alue 7 Regis	ter							xxxx

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

TABLE 4-11: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 16 REGISTER MAP

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: DCI REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DCICON1	0280	DCIEN	—	DCISIDL	—	DLOOP	DLOOP CSCKD CSCKE COFSD UNFM CSDOM DJST COFSM<1:0>							M<1:0>	0000			
DCICON2	0282	_	_	_	_	BLEN	BLEN<1:0> — COFSG<3:0> — WS<3:0>								0000			
DCICON3	0284	_	_	_	_		BCG<11:0>									0000		
DCISTAT	0286	_	_	_	SLOT<3:0> ROV RFUL TUNF TMPTY								0000					
TSCON	0288	TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8	TSE7	TSE6	TSE5	TSE4	TSE3	TSE2	TSE1	TSE0	0000
RSCON	028C	RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8	RSE7	RSE6	RSE5	RSE4	RSE3	RSE2	RSE1	RSE0	0000
RXBUF0	0290							DC	I Receive 0	Data Regis	ter							uuuu
RXBUF1	0292							DC	I Receive 1	Data Regis	ter							uuuu
RXBUF2	0294							DC	I Receive 2	Data Regis	ter							uuuu
RXBUF3	0296							DC	I Receive 3	Data Regis	ter							uuuu
TXBUF0	0298							DC	l Transmit 0	Data Regis	ter							0000
TXBUF1	029A							DC	Transmit 1	Data Regis	ter							0000
TXBUF2	029C							DC	l Transmit 2	Data Regis	ter							0000
TXBUF3	029E							DC	Transmit 3	Data Regis	ter							0000

Legend: x = unknown value on Reset, u = unchanged, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Shaded locations indicate reserved space in the SFR map for future module expansion. Read reserved locations as '0's.

5.4 Flash Program Memory Resources

Many useful resources related to Flash program memory are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en554310

5.4.1 KEY RESOURCES

- Section 5. "Flash Programming" (DS70609) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33E/PIC24E Family Reference Manual" Sections
- Development Tools

5.5 Control Registers

Four SFRs are used to read and write the program Flash memory: NVMCON, NVMKEY, NVMADRU and NVMADR.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected row or word for programming operations, or the selected page for erase operations.

The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

10.2.2 IDLE MODE

The following occur in Idle mode:

- · The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the ECAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the ECAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

REGISTER 17-4: POSxCNTH: POSITION COUNTER x HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			POSC	NT<31:24>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			POSC	NT<23:16>					
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable b	oit	U = Unimplen	nented bit, rea	ad as '0'			
-n = Value at POR (1' = Bit is set				'0' = Bit is cleared x = Bit is unknown					

bit 15-0 POSCNT<31:16>: High Word Used to Form 32-Bit Position Counter Register (POSxCNT) bits

REGISTER 17-5: POSxCNTL: POSITION COUNTER x LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSCN	T<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
POSCNT<7:0>											
bit 7							bit 0				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 POSCNT<15:0>: Low Word Used to Form 32-Bit Position Counter Register (POSxCNT) bits

REGISTER 17-6: POSxHLD: POSITION COUNTER x HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			POSH	LD<15:8>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			POSH	ILD<7:0>						
bit 7							bit 0			
Legend:										
R = Readable I	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						

bit 15-0 **POSHLD<15:0>:** Hold Register for Reading and Writing POSxCNTH bits

REGISTER 17-10: INDXxHLD: INDEX COUNTER x HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			INDXH	LD<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			INDX	ILD<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown					

bit 15-0 INDXHLD<15:0>: Hold Register for Reading and Writing INDXxCNTH bits

REGISTER 17-11: QEIxICH: QEIx INITIALIZATION/CAPTURE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIIC	<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIIC	<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 QEIIC<31:16>: QEIx High Word Used to Form 32-Bit Initialization/Capture Register (QEIxIC) bits

REGISTER 17-12: QEIxICL: QEIx INITIALIZATION/CAPTURE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIIO	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEII	C<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 QEIIC<15:0>: QEIx Low Word Used to Form 32-Bit Initialization/Capture Register (QEIxIC) bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	C<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	C<23:16>			
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unkn			nown	

REGISTER 17-15: QEIxGECH: QEIx GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER

REGISTER 17-16: QEIxGECL: QEIx GREATER THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		QEIGE	EC<15:8>			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		QEIG	EC<7:0>			
						bit 0
bit	W = Writable b	oit	U = Unimplemented bit, read as '0'			
OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	
	R/W-0	R/W-0 R/W-0	QEIGE R/W-0 R/W-0 QEIG oit W = Writable bit	QEIGEC<15:8> R/W-0 R/W-0 QEIGEC<7:0> Dit W = Writable bit U = Unimplement	QEIGEC<15:8> R/W-0 R/W-0 R/W-0 QEIGEC<7:0> QEIGEC<7:0>	QEIGEC<15:8> R/W-0 R/W-0 R/W-0 R/W-0 QEIGEC<7:0> U = Unimplemented bit, read as '0'

bit 15-0 **QEIGEC<15:0>:** QEIx Low Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEIxGEC) bits

REGISTER 17-17: INTxTMRH: INTERVAL TIMER x HIGH WORD REGISTER

(QEIxGEC) bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	R<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	R<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		0' = Bit is cleared x = Bit is unknown			

bit 15-0 INTTMR<31:16>: High Word Used to Form 32-Bit Interval Timer Register (INTxTMR) bits

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL		_			—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
		—	—	_		FRMDLY	SPIBEN
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimpler	nented bit, rea	d as '0'		
-n = Value at F	-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15		med SPIx Supp		_			
				cpin is used as	a Frame Sync	: pulse input/out	out)
h:+ 1 4		SPIx support is o		ntual hit			
bit 14		me Sync Pulse /nc pulse input (ntroi dit			
	,	/nc pulse input (· /				
bit 13	-	ame Sync Pulse	. ,				
		/nc pulse is acti	-				
	0 = Frame Sy	/nc pulse is acti	ve-low				
bit 12-2	Unimplemen	ited: Read as 'd)'				
bit 1	FRMDLY: Fra	ame Sync Pulse	Edge Select	t bit			
	,	/nc pulse coinci					
1.11.0	-	/nc pulse prece		DIT CIOCK			
bit 0		nanced Buffer E					
		d Buffer is enab d Buffer is disab		d mode)			

REGISTER 18-3: SPIXCON2: SPIX CONTROL REGISTER 2

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT		_	_	BCL	GCSTAT	ADD10
oit 15							bit
R/C-0, HS	R/C-0, HS	R-0, HSC		R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC TBF
IWCOL	I2COV	D_A	Р	S	R_W	RBF	bit
							<u> </u>
Legend:		C = Clearab	le bit	U = Unimplen	nented bit, read	as '0'	
R = Readable	e bit	W = Writabl	e bit	HS = Hardwa	re Settable bit	HSC = Hardware Se	ettable/Clearable
-n = Value at	POR	'1' = Bit is s	et	'0' = Bit is clea	ared	x = Bit is unknown	
bit 15				P 1 1 . 1			
	(wnen opera 1 = NACK re	-		blicable to ma	ster transmit op	eration)	
	\perp = NACK rec						
				a slave Ackno	owledge.		
oit 14					-	cable to master trar	smit operation)
			progress (8 l				. ,
			ot in progress				
	Hardware is Acknowledg		beginning of	a master tra	nsmission. Har	dware is clear at t	he end of a sla
oit 13-11	Unimpleme	nted: Read	as '0'				
pit 10	BCL: Maste	r Bus Collisi	on Detect bit				
			een detecteo	during a mas	ter operation		
	0 = No collis		the states in the second				
-: · ·			tion of a bus	collision.			
oit 9	GCSTAT: Ge		was receive	d			
			was receive				
					ral call address	. Hardware is clear	at a Stop detectio
oit 8	ADD10: 10-	Bit Address	Status bit	-			
	1 = 10-bit ac	ldress was r	natched				
	0 = 10-bit ac						
				yte of a matche	ed 10-bit addres	s. Hardware is clear	at a Stop detection
oit 7	IWCOL: Wri	te Collision I	Detect bit				
	$1 - \Lambda n$ off on						
			o the I2CxTR	N register fail	ed because the	I ² C module is bus	y
	0 = No collis	ion					
bit 6	0 = No collis Hardware is	ion set at an oc	currence of a	a write to I2Cx		I ² C module is busy	
bit 6	0 = No collis Hardware is I2COV: I2C>	ion set at an oc Receive Ov	currence of a verflow Flag I	a write to I2Cx pit	TRN while busy	/ (cleared by softwa	
pit 6	0 = No collis Hardware is I2COV: I2C>	ion set at an oc Receive Ov vas received	currence of a verflow Flag I	a write to I2Cx pit	TRN while busy		
bit 6	 0 = No collis Hardware is I2COV: I2C> 1 = A byte w 0 = No overfl 	ion set at an oc Receive Ov vas received flow	currence of a verflow Flag I while the I20	a write to I2Cx bit CxRCV registe	TRN while busy	/ (cleared by softwa	are).
	0 = No collis Hardware is I2COV: I2C> 1 = A byte w 0 = No overf Hardware is	ion set at an oc Receive Ov vas received flow set at an att	currence of a verflow Flag I while the I2C empt to trans	a write to I2Cx bit CxRCV registe	TRN while busy r is still holding to I2CxRCV (cl	(cleared by softwatter the previous byte	are).
bit 6 bit 5	0 = No collis Hardware is I2COV: I2C> 1 = A byte w 0 = No overf Hardware is D_A: Data/A	ion set at an oc Receive Ov vas received flow set at an att vddress bit (v	currence of a verflow Flag I while the I2C empt to trans	a write to I2Cx bit CxRCV registe sfer I2CxRSR ng as I ² C slav	TRN while busy r is still holding to I2CxRCV (cl	(cleared by softwatter the previous byte	are).
	0 = No collis Hardware is I2COV: I2C> 1 = A byte w 0 = No overt Hardware is D_A: Data/A 1 = Indicates 0 = Indicates	ion set at an oc (Receive Ov /as received flow set at an att oddress bit (v s that the lass s that the lass	currence of a verflow Flag I while the I2C empt to trans when operation t byte received t byte received	a write to I2Cx bit CxRCV registe sfer I2CxRSR ng as I ² C slav ed was data ed was a devi	TRN while busy r is still holding to I2CxRCV (cl e) ce address	 (cleared by software) the previous byte eared by software) 	are).
bit 5	0 = No collis Hardware is I2COV: I2C> 1 = A byte w 0 = No over Hardware is D_A: Data/A 1 = Indicates 0 = Indicates Hardware is	ion set at an oc (Receive Ov /as received flow set at an att oddress bit (v s that the lass s that the lass	currence of a verflow Flag I while the I2C empt to trans when operation t byte received t byte received	a write to I2Cx bit CxRCV registe sfer I2CxRSR ng as I ² C slav ed was data ed was a devi	TRN while busy r is still holding to I2CxRCV (cl e) ce address	(cleared by softwatter the previous byte	are).
bit 5	0 = No collis Hardware is I2COV: I2C> 1 = A byte w 0 = No overf Hardware is D_A: Data/A 1 = Indicates 0 = Indicates Hardware is P: Stop bit	ion set at an oc (Receive Ov vas received flow set at an att oddress bit (v s that the las s that the las clear at a de	currence of a verflow Flag I while the I2C empt to trans when operation to byte receive to byte receive evice address	a write to I2Cx bit CxRCV registe sfer I2CxRSR ng as I ² C slav ed was data ed was a devi s match. Hard	TRN while busy r is still holding to I2CxRCV (cl e) ce address ware is set by r	 (cleared by software) the previous byte eared by software) 	are).
	0 = No collis Hardware is I2COV: I2C> 1 = A byte w 0 = No overf Hardware is D_A: Data/A 1 = Indicates 0 = Indicates Hardware is P: Stop bit	ion set at an oc (Receive Ov vas received flow set at an att oddress bit (v s that the las clear at a de s that a Stop	currence of a verflow Flag I while the I2C empt to trans when operation to byte receive evice address bit has been	a write to I2Cx bit CxRCV registe sfer I2CxRSR ng as I ² C slav ed was data ed was a devi	TRN while busy r is still holding to I2CxRCV (cl e) ce address ware is set by r	 (cleared by software) the previous byte eared by software) 	are).

20.3 UARTx Registers

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾	—	USIDL	IREN ⁽²⁾	RTSMD	—	UEN	<1:0>
bit 15							bit 8
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEI	-	STSEL
bit 7	LFDACK	ABAUD	URAINV	BRGH	FDGEI	_<1.0>	bit (
Legend:		HC = Hardwa	re Clearable b	bit			
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	UARTEN: UA	RTx Enable bi	t(1)				
					y UARTx as defin y port latches; L		
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	USIDL: UART	Tx Stop in Idle	Mode bit				
		ues module op s module oper			Idle mode		
bit 12	IREN: IrDA [®] I	Encoder and D	ecoder Enable	e bit ⁽²⁾			
		oder and deco					
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin b	it			
		in in Simplex n in in Flow Con					
bit 10	Unimplemen	ted: Read as '	0'				
bit 9-8	UEN<1:0>: ∪	ARTx Pin Enal	ole bits				
	10 = UxTX, U 01 = UxTX, U	JxRX, UxCTS a JxRX and UxR nd UxRX pins a	and UxRTS pi TS pins are er	ns are enableo nabled an <u>d use</u>	d; UxCTS pin is d an <u>d used</u> ed; UxC <u>TS pin is</u> S and UxRTS/F	s controlled by	port latches
bit 7	WAKE: Wake	-up on Start Bi	t Detect Durin	g Sleep Mode	Enable bit		
	hardware	ontinues to sar on following r -up is enabled	•	K pin; interrupt	is generated or	n falling edge; b	it is cleared in
bit 6		RTx Loopback	Mode Select	bit			
	1 = Enables I	Loopback mod	e				
DIL O	0 = Loopback	k mode is disal					
	-	k mode is disal p-Baud Enable					
bit 5	ABAUD: Auto	o-Baud Enable	bit surement on t		eter – requires re	eception of a S	ync field (55h

REGISTER 20-1: UxMODE: UARTx MODE REGISTER

© 2009-2012 Microchip Technology Inc.

2: This feature is only available for the 16x BRG mode (BRGH = 0).

21.0 ENHANCED CAN (ECAN™) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70353) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

21.1 Overview

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices contain two ECAN modules.

The ECANx module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN Specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN Specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details. The ECANx module features are as follows:

- Implementation of the CAN Protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and Extended Data Frames
- 0-8 Bytes Data Length
- Programmable Bit Rate up to 1 Mbit/sec
- Automatic Response to Remote Transmission Requests
- Up to 8 Transmit Buffers with Application-Specific Prioritization and Abort Capability (each buffer can contain up to 8 bytes of data)
- Up to 32 Receive Buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 Full (standard/extended identifier) Acceptance Filters
- Three Full Acceptance Filter Masks
- DeviceNet[™] Addressing Support
- Programmable Wake-up Functionality with Integrated Low-Pass Filter
- Programmable Loopback mode Supports Self-Test Operation
- Signaling via Interrupt Capabilities for all CAN Receiver and Transmitter Error States
- · Programmable Clock Source
- Programmable Link to Input Capture Module (IC2 for the ECAN1 and ECAN2 modules) for Time-Stamping and Network Synchronization
- · Low-Power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

bit
R-0 TMPTY
bit
unknown

REGISTER 24-4: DCISTAT: DCI STATUS REGISTER

25.2 Comparator Control Registers

R/W-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
CMSIDL			_	_	C3EVT	C2EVT	C1EVT
bit 15		l .			I	1	bit 8
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
_	_	_	_	_	C3OUT	C2OUT	C10UT
bit 7					1		bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	CMSIDL: Cor	nparator Stop	in Idle Mode b	pit			
					ice enters Idle n	node	
		-	-	s in Idle mode			
bit 14-11	Unimplemen	ted: Read as '	0'				
bit 10	-	parator 3 Even					
	1 = Comparator event occurred						
L:1 0	0 = Comparator event did not occur						
bit 9	C2EVT: Comparator 2 Event Status bit 1 = Comparator event occurred						
		or event did no					
bit 8	-	parator 1 Even					
		or event occur					
		or event did no					
bit 7-3	Unimplemen	ted: Read as '	0'				
bit 2	C3OUT: Com	parator 3 Outp	ut Status bit				
	When CPOL :						
	1 = VIN+ > VIN 0 = VIN+ < VIN						
	When CPOL :						
	1 = VIN + < VIN						
	0 = VIN+ > VIN	۷-					
bit 1	C2OUT: Com	parator 2 Outp	ut Status bit				
	When CPOL :						
	1 = VIN+ > VIN 0 = VIN+ < VIN						
	When CPOL :						
	1 = VIN + < VIN						
	0 = VIN + > VIN	N-					
bit 0	C1OUT: Com	parator 1 Outp	ut Status bit				
	When CPOL:						
	1 = VIN+ > VIN 0 = VIN+ < VIN						
		•					
	When CPOL :	= 1:					
	<u>When CPOL</u> : 1 = VIN+ < VIN						

REGISTER 25-1: CMSTAT: COMPARATOR STATUS REGISTER

26.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time Clock and Calendar (RTCC)" (DS70584) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter discusses the Real-Time Clock and Calendar (RTCC) module and its operation.

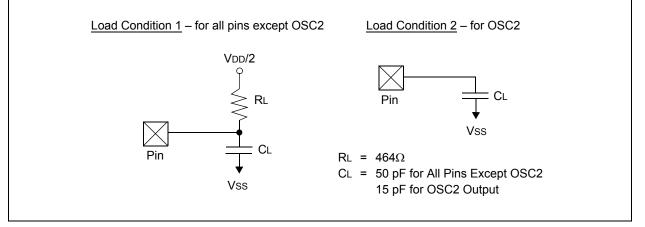
Some of the key features of this module are:

- · Time: Hours, Minutes and Seconds
- 24-Hour Format (military time)
- Calendar: Weekday, Date, Month and Year
- Alarm Configurable
- Year Range: 2000 to 2099
- · Leap Year Correction
- BCD Format for Compact Firmware
- Optimized for Low-Power Operation
- · User Calibration with Auto-Adjust
- · Calibration Range: ±2.64 Seconds Error per Month
- Requirements: External 32.768 kHz Clock Crystal
- · Alarm Pulse or Seconds Clock Output on RTCC Pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.


32.2 AC Characteristics and Timing Parameters

This section defines the dsPIC33EPXXX(GP/MC/ MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 AC characteristics and timing parameters.

TABLE 32-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

AC CHARACTERISTICS	$\label{eq:standard operating Conditions: 3.0V to 3.6V} \end{tabular} \begin{tabular}{lllllllllllllllllllllllllllllllllll$
	Operating voltage VDD range as described in Section 32.1 "DC Characteristics".

FIGURE 32-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 32-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	_	—	50	pF	EC mode
DO58	Св	SCLx, SDAx		—	400	pF	In l ² C™ mode

TABLE 32-17:	PLL CI	OCK TIMING	SPECIFICATIONS
---------------------	--------	------------	----------------

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic		Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		0.8		8.0	MHz	ECPLL, XTPLL modes
OS51	Fsys	On-Chip VCO System Frequency		120	—	340	MHz	
OS52	TLOCK	PLL Start-up Time (Lock Time)		0.9	1.5	3.1	mS	
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾		-5	0.5	5	%	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Time Base or Communication Clock}}}$$

For example, if FOSC = 120 MHz and the SPI bit rate = 10 MHz, the effective jitter is as follows:

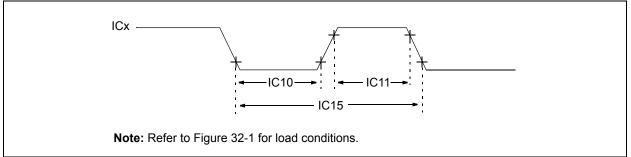

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 32-18: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS (dsPIC33EPXXXMU8XX AND PIC24EPXXXGU8XX DEVICES ONLY)

AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic		Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
OS54	AFplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		3	_	5.5	MHz	ECPLL, XTPLL modes
OS55	AFsys	On-Chip VCO System Frequency		60	—	120	MHz	
OS56	ATLOCK	PLL Start-up Time (Lock Time)		0.9	1.5	3.1	mS	
OS57	ADCLK	CLKO Stability (Jitter)		-2	0.25	2	%	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 32-27: INPUT CAPTURE MODULE (ICx) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param.	Symbol	Characteristics ⁽¹⁾	Min.	Max.	Units	Conditions		
IC10	TccL	ICx Input Low Time	[Greater of (12.5 or 0.5 Tcy)/N] + 25		ns	Must also meet Parameter IC15	N = prescale value (1, 4, 16)	
IC11	TCCH	ICx Input High Time	[Greater of (12.5 or 0.5 Tcy)/N] + 25		ns	Must also meet Parameter IC15		
IC15	TCCP	ICx Input Period	[Greater of (25 or 1 Tcy)/N] + 50	_	ns			

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 32-46:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	TscP	Maximum SCKx Input Frequency	_	_	11	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx \downarrow Input	120	—	_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output, High-Impedance	10	—	50	ns	See Note 4	
SP52	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	_	_	ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

A secold a shell be a second sec
Applicability 131
Operation Example 130
Start and End Address130
W Address Register Selection 130
MPLAB ASM30 Assembler, Linker, Librarian 496
MPLAB Integrated Development Environment
Software
MPLAB PM3 Device Programmer498
MPLAB REAL ICE In-Circuit Emulator System 497
MPLINK Object Linker/MPLIB Object Librarian 496

O Oscillato

Oscillator	
Control Registers	
Oscillator Configuration	177
Bit Values for Clock Selection	
CPU Clocking System	
Resources	
Output Compare	
Resources	

Ρ

Packaging	
Details	
Marking	. 577, 578
Parallel Master Port (PMP)	
Peripheral Module Disable (PMD)	
Peripheral Pin Select	
Control Registers	
Peripherals Supported by DMA	
Pinout I/O Descriptions (table)	
PMP	
Control Registers	
Resources	
Power-Saving Features	
Clock Frequency, Clock Switching	191
Doze Mode	
Instruction-Based Modes	191
Idle	
Sleep	
Interrupts Coincident with Power	
Save Instructions	
Resources	
Special Function Registers	193
Program Address Space	
Construction	
Data Access from Address Generation	133
Data Access from Program Memory Using	
Table Instructions	
Memory Map	
Table Read Instructions	
TBLRDH	
TBLRDL	
Program Memory	
Interrupt and Trap Vectors	
Organization	
Reset Vector	
Resources	
Programmable Cyclic Redundancy Check (CRC)	
Generator	
Programmer's Model	
Register Description	39

PWM
Control Registers 297
Q
QEI
Control Registers 324
Quadrature Encoder Interface (QEI) 321
Resources
_
R
RCON
Control Register
Reader Response
Real-Time Clock and Calender (RTCC)
Register Maps
ADC1 and ADC2 85
Comparator
CPU Core (dsPIC33EPXXX(GP/MC/MU)806/810/814
,
Devices Only)
CPU Core (PIC24EPXXX(GP/GU)810/814
Devices Only)57
CRC
DCI 87
DMAC 111
ECAN1 (WIN (C1CTRL) = 0 or 1)
ECAN1 (WIN (C1CTRL) = 0)
ECAN1 (WIN (C1CTRL) = 1)
ECAN2 (WIN (C2CTRL) = 0 or 1)
ECAN2 (WIN (C2CTRL) = 0)
I2C1 and I2C2
Input Capture 1 through Input Capture 16
Interrupt Controller (dsPIC33EPXXXGP806 and
PIC24EPXXXGP806 Devices Only)
Interrupt Controller (dsPIC33EPXXXMC806
Devices Only)
Devices Only)
Interrupt Controller (dsPIC33EPXXXMU810
Devices Only)
Interrupt Controller (dsPIC33EPXXXMU814
Devices Only)58
Interrupt Controller (PIC24EPXXXGU810/814
Devices Only)68
NVM 106
Output Compare 1 through Output Compare 16 73
Pad Configuration 121
Parallel Master/Slave Port 96
Peripheral Pin Select Input (dsPIC33EPXXX(MC/MU)806
Devices Only) 103
Peripheral Pin Select Input (dsPIC33EPXXXMU810
Devices Only) 101
Peripheral Pin Select Input (dsPIC33EPXXXMU814
Devices Only)
Peripheral Pin Select Input (PIC24EPXXXGU810/814
Devices Only)
Peripheral Pin Select Output (dsPIC33EPXXX(GP/MC/
MU)806 and PIC24EPXXXGP806
Devices Only)
Devices OHIY)
Peripheral Pin Select Output (dsPIC33EPXXXMU806
Devices Only)
Peripheral Pin Select Output (dsPIC33EPXXXMU810/814
and PIC24EPXXXGU810/814 Devices Only) 97