

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	83
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mu810-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 µF to 47 µF.

2.3 **CPU Logic Filter Capacitor** Connection (VCAP)

A low-ESR (< 1 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor greater than 4.7 µF (10 µF is recommended), 16V connected to ground. The type can be ceramic or tantalum. See Section 32.0 "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See Section 29.2 "On-Chip Voltage Regulator" for details.

Master Clear (MCLR) Pin 2.4

The MCLR pin provides two specific device functions:

- · Device Reset
- · Device Programming and Debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN FIGURE 2-2: CONNECTIONS

- **Note 1:** $R \leq 10 \text{ k}\Omega$ is recommended. A suggested starting value is 10 k Ω . Ensure that the MCLR pin VIH and VIL specifications are met.
 - $R1 \leq 470\Omega$ will limit any current flowing into 2: MCLR from the external capacitor C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met.

4.2 Data Address Space

The CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps are shown in Figure 4-3, Figure 4-4, Figure 4-5 and Figure 4-6.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a Base Data Space address range of 64 Kbytes or 32K words.

The Base Data Space address is used in conjunction with a Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space, which has a total address range of 16 MBytes.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices implement up to 56 Kbytes of data memory. If an EA point to a location outside of this area, an all-zero word or byte is returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the device instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The MSB is not modified.

A Sign-Extend instruction (SE) is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

TABLE	ABLE 4-8: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXGU810/814 DEVICES ONLY																	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	NVMIF	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	T6IF	DMA4IF	PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	_	RTCIF	DMA5IF	DCIIF	DCIEIF	_	_	C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4	0808	_	_	_	_	_	-	_	-	C2TXIF	C1TXIF	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	_	0000
IFS5	080A		—	IC9IF	OC9IF	SPI3IF	SPI3EIF	U4TXIF	U4RXIF	U4EIF	USB1IF	—	_	U3TXIF	U3RXIF	U3EIF	—	0000
IFS7	080E	IC11IF	OC11IF	IC10IF	OC10IF	SPI4IF	SPI4EIF	DMA11IF	DMA10IF	DMA9IF	DMA8IF	—	_	_	—		—	0000
IFS8	0810		ICDIF	IC16IF	OC16IF	IC15IF	OC15IF	IC14IF	OC14IF	IC13IF	OC13IF	—	DMA14IF	DMA13IF	DMA12IF	IC12IF	OC12IF	0000
IEC0	0820	NVMIE	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	T6IE	DMA4IE	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	-	RTCIE	DMA5IE	DCIIE	DCIEIE	_		C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	0828		—	_	—	—	_		—	C2TXIE	C1TXIE	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	—	0000
IEC5	082A		—	IC9IE	OC9IE	SPI3IE	SPI3EIE	U4TXIE	U4RXIE	U4EIE	USB1IE	—	_	U3TXIE	U3RXIE	U3EIE	—	0000
IEC7	082E	IC11IE	OC11IE	IC10IE	OC10IE	SPI4IE	SPI4EIE	DMA11IE	DMA10IE	DMA9IE	DMA8IE	—	_	—	—		—	0000
IEC8	0830		ICDIE	IC16IE	OC16IE	IC15IE	OC15IE	IC14IE	OC14IE	IC13IE	OC13IE	—	DMA14IE	DMA13IE	DMA12IE	IC12IE	OC12IE	0000
IPC0	0840			T1IP<2:0	>	_		OC1IP<2:0	>			IC1IP<2:0>		—		INT0IP<2:0>		4444
IPC1	0842			T2IP<2:0	>	—		OC2IP<2:0	>			IC2IP<2:0>		_	0	0MA0IP<2:0	>	4444
IPC2	0844			U1RXIP<2:	0>	—		SPI1IP<2:0	>			SPI1EIP<2:()>	_		T3IP<2:0>		4444
IPC3	0846			NVMIP<2:0)>	—	[DMA1IP<2:)>			AD1IP<2:0	>	_	ι	J1TXIP<2:0	>	4444
IPC4	0848	_		CNIP<2:0	>	_		CMIP<2:0	>	_		MI2C1IP<2:0)>	_	5	SI2C1IP<2:0	>	4444
IPC5	084A	_		IC8IP<2:0	>	_		IC7IP<2:03	>	_		AD2IP<2:0	>	_		INT1IP<2:0>		4444
IPC6	084C	-		T4IP<2:0	>	—		OC4IP<2:0	>			OC3IP<2:0	>	_	0	0MA2IP<2:0	>	4444
IPC7	084E	_		U2TXIP<2:	0>	_	L L	J2RXIP<2:0)>	_		INT2IP<2:0	>	_		T5IP<2:0>		4444
IPC8	0850			C1IP<2:0	>	—	(C1RXIP<2:0)>			SPI2IP<2:0	>	_	5	SPI2EIP<2:0	>	4444
IPC9	0852			IC5IP<2:0	>	—		IC4IP<2:02	>			IC3IP<2:0>		_	0	0MA3IP<2:0	>	4444
IPC10	0854			OC7IP<2:0)>	—		OC6IP<2:0	>			OC5IP<2:0	>	_		IC6IP<2:0>		4444
IPC11	0856			T6IP<2:0	>	—	[)MA4IP<2:)>			PMPIP<2:0	>	_		OC8IP<2:0>		4444
IPC12	0858	_		T8IP<2:0	>	_	Ν	/II2C2IP<2:	0>	_		SI2C2IP<2:0)>	_		T7IP<2:0>		4444
IPC13	085A		(C2RXIP<2:	0>	—		INT4IP<2:0	>	_		INT3IP<2:0	>	—		T9IP<2:0>		4444
IPC14	085C	_		DCIEIP<2:)>	_		_	_	_		_	_	_		C2IP<2:0>		4004
IPC15	085E	_	_	_	_	_		RTCIP<2:0	>	_		DMA5IP<2:0)>	_		DCIIP<2:0>		0444
IPC16	0860	_		CRCIP<2:0)>	_		U2EIP<2:0	>	_		U1EIP<2:0	>	_	—	_	_	4440
IPC17	0862	—		C2TXIP<2:	0>	—	(C1TXIP<2:0)>	_		DMA7IP<2:0)>	—	[0MA6IP<2:0	>	4444

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC4R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				IC3R<6:0>			
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	Unimpleme	nted: Read as '	0'				
bit 14-8	IC4R<6:0>: (see Table 1	Assign Input Ca 1-2 for input pin	pture 4 (IC4) selection nu) to the Correspo mbers)	onding RPn/R	PIn Pin bits	
	1111111 =	Input tied to RP	127				
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	3				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-0	IC3R<6:0>: (see Table 1	Assign Input Ca 1-2 for input pin	pture 3 (IC3) selection nu) to the Correspo mbers)	onding RPn/R	PIn Pin bits	
	1111111 =	Input tied to RP	127				
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	;				

REGISTER 11-9: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

REGISTER 11-12: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0 — bit 15 U-0 — bit 7 Legend: R = Readable bit -n = Value at POR bit 15 Uni bit 15 Uni bit 14-8 OC (set	R/W-0	R/W-0	R/\/_0							
U-0 U-0 bit 15 bit 7 Legend: R = Readable bit -n = Value at POR bit 15 Uni bit 15 Uni bit 14-8 OC (set			10000	R/W-0	K/W-0	R/W-0	R/W-0			
bit 15 U-0 bit 7 Legend: R = Readable bit -n = Value at POR bit 15 Uni bit 14-8 OC (set				OCFBR<6:0>	>					
U-0 — bit 7 Legend: R = Readable bit -n = Value at POR bit 15 Uni bit 14-8 OC (set							bit 8			
U-0 bit 7 Legend: R = Readable bit -n = Value at POR bit 15 Uni bit 14-8 OC (set										
bit 7 Legend: R = Readable bit -n = Value at POR bit 15 Uni bit 14-8 OC (set	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
bit 7 Legend: R = Readable bit -n = Value at POR bit 15 Uni bit 14-8 OC (see				OCFAR<6:0>	,					
Legend: R = Readable bit -n = Value at POR bit 15 Uni bit 14-8 OC (set							bit 0			
Legend: R = Readable bit -n = Value at POR bit 15 Uni bit 14-8 OC (see										
R = Readable bit -n = Value at POR bit 15 Uni bit 14-8 OC (see										
-n = Value at POR bit 15 Uni bit 14-8 OC (see		W = Writable I	oit	U = Unimplen	nented bit, rea	ad as '0'				
bit 15 Uni bit 14-8 OC (see		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 14-8 OC (see	mplement	ed: Read as '0)'							
(se	mplement FBR<6:0>:	ed: Read as ' Assign Outpu)' It Compare F	ault B (OCFB) t	to the Corresp	onding RPn/RP	In Pin bits			
	e Table 11-2	2 for input pin	selection nun	nbers)						
111	.1111 = In p	out tied to RP1	27							
•										
•										
000	0000001 = Input tied to CMP1									
000	00000 = In p	out tied to Vss								
bit 7 Uni	mplement	ed: Read as ')'							
bit 6-0 OC (see	FAR<6:0>: e Table 11-2	Assign Outpu 2 for input pin	t Compare Fa	ault A (OCFA) t nbers)	to the Corresp	onding RPn/RPI	n Pin bits			
111	.1111 = In p	out tied to RP1	27							
•										
·										
• 000	00001 = Inp	out tied to CMI	P1							

	-	-	-	_		-	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				SCK4R<6:0>	>		
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				SDI4R<6:0>			
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14-8	SCK4R<6:0 (see Table 1 1111111 =	>: Assign SPI4 1-2 for input pin Input tied to RP	Clock Input (S selection nun 127	SCK4) to the Co nbers)	orresponding F	RPn/RPIn Pin bit	S
	0000001 = 0000000 =	Input tied to CM Input tied to Vss	P1				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-0	5-0 SDI4R<6:0>: Assign SPI4 Data Input (SDI4) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers)						
	1111111 =	Input tied to RP	127				
	•						
			1.14				

REGISTER 11-31: RPINR31: PERIPHERAL PIN SELECT INPUT REGISTER 31

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				SYNCI1R<6:0	>				
bit 15							bit		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—				OCFCR<6:0>	>				
bit 7							bit		
Legend:	ala hit	VV – Writabla	h:t		popted bit rea	ad aa '0'			
			DIL		nenteu bit, rea				
-n = value a	at POR	= Bit is set		"0" = Bit is cie	ared	x = Bit is unki	nown		
	(see lable 1 1111111 =	nput tied to RP nput tied to RP nput tied to CM nput tied to Vss	selection nur 127 P1	mbers)					
bit 7	Unimpleme	nted: Read as '	0'						
bit 6-0	OCFCR<6:0 (see Table 1 1111111 = I	>: Assign Output 1-2 for input pin nput tied to RP	ut Fault C (O selection nur 127	CFC) to the Cor mbers)	responding R	Pn/RPIn Pin bits			
	0000001 = 0000000 =	nput tied to CM nput tied to Vss	P1						

REGISTER 11-37: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70362) of the "*dsPIC33E/PIC24E Family Reference Manual*", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated from the low-power 32 kHz crystal oscillator available on the device.
- Can be operated in Asynchronous Counter mode from an external clock source.
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and clock synchronization is performed after the prescaler.

The unique features of Timer1 allow it to be used for Real-Time Clock (RTC) applications. A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:

- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit setting for different operating modes are given in the Table 12-1.

TABLE 12-1 :	TIMER MODE SETTINGS

Mode	TCS	TGATE	TSYNC
Timer	0	0	х
Gated Timer	0	1	Х
Synchronous Counter	1	Х	1
Asynchronous Counter	1	х	0

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

NOTES:

REGISTER 16-1: PTCON: PWM TIME BASE CONTROL REGISTER (CONTINUED)

bit 6-4	SYNCSRC<2:0>: Synchronous Source Selection bits ⁽¹⁾
	111 = Reserved
	•
	•
	•
	010 = Reserved 001 = SYNCI2 000 = SYNCI1
bit 3-0	SEVTPS<3:0>: PWM Special Event Trigger Output Postscaler Select bits ⁽¹⁾
	1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event
	•
	•
	•
	0001 = 1:2 Postscaler generates Special Event Trigger on every second compare match event 0000 = 1:1 Postscaler generates Special Event Trigger on every compare match event

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

REGISTER 16-19: IOCONX: PWMx I/O CONTROL REGISTER (CONTINUED)

bit 3-2	CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits
	IFLTMOD (FCLCONx<15>) = 0: Normal Fault mode:
	If current limit is active, PWMxH is driven to the state specified by CLDAT<1>.
	If current limit is active, PWMxL is driven to the state specified by CLDAT<0>.
	IFLTMOD (FCLCONx<15>) = 1: Independent Fault mode:
	The CLDAT<1:0> bits are ignored.
bit 1	SWAP: Swap PWMxH and PWMxL Pins bit
	1 = PWMxH output signal is connected to PWMxL pins; PWMxL output signal is connected to PWMxH pins
	0 = PWMxH and PWMxL pins are mapped to their respective pins
bit 0	OSYNC: Output Override Synchronization bit
	 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base 0 = Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary

Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).

17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE (dsPIC33EPXXX(MC/MU)8XX DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Quadrature Encoder Interface (QEI)" (DS70601) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.

The operational features of the QEI module include:

- 32-Bit Position Counter
- · 32-Bit Index Pulse Counter
- 32-Bit Interval Timer
- · 16-Bit Velocity Counter
- 32-Bit Position Initialization/Capture/Compare High Register
- 32-Bit Position Compare Low Register
- x4 Quadrature Count mode
- External Up/Down Count mode
- External Gated Count mode
- · External Gated Timer mode
- Internal Timer mode

Figure 17-1 illustrates the QEI block diagram.

Note: An 'x' used in the names of pins, control/ status bits and registers denotes a particular Quadrature Encoder Interface (QEI) module number (x = 1 or 2).

REGISTER 18-1: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

bit 1	SPITBF: SPIx Transmit Buffer Full Status bit
	 1 = Transmit has not yet started, SPIx transmit buffer is full 0 = Transmit has started, SPIx transmit buffer is empty
	<u>Standard Buffer Mode:</u> Automatically set in hardware when the core writes to the SPIxBUF location, loading the SPIx transmit buffer. Automatically cleared in hardware when the SPIx module transfers data from the SPIx transmit buffer to SPIxSR.
	Enhanced Buffer Mode: Automatically set in hardware when CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation.
bit 0	SPIRBF: SPIx Receive Buffer Full Status bit
	 1 = Receive complete, SPIx receive buffer is full 0 = Receive is incomplete, SPIx receive buffer is empty
	<u>Standard Buffer Mode:</u> Automatically set in hardware when SPIx transfers data from SPIxSR to the SPIx receive buffer. Automatically cleared in hardware when the core reads the SPIxBUF location, reading the SPIx receive buffer.
	Enhanced Buffer Mode: Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a

transfer from SPIxSR.

23.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Analogto-Digital Converter (ADC)" (DS70621) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices have two ADC modules, ADC1 and ADC2. The ADC1 module supports up to 32 analog input channels. The ADC2 module supports up to 16 analog input channels.

On ADC1, the AD12B bit (AD1CON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4 Sample-and-Hold (S&H) ADC (default configuration) or a 12-bit, 1 S&H ADC.

Note:	The ADC1 module needs to be disabled
	before modifying the AD12B bit.

The ADC2 module only supports 10-bit operation with 4 S&H.

23.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) Conversion
- Conversion Speeds of up to 1.1 Msps
- Up to 32 Analog Input Pins
- External Voltage Reference Input Pins
- Simultaneous Sampling of up to Four Analog
 Input Pins
- Automatic Channel Scan mode
- Selectable Conversion Trigger Source
- Selectable Buffer Fill modes
- Four Result Alignment Options (signed/unsigned, fractional/integer)
- · Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one S&H amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 32 analog input pins, designated AN0 through AN31. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration depends on the specific device.

A block diagram of the ADC module is shown in Figure 23-1. Figure 23-2 provides a diagram of the ADC conversion clock period.

REGISTER 26-4: RTCVAL (WHEN RTCPTR<1:0> = 11): YEAR VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
YRTEN<3:0>				YRONE<3:0>				
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7-4	YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit bits
	Contains a value from 0 to 9.
bit 3-0	YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 26-5: RTCVAL (WHEN RTCPTR<1:0> = 10): MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x
_	—	—	MTHTEN0		MTHON	IE<3:0>	
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN<1:0>		DAYONE<3:0>			
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit
	Contains a value of 0 or 1.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits
	Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits
	Contains a value from 0 to 3.
hit 3-0	DAYONE<3:0> Binary Coded Decimal Value of Day's Ones Digit hits

bit 3-0 **DAYONE<3:0>:** Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PTEN7	PTEN6	PTEN5	PTEN4	PTEN3	PTEN2	PTEN1	PTEN0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at F	Reset	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15 bit 14	PTEN15: PM 1 = PMA15 fu 0 = PMA15 fu PTEN14: PM 1 = PMA14 fu	CS2 Strobe En Inctions as eith Inctions as port CS1 Strobe En Inctions as eith	able bit er PMA<15> c : I/O able bit er PMA<14> c	or PMCS2 or PMCS1				
bit 13-2	0 = PMA14 fu PTEN<13:2>:	Inctions as port	: I/O Port Enable b	oits				

REGISTER 28-4: PMAEN: PARALLEL MASTER PORT ADDRESS ENABLE REGISTER

1 = PMA<13:2> function as PMP address lines

- 0 = PMA<13:2> function as port I/O
- bit 1-0 **PTEN<1:0>:** PMALH/PMALL Strobe Enable bits
 - 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL
 - 0 = PMA1 and PMA0 function as port I/O

Bit Field	Register	RISP Effect	Description
GSSK<1:0>	FGS	Immediate	General Segment Key bits These bits must be set to '00' if GWRP = 1 and GSS = 1. These bits must be set to '11' for any other value of the GWRP and GSS bits. Any mismatch between either the GWRP or GSS bits, and the GSSK bits (as described above), will result in code protection becoming enabled for the General Segment. A Flash bulk erase will be required to unlock the device.
GSS	FGS	Immediate	General Segment Code-Protect bit 1 = User program memory is not code-protected 0 = User program memory is code-protected
GWRP	FGS	Immediate	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	Immediate	 Two-Speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	If clock switch is enabled, the RTSP effect is on any device Reset; otherwise, immediate	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) Oscillator with Postscaler 110 = Internal Fast RC (FRC) Oscillator with Divide-by-16 101 = LPRC Oscillator 100 = Secondary (LP) Oscillator 011 = Primary (XT, HS, EC) Oscillator with PLL 010 = Primary (XT, HS, EC) Oscillator 001 = Internal Fast RC (FRC) Oscillator with PLL 000 = FRC Oscillator
FCKSM<1:0>	FOSC	Immediate	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	FOSC	Immediate	Peripheral Pin Select Configuration bit 1 = Allows only one reconfiguration 0 = Allows multiple reconfigurations
OSCIOFNC	FOSC	Immediate	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is the clock output 0 = OSC2 is the general purpose digital I/O pin
POSCMD<1:0>	FOSC	Immediate	Primary Oscillator Mode Select bits 11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	FWDT	Immediate	 Watchdog Timer Enable bit 1 = Watchdog Timer is always enabled (LPRC Oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register has no effect.) 0 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register.)

TABLE 29-2: CONFIGURATION BITS DESCRIPTION

Note 1: BOR should always be enabled for proper operation (BOREN = 1).

2: This register can only be modified when code protection and write protection are disabled for both the General and Auxiliary Segments (APL = 1, AWRP = 1, APLK = 0, GSS = 1, GWRP = 1 and GSSK = 0).

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V (see Note 1)} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
	/	ADC Accuracy (10-Bit Mode	e) – Meas	uremen	ts with E	xternal	VREF+/VREF-	
AD20b	Nr	Resolution	1	0 data bi	ts	bits		
AD21b	INL	Integral Nonlinearity	-1	_	+1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD22b	DNL	Differential Nonlinearity	>-1	-	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD23b	Gerr	Gain Error	1	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD24b	EOFF	Offset Error	1	2	3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD25b	—	Monotonicity		_		—	Guaranteed ⁽²⁾	
		ADC Accuracy (10-Bit Mode	e) – Meas	uremen	ts with l	nternal '	VREF+/VREF-	
AD20b	Nr	Resolution	10 data bits			bits		
AD21b	INL	Integral Nonlinearity	-1.5	_	+1.5	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD22b	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD23b	Gerr	Gain Error	1	5	6	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD24b	EOFF	Offset Error	1	2	5	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD25b	—	Monotonicity		_	_	—	Guaranteed ⁽²⁾	
		Dynamic I	Performa	nce (10-	Bit Mod	e)		
AD30b	THD	Total Harmonic Distortion	_	_	-64	dB		
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	—	dB		
AD32b	SFDR	Spurious Free Dynamic Range	72	-	_	dB		
AD33b	Fnyq	Input Signal Bandwidth	_	_	550	kHz		
AD34b	ENOB	Effective Number of Bits	9.16	9.4	_	bits		

TABLE 32-56: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 32-11 for the minimum and maximum BOR values.

2: The Analog-to-Digital conversion result never decreases with an increase in input voltage and has no missing codes.

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	MIN NOM MAX				
Number of Leads	N		100	•	
Lead Pitch	e		0.50 BSC		
Overall Height	А	-	—	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	φ	0°	3.5°	7°	
Overall Width	E		16.00 BSC		
Overall Length	D		16.00 BSC		
Molded Package Width	E1		14.00 BSC		
Molded Package Length	D1	14.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

Section Name	Update Description
Section 25.0 "Comparator Module"	Updated the Comparator I/O Operating Modes diagram (see Figure 25-1).
	Added Note 2 to the Comparator Voltage Reference Control Register (see Register 25-6).
Section 29.0 "Special Features"	Added Note 3 to the Connections for the On-chip Voltage Regulator (see Figure 29-1).
Section 32.0 "Electrical Characteristics"	Removed the Voltage on VCAP with respect to Vss from the Absolute Maximum Ratings ⁽¹⁾ .
	Removed Note 3 and parameter DC18 from the DC Temperature and Voltage Specifications (see Table 32-4).
	Updated the notes in the DC Characteristics: Operating Current (IDD) (see Table 32-5).
	Updated the notes in the DC Characteristics: Idle Current (IIDLE) (see Table 32-6).
	Updated the Typical and Maximum values for parameter DC60c and the notes in the DC Characteristics: Power-down Current (IPD) (see Table 32-7).
	Updated the notes in the DC Characteristics: Doze Current (IDOZE) (see Table 32-8).
	Updated the conditions for parameters DI60a and DI60b (see Table 32-9).
	Updated the conditions for parameter BO10 in the BOR Electrical Characteristics (see Table 32-10).
	Added Note 1 to the Internal Voltage Regulator Specifications (see Table 32-13).
	Updated the Minimum and Maximum values for parameter OS53 in the PLL Clock Timing Specifications (see Table 32-17).
	Updated the Minimum and Maximum values for parameter F21b in the Internal LPRC Accuracy specifications (see Table 32-20).
	Added Note 2 to the ADC Module Specifications (see Table 32-54).

TABLE A-3: MAJOR SECTION UPDATES (CONTINUED)