

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	83
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mu810-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.5 X AND Y DATA SPACES

The dsPIC33EPXXX(GP/MC/MU)806/810/814 core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The PIC24EPXXX(GP/GU)806/810/814 devices do not have a Y data space and a Y AGU. For these devices, the entire data space is treated as X data space.

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space. Modulo Addressing and Bit-Reversed Addressing are not present in PIC24EPXXX(GP/ GU)806/810/814 devices.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

4.2.6 DMA RAM

Each dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 device contains 4 Kbytes of dual ported DMA RAM located at the end of Y data RAM and is part of Y data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA Controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU. When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note 1:	DMA	RAM	can	be	used	for	general
	purpo	se data	a stor	age	if the D	DMA	function
	is not	require	ed in a	an a	pplicat	ion.	

2: On PIC24EPXXX(GP/GU)806/810/814 devices, DMA RAM is located at the end of X data RAM and is part of X data space.

4.3 Program Memory Resources

Many useful resources related to the Program Memory are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en554310

4.3.1 KEY RESOURCES

- Section 4. "Program Memory" (DS70612) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- Development Tools

4.4 Special Function Register Maps

Table 4-1 through Table 4-72 provide mapping tables for all Special Function Registers (SFRs).

IABLE	4-5.				NULLER	V KEGIS			USFIC	3357777		DEVICE	S UNL I		NUED)			
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC16	0860	_		CRCIP<2:0	>	_		U2EIP<2:0>		_		U1EIP<2:0>		—	—	—	_	4440
IPC17	0862	_		C2TXIP<2:0)>	_		C1TXIP<2:0	>	_		DMA7IP<2:0	>	_	[DMA6IP<2:0>	`	4444
IPC18	0864	_		QEI2IP<2:0	>	_	_	_	_	_	I	PSESMIP<2:0)>	-	_	_	_	4040
IPC20	0868	_		U3TXIP<2:0)>	_		U3RXIP<2:0	>	—		U3EIP<2:0>		—	_	_	_	4440
IPC21	086A	_		U4EIP<2:0	>	_		USB1IP<2:0	>	—	_	—	_	—	_	_	_	4400
IPC22	086C	_		SPI3IP<2:0	>	_	:	SPI3EIP<2:0	>	—		U4TXIP<2:0>	>	—	l	J4RXIP<2:0>	•	4444
IPC23	086E	_	I	PWM2IP<2:(0>	_	F	PWM1IP<2:0	>	—		IC9IP<2:0>		—		OC9IP<2:0>		4444
IPC24	0870	_	_	_	_	_	_	_	_	—		PWM4IP<2:0	>	—	F	WM3IP<2:0>	>	0044
IPC29	087A	_		DMA9IP<2:0)>	_		DMA8IP<2:0	>	_	_	_	—	_	_	_		4400
IPC30	087C	_		SPI4IP<2:0	>	_	:	SPI4EIP<2:0	>	_		DMA11IP<2:0	>	_	D	MA10IP<2:0	>	4444
IPC31	087E	_		IC11IP<2:0	>	_		OC11IP<2:0	>	_		IC10IP<2:0>		_	(OC10IP<2:0>		4444
IPC32	0880	_	[DMA13IP<2:	0>	_	[) MA12IP<2:()>	_		IC12IP<2:0>		_	(OC12IP<2:0>		4444
IPC33	0882	_		IC13IP<2:0	>	_		OC13IP<2:0	>	_	_	_	—	_	D	MA14IP<2:0	>	4404
IPC34	0884	_		IC15IP<2:0	>	_		OC15IP<2:0	>	_		IC14IP<2:0>		—	(OC14IP<2:0>		4444
IPC35	0886	_	_	_	—	_		ICDIP<2:0>		_		IC16IP<2:0>		—	(OC16IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP		_	_		-	_		_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	_	_		_	_		-	_	UAE	DAE	DOOVR	—	—	—	_	0000
INTCON4	08C6	_	_	_	_	_	_	_	_	_	—	_	—	_	_	_	SGHT	0000
INTTREG	08C8	_	_	_	_	_		ILR	<3:0>				VE	ECNUM<7:0>				0000

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY (CONTINUED)

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	NVMIF	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	T6IF	DMA4IF	PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	_	RTCIF	DMA5IF	DCIIF	DCIEIF	_		C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4	0808	_		—	_		_		_	C2TXIF	C1TXIF	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	—	0000
IFS5	080A	—	_	IC9IF	OC9IF	SPI3IF	SPI3EIF	U4TXIF	U4RXIF	U4EIF	USB1IF	—	—	U3TXIF	U3RXIF	U3EIF	—	0000
IFS7	080E	IC11IF	OC11IF	IC10IF	OC10IF	SPI4IF	SPI4EIF	DMA11IF	DMA10IF	DMA9IF	DMA8IF	—		—	—		—	0000
IFS8	0810	_	ICDIF	IC16IF	OC16IF	IC15IF	OC15IF	IC14IF	OC14IF	IC13IF	OC13IF	—	DMA14IF	DMA13IF	DMA12IF	IC12IF	OC12IF	0000
IEC0	0820	NVMIE	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	T6IE	DMA4IE	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	_	RTCIE	DMA5IE	DCIIE	DCIEIE	_		C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	0828	_		—	—		_		_	C2TXIE	C1TXIE	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	—	0000
IEC5	082A			IC9IE	OC9IE	SPI3IE	SPI3EIE	U4TXIE	U4RXIE	U4EIE	USB1IE	—	-	U3TXIE	U3RXIE	U3EIE	_	0000
IEC7	082E	IC11IE	OC11IE	IC10IE	OC10IE	SPI4IE	SPI4EIE	DMA11IE	DMA10IE	DMA9IE	DMA8IE	_	_	_	_	_	_	0000
IEC8	0830	-	ICDIE	IC16IE	OC16IE	IC15IE	OC15IE	IC14IE	OC14IE	IC13IE	OC13IE	_	DMA14IE	DMA13IE	DMA12IE	IC12IE	OC12IE	0000
IPC0	0840	-		T1IP<2:0>	•	_		OC1IP<2:0	>	_		IC1IP<2:0>		_		NT0IP<2:0>		4444
IPC1	0842	_		T2IP<2:0>	•			OC2IP<2:0	>	—		IC2IP<2:0>		—	C	0MA0IP<2:0	>	4444
IPC2	0844	-	l	U1RXIP<2:)>	_		SPI1IP<2:0	>	_		SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846	-		NVMIP<2:0	>	_	[DMA1IP<2:0)>	_		AD1IP<2:0>	>	_	ι	J1TXIP<2:0	>	4444
IPC4	0848	-		CNIP<2:0	>	_		CMIP<2:0>	•	_		MI2C1IP<2:0)>	_	5	SI2C1IP<2:0	>	4444
IPC5	084A	-		IC8IP<2:0	>	_		IC7IP<2:0>	•	_		AD2IP<2:0>	>	_		NT1IP<2:0>		4444
IPC6	084C	-		T4IP<2:0>	•	_		OC4IP<2:0	>	_		OC3IP<2:0>	>	_	C	0MA2IP<2:0	>	4444
IPC7	084E	_	-	U2TXIP<2:()>		ι	J2RXIP<2:()>	—		INT2IP<2:0	>	—		T5IP<2:0>		4444
IPC8	0850	-		C1IP<2:0>	•	_	(C1RXIP<2:0)>	_		SPI2IP<2:0	>	_	S	PI2EIP<2:0	>	4444
IPC9	0852	-		IC5IP<2:03	>	_		IC4IP<2:0>	•	_		IC3IP<2:0>		_	C	0MA3IP<2:0	>	4444
IPC10	0854	_		OC7IP<2:0	>			OC6IP<2:0	>	—		OC5IP<2:0>	>	—		IC6IP<2:0>		4444
IPC11	0856			T6IP<2:0>			0) MA4IP<2:()>	—		PMPIP<2:0	>	—		OC8IP<2:0>		4444
IPC12	0858	-		T8IP<2:0>	•	_	Ν	/II2C2IP<2:0)>	_		SI2C2IP<2:0	>	_		T7IP<2:0>		4444
IPC13	085A		(C2RXIP<2:)>	_		INT4IP<2:0	>	_		INT3IP<2:0	>	—		T9IP<2:0>		4444
IPC14	085C			DCIEIP<2:()>		—	—	_	_	_	_	_	—		C2IP<2:0>		4004
IPC15	085E	_	_	—	_	_		RTCIP<2:0	>	_		DMA5IP<2:0	>	_		DCIIP<2:0>		0444
IPC16	0860	—		CRCIP<2:0	>	_		U2EIP<2:0	>	_		U1EIP<2:0>	>	_	_	—		4440
IPC17	0862	_	(C2TXIP<2:0)>	_	(C1TXIP<2:0	>	_		DMA7IP<2:0	>	_	0)MA6IP<2:0	>	4444

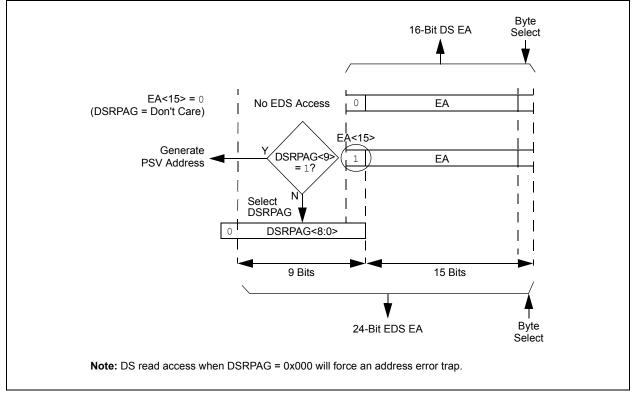
dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: ADC1 and ADC2 REGISTER MAP (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC2BUF9	0352								ADCx Data E	Buffer 9								XXXX
ADC2BUFA	0354								ADCx Data B	uffer 10								XXXX
ADC2BUFB	0356								ADCx Data B	uffer 11								XXXX
ADC2BUFC	0358								ADCx Data B	uffer 12								XXXX
ADC2BUFD	035A								ADCx Data B	uffer 13								XXXX
ADC2BUFE	035C								ADCx Data B	uffer 14								XXXX
ADC2BUFF	035E								ADCx Data B	uffer 15								XXXX
AD2CON1	0360	ADON	_	ADSIDL	ADDMABM	—		FOR	M<1:0>	5	SSRC<2:0>	•	SSRCG	SIMSAM	ASAM	SAMP	DONE	0000
AD2CON2	0362	Ň	VCFG<2:0	>	—	—	CSCNA	CHP	S<1:0>	BUFS			SMP	l<3:0>		BUFM	ALTS	0000
AD2CON3	0364	ADRC					SAMC<4:0	>					ADCS	S<7:0>				0000
AD2CHS123	0366	—		_	_	_	CH123N	NB<1:0>	CH123SB		_	_	_	_	CH123N	IA<1:0>	CH123SA	0000
AD2CHS0	0368	CH0NB	DNB - - CH0SB<4:0> CH0NA - - CH0SA<4:0> 0000							0000								
AD2CSSL	0270	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD2CON4	0272	—	_		_	—		—	ADDMAEN	_				—	C	MABL<2:0)>	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.


Note 1: These bits are not available on dsPIC33EP256MU806 devices.

4.4.1 PAGED MEMORY SCHEME

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 architecture extends the available data space through a paging scheme, which allows the available data space to be accessed using MOV instructions in a linear fashion for pre- and post-modified Effective Addresses (EA). The upper half of Base Data Space address is used in conjunction with the Data Space Page registers, the 10-Bit Read Page register (DSRPAG) or the 9-Bit Write Page register (DSWPAG), to form an Extended Data Space (EDS) address or Program Space Visibility (PSV) address. The Data Space Page registers are located in the SFR space.

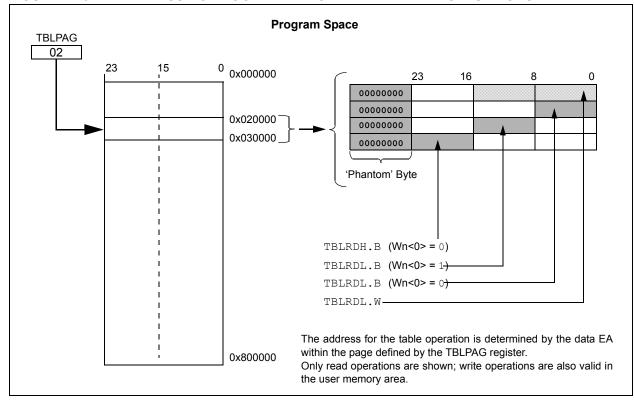
Construction of the EDS address is shown in Figure 4-1. When DSRPAG<9> = 0 and the base address bit, EA<15> = 1, DSRPAG<8:0> is concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly, when the base address bit, EA<15> = 1, DSWPAG<8:0> is concatenated onto EA<14:0> to form the 24-bit EDS write address.

EXAMPLE 4-1: EXTENDED DATA SPACE (EDS) READ ADDRESS GENERATION

4.8.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>).

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>), is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-13: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 4	MATHERR: Math Error Status bit
	1 = Math error trap has occurred
	0 = Math error trap has not occurred
bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

Note 1: This bit is available on dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.

R/W-0 CHEN bit 15	R/W-0 SIZE	R/W-0 DIR	R/W-0	R/W-0	U-0	U-0	U-0				
-	SIZE										
bit 15		DIR	HALF	NULLW			_				
							bit 8				
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0				
_	_	AMODE	E<1:0>	—	_	MODE	<1:0>				
bit 7							bit C				
Legend:	.:.		L :4								
R = Readable I		W = Writable	DIT	-	nented bit, read						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15	CHEN: Chanr	nel Enable bit									
	1 = Channel	is enabled									
	0 = Channel	is disabled									
bit 14	SIZE: Data Tr	ansfer Size bit									
	1 = Byte										
	0 = Word										
bit 13	DIR: Transfer	Direction bit (s	ource/destina	ation bus select)						
	1 = Reads fro	om DPSRAM (o	or RAM) addr	ess, writes to p	eripheral addre	SS					
	0 = Reads fro	om peripheral a	ddress, write	s to DPSRAM (or RAM) addre	SS					
bit 12	HALF: Block	Transfer Interru	upt Select bit								
	1 = Initiates in	nterrupt when h	half of the dat	a has been mo	ved						
	0 = Initiates in	nterrupt when a	all of the data	has been move	ed						
bit 11		Data Periphera									
			eral in additio	on to DPSRAM ((or RAM) write	(DIR bit must al	so be clear)				
	0 = Normal o	-									
bit 10-6	•	ted: Read as '									
bit 5-4	AMODE<1:0>	: DMA Channe	el Addressing	Mode Select b	its						
	11 = Reserve										
		al Indirect Add	0								
	•	Indirect without									
bit 3-2	-	Indirect with P ted: Read as '		it mode							
bit 1-0	-			odo Soloot hito							
DIL 1-0				ode Select bits		the each DNAA h	(ffor)				
					k transfer from	/to each DMA b	uner)				
	 10 = Continuous, Ping-Pong modes are enabled 01 = One-Shot, Ping-Pong modes are disabled 										
	00 = Continuous, Ping-Pong modes are disabled										

REGISTER 8-1: DMAXCON: DMA CHANNEL X CONTROL REGISTER

REGISTER 8-9: DSADRH: MOST RECENT DMA DATA SPACE HIGH ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	-	_	—	—	—	—
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSADF	R<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplei	mented bit, read	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 DSADR<23:16>: Most Recent DMA Address Accessed by DMA bits

REGISTER 8-10: DSADRL: MOST RECENT DMA DATA SPACE LOW ADDRESS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAE)R<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable b	it	U = Unimpleme	nted bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unkn	iown
1							

bit 15-0 DSADR<15:0>: Most Recent DMA Address Accessed by DMA bits

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2 (CONTINUED)

bit 3	OC4MD: Output Compare 4 Module Disable bit
	1 = Output Compare 4 module is disabled
	0 = Output Compare 4 module is enabled
bit 2	OC3MD: Output Compare 3 Module Disable bit
	1 = Output Compare 3 module is disabled
	0 = Output Compare 3 module is enabled
bit 1	OC2MD: Output Compare 2 Module Disable bit
	1 = Output Compare 2 module is disabled
	0 = Output Compare 2 module is enabled
bit 0	OC1MD: Output Compare 1 Module Disable bit
	1 = Output Compare 1 module is disabled

REGISTER		5: PERIPHER					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC16MD	IC15MD	IC14MD	IC13MD	IC12MD	IC11MD	IC10MD	IC9MD
bit 15							bit
R/W-0	R/W-0	D/M/ 0	R/W-0	D/M/ 0		D/M/ O	D/M/ 0
-	-	R/W-0	-	R/W-0	R/W-0	R/W-0	R/W-0
OC16MD	OC15MD	OC14MD	OC13MD	OC12MD	OC11MD	OC10MD	OC9MD
bit 7							bit
Legend:							
R = Readabl	e hit	W = Writable I	oit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	0.4/D
	TOR				areu		OWIT
bit 15	IC16MD: IC1	6 Module Disab	le bit				
	1 = IC16 mod	dule is disabled					
	0 = IC16 mod	ule is enabled					
bit 14	IC15MD: IC1	5 Module Disab	le bit				
	1 = IC15 mod	dule is disabled					
	0 = IC15 mod	dule is enabled					
bit 13	IC14MD: IC1	4 Module Disab	le bit				
		ule is disabled					
	0 = IC14 mod	dule is enabled					
bit 12		3 Module Disab	le bit				
		dule is disabled					
1.11.44		dule is enabled	1				
bit 11	-	2 Module Disab	le bit				
		dule is disabled					
bit 10		1 Module Disab	le hit				
	_	lule is disabled					
		lule is enabled					
bit 9	IC10MD: IC1	0 Module Disab	le bit				
		ule is disabled					
		dule is enabled					
bit 8	IC9MD: IC9 N	Module Disable	bit				
	1 = IC9 modu	le is disabled					
	0 = IC9 modu	ule is enabled					
bit 7	OC16MD: OC	C16 Module Dis	able bit				
		odule is disabled	1				
bit 6	OC15MD: 00	C15 Module Dis	able bit				
	1 = OC15 mo	dule is disabled	1				
	0 = OC15 mo	dule is enabled					
bit 5	OC14MD: 00	C14 Module Dis	able bit				
	1 = OC14 mo	dule is disabled	ł				
	0 = OC14 mo	odule is enabled					
bit 4	OC13MD: OC	C13 Module Dis	able bit				
		dule is disabled	1				
	0 = OC13 mo	odule is enabled					

REGISTER 11-16:	RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15
	(dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			I	HOME1R<6:0>	.(1)		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				INDX1R<6:0>	1)		
bit 7							bit 0
							
Legend: R = Readab	lo bit	W = Writable I	oit	U = Unimplen	contod bit ro	ad as '0'	
		'1' = Bit is set	JIL	'0' = Bit is clea		x = Bit is unkr	
-n = Value a	ILPUR	I = BILIS SEL		0 = Bit is clear	areo	x = Bit is unkr	IOWI
	•						
		Input tied to CMI Input tied to Vss					
bit 7	Unimpleme	nted: Read as 'd)'				
bit 6-0	(see Table 1	D>: Assign QEI1 1-2 for input pin Input tied to RP1	selection num		responding R	Pn/RPIn Pin bits	(1)
		Input tied to CMI Input tied to Vss					

Note 1: These bits are available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.

16.1 PWM Resources

Many useful resources related to the high-speed PWM are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en554310

16.1.1 KEY RESOURCES

- Section 11. "High-Speed PWM" (DS70645) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- Development Tools

REGISTER 16-19: IOCONX: PWMx I/O CONTROL REGISTER (CONTINUED)

bit 3-2	CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits
	IFLTMOD (FCLCONx<15>) = 0: Normal Fault mode:
	If current limit is active, PWMxH is driven to the state specified by CLDAT<1>.
	If current limit is active, PWMxL is driven to the state specified by CLDAT<0>.
	IFLTMOD (FCLCONx<15>) = 1: Independent Fault mode:
	The CLDAT<1:0> bits are ignored.
bit 1	SWAP: Swap PWMxH and PWMxL Pins bit
	1 = PWMxH output signal is connected to PWMxL pins; PWMxL output signal is connected to PWMxH pins
	0 = PWMxH and PWMxL pins are mapped to their respective pins
bit 0	OSYNC: Output Override Synchronization bit
	 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base 0 = Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary

Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).

22.3 USB OTG Resources

Many useful resources related to USB OTG are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en554310

22.3.1 KEY RESOURCES

- Section 11. "USB On-The-Go (OTG)" (DS70571) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- Development Tools

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
25	DAW			Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	_{Wm} , _{Wn} (1)	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	<pre>#lit15,Expr(1)</pre>	Do code to PC + Expr, lit15 + 1 times	2	2	None
		DO	Wn, Expr(1)	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd ⁽¹⁾	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm, Acc, Wx, Wy, Wxd ⁽¹⁾	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	4	None
		GOTO	Wn	Go to indirect	1	4	None
		GOTO.L	Wn	Go to indirect (long address)	1	4	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	SFA
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd,AWB ⁽¹⁾	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd ⁽¹⁾	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 30-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1:

This instruction is available in dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only. Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. 2:

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
72	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
73	SUB	SUB	_{Acc} (1)	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
74	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	Wn = Wn – lit10 – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
75	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
76	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	Wd = lit5 – Wb – (\overline{C})	1	1	C,DC,N,OV,Z
77	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
78	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	5	None
79	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	5	None
80	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
81	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
82	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
83	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
84	ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C,Z,N

TABLE 30-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Th

1: This instruction is available in dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

DC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
					-40°C ≤ 1	-40°C \leq TA \leq +125°C for Extended		
Param.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions	
	lı∟	Input Leakage Current ^(2,3)						
DI50		I/O Pins 5V Tolerant ⁽⁴⁾	_	—	±1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\rm in \ at \ high-impedance} \end{split}$	
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	-	±1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \text{ at high-impedance}, \\ -40^\circ C \leq \ TA \leq +85^\circ C \end{array}$	
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	_	±1	μΑ	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +85^{\circ}C$	
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	—	_	±1	μA	$\label{eq:VSS} \begin{split} &VSS \leq V\text{PIN} \leq V\text{DD}, \ Pin \\ &at \ high-impedance, \\ &-40^\circ\text{C} \leq T\text{A} \leq +125^\circ\text{C} \end{split}$	
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	_	±1	μΑ	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$	
DI55		MCLR	—	—	±1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
DI56		OSC1		—	±1	μΑ	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$	

TABLE 32-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for the 5V tolerant I/O pins.
- **5**: VIL source < (Vss 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.
- **10:** These parameters are characterized, but not tested.

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 17.0 "Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMU806/810/814 Devices Only)"	Reordered the bit values for the OUTFNC<1:0> bits and updated the default POR bit value to 'x' for the HOME, INDEX, QEB, and QEA bits in the QEI I/O Control Register (see Register 17-2).
Section 23.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated VREFL in the ADC1 and ADC2 Module Block Diagram (see Figure 23-1).
Section 25.0 "Comparator Module"	Added Note 1 to the Comparator I/O Operating Modes (see Figure 25-1). Removed the CLPWR bit (CMxCON<12>) (see Register 25-2).
Section 29.0 "Special Features"	Added a new first paragraph to Section 29.1 "Configuration Bits"
Section 30.0 "Instruction Set Summary"	The following instructions have been updated (see Table 30-2): BRA CALL CPBEQ CPBGT CPBLT CPBNE GOTO MOVPAG MUL RCALL RETFIE RETFIE RETLW RETURN TBLRDH TBLRDH
Section 32.0 "Electrical Characteristics"	 TBLRDL Updated the Typical and Maximum values for DC Characteristics: Operating Current (IDD) (see Table 32-5). Updated the Typical and Maximum values for DC Characteristics: Idle Current (IDLE) (see Table 32-6). Updated the Maximum values for DC Characteristics: Power-down Current (IPD) (see Table 32-7). Updated the Maximum values for DC Characteristics: Doze Current (IDOZE) (see Table 32-8). Updated the parameter numbers for Internal FRC Accuracy (see Table 32-19). Updated the parameter numbers and the Typical value for parameter F21b for Internal RC Accuracy (see Table 32-20). Updated the Minimum value for PM6 and the Typical and Maximum values for PM7 in Parallel Master Port Read Requirements (see Table 32-52). Added DMA Module Timing Requirements (see Table 32-54).

Revision F (February 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

Throughout the document, references to the package formerly known as XBGA where changed to TFBGA.

In addition, where applicable, new sections were added to each peripheral chapter that provide information and links to related resources, as well as helpful tips. For examples, see **Section 18.1 "SPI Helpful Tips"** and **Section 18.2 "SPI Resources"**. The major changes are referenced by their respective section in Table A-4.

TABLE A-4: MAJOR SECTION UPDATES

Section Name	Update Description
"16-Bit Microcontrollers and Digital Signal Controllers with High-Speed PWM, USB and	The content on the first page of this section was extensively reworked to provide the reader with the key features and functionality of this device family in an "at-a-glance" format.
Advanced Analog"	The following devices were added to the Controller Families table (see Table 1 and the "Pin Diagrams" section):
	 dsPIC33EP512MC806 dsPIC33EP512GP806 PIC24EP512GP806
Section 2.0 "Guidelines for Getting Started with 16-Bit Digital Signal Controllers and Microcontrollers"	Added Section 2.9 "Application Examples"
Section 3.0 "CPU"	Updated the Status Register information in the Programmer's Model (see Figure 3-2).
Section 4.0 "Memory	Added Interrupt Controller Register Maps (see Table 4-6 and Table 4-7).
Organization"	Added Peripheral Pin Select Output Register Map (see Table 4-39).
	Added PMD Register Maps (see Table 4-50 and Table 4-51).
	Added PORTF Register Map (see Table 4-64).
	Added PORTG Register Map (see Table 4-67).
	Updated the second note in Section 4.7 "Bit-Reversed Addressing (dsPIC33EPXXXMU806/810/814 Devices Only)".
Section 11.0 "I/O Ports"	Added RPOR10: Peripheral Pin Select Output Register 10 (see Register 11-54).
Section 14.0 "Input Capture"	Updated the Input Capture Module Block Diagram (see Figure 14-1).
Section 15.0 "Output Compare"	Updated the Output Compare Module Block Diagram (see Figure 15-1).
Section 25.0 "Comparator Module"	Updated the User-programmable Blanking Function Block Diagram (see Figure 25-3).
	Updated the bit definitions in the Comparator Mask Gating Control Register (see Register 25-4).
Section 29.0 "Special Features"	Added Note 3 to the Configuration Bits Description (see Table 29-2).
Section 32.0 "Electrical	Updated the I/O pin Absolute Maximum Ratings.
Characteristics"	Updated Note 1 in the DC Characteristics: Operating Current (see Table 32-5).
	Updated Note 1 in the DC Characteristics: Idle Current (see Table 32-6).
	Updated Note 1 in the DC Characteristics: Power-down Current (see Table 32-7).
	Updated Note 1 in the DC Characteristics: Doze Current (see Table 32-8).
	Removed parameters DO16 and DO26, added parameter DO26a, updated parameters DO10 and DO20, and added Note 1 in the DC Characteristics: I/O Pin Output Specifications (see Table 32-10).