

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	83
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mu810t-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

FIGURE 3-1: dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 CPU BLOCK DIAGRAM

REGISTER	3-2: CORC	UN: CORE CO		EGISTER						
R/W-0	U-0	R/W-0	R/W-0	R/W-0		R-0		R-0		R-0
VAR	—	US<1:0)>(1)	EDT ^(1,2)			[)L<2:0> ⁽¹⁾		
bit 15										bit 8
DAM 0	D/M/ 0					D 0			D	<u> </u>
R/VV-U			K/VV-U						R I	/vv-0 (1)
SAIA"	SAIB	SAIDW	ACCSAIN	IPL3(*)		SFA		RND		F ⁽¹⁾
DIL 7										DILU
Legend:										
R = Readabl	e bit	W = Writable b	it	U = Unimple	ement	ed bit. re	ad a	s '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared		x	: = Bit is unkr	nown	
bit 15	VAR: Variable	Exception Prod	cessing Later	ncy Control bi	t					
	1 = Variable e	exception proces	sing is enab	led						
	0 = Fixed exc	eption processir	ng is enabled	1						
bit 14	Unimplemen	ted: Read as '0	3							
bit 13-12	US<1:0>: DS	P Multiply Unsig	ned/Signed	Control bits ⁽¹⁾						
	11 = Reserve	d ring multipligg g	re mixed sig	~						
	01 = DSP eng	gine multiplies a	re unsigned	[]						
	00 = DSP eng	gine multiplies a	re signed							
bit 11	EDT: Early DO	D Loop Terminat	ion Control b	it ^(1,2)						
	1 = Terminate	es executing DO	loop at end c	of current loop	itera	tion				
	0 = No effect			(4)						
bit 10-8	DL<2:0>: DO	Loop Nesting Le	evel Status bi	its ⁽¹⁾						
	111 = 7 DO IO	ops are active								
	•									
	•									
	001 = 1 DO lo	op is active								
	000 = 0 DO lo	ops are active								
bit 7	SATA: ACCA	Saturation Enal	ble bit ⁽¹⁾							
	1 = Accumula	tor A saturation	is enabled							
h:1 0		tor A saturation	IS disabled							
DIT 6		Saturation Ena								
	1 = Accumula 0 = Accumula	itor B saturation	is disabled							
bit 5	SATDW: Data	a Space Write fro	om DSP Eng	ine Saturatio	n Ena	ble bit ⁽¹⁾				
	1 = Data spac	ce write saturation	on is enabled	1						
	0 = Data space	e write saturatio	on is disabled	b						
bit 4	ACCSAT: Acc	cumulator Satura	ation Mode S	Select bit ⁽¹⁾						
	1 = 9.31 satur	ration (super sat	uration)							
hit 0	0 = 1.31 satur	tation (normal sa		.;+ ⊃ (3)						
UIL O	1 = CPU Inter	runt Priority Low	evel Sidius (Al is greater	ກເວົ້າ than 7						
	0 = CPU Inter	rupt Priority Lev	el is 7 or les	S						
Note 1: Th	his bit is available	e on dsPIC33EP	XXX(GP/MC	C/MU)806/810	/814 (devices o	only.			

DECISTED 3-2 COPCON- COPE CONTROL PECISTER

3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. "Program Memory" (DS70613) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The device architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The device program address memory space is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from table operation or data space remapping as described in **Section 4.8 "Interfacing Program and Data Memory Spaces"**.

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The device program memory map is shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 DEVICES⁽¹⁾

	Ā	GOTO Instruction ⁽²⁾	GOTO Instruction ⁽²⁾	0x000000
		Reset Address ⁽²⁾	Reset Address ⁽²⁾	0x000002
		Interrupt Vector Table	Interrupt Vector Table	0x000004 0x0001FE
ry Space	General Segment	User Program Flash Memory (87552 instructions)	User Program Flash Memory (175104 instructions)	0x000200 0x02ABFE 0x02AC00
emo	Ŭ	Unimplemented		0x0557FE
er M		(Read '0's)	Unimplemented (Read '0's)	0x055800
Š	Ŧ	Auxiliary Program	Auxiliary Program	0x7FBFFE 0x7FC000
	mer	Flash Memory	Flash Memory	0x7FFFF8
	y Seç	Auxiliary Interrupt Vector	Auxiliary Interrupt Vector	0x7FFFFA
	ciliar	GOTO Instruction ⁽²⁾	GOTO Instruction ⁽²⁾	0x7FFFFC
•	¶¶,	Reset Address ⁽²⁾	Reset Address ⁽²⁾	0x7FFFFE
Á				0x800000
		Reserved	Reserved	
ė				0xF7FFFE
pac		Device Configuration Registers	Device Configuration Registers	0xF80000
ory S				0xF80014
Jemo		Reserved	Reserved	0xF9FFFE
ration 1		Write Latch	Write Latch	0xFA0000 0xFA00FE
nfigu		Reserved	Reserved	0xFA0100 0xFEFFFF
ŏ		DEVID (2 Words)	DEVID (2 Words)	0xFF0000 0xFF0002
		Reserved	Reserved	
•				0xFFFFFE

Note 1: Memory areas are not shown to scale.

2: The Reset location is controlled by the Reset Target Vector Select bit, RSTPRI (FICD<2>). See Section 29.0 "Special Features" for more information.

Allocating different Page registers for read and write access allows the architecture to support data movement between different pages in data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read and configuring the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages, by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.

When an EDS or PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

- The initial address, prior to modification, addresses an EDS or PSV page.
- The EA calculation uses Pre- or Post-Modified Register Indirect Addressing. However, this does not include Register Offset Addressing.

In general, when an overflow is detected, the DSxPAG register is incremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0, EDS and PSV spaces. Table 4-73 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- Register Indirect with Register Offset Addressing
- Modulo Addressing
- Bit-Reversed Addressing

TABLE 4-73: OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS and PSV SPACE BOUNDARIES^(2,3,4)

0/11			Before		After			
R/W Operation		DSxPAG	DS EA<15>	Page Description	DSxPAG	DS EA<15>	Page Description	
O, Read		DSRPAG = 0x1FF	1	EDS: Last page	DSRPAG = 0x1FF	0	See Note 1	
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last lsw page	DSRPAG = 0x300	1	PSV: First MSB page	
O, Read	[Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB page	DSRPAG = 0x3FF	0	See Note 1	
O, Write		DSWPAG = 0x1FF	1	EDS: Last page	DSWPAG = 0x1FF	0	See Note 1	
U, Read		DSRPAG = 0x001	1	EDS page	DSRPAG = 0x001	0	See Note 1	
U, Read	[Wn] Or	DSRPAG = 0x200	1	PSV: First Isw page	DSRPAG = 0x200	0	See Note 1	
U, Read	[111]	DSRPAG = 0x300	1	PSV: First MSB page	DSRPAG = 0x2FF	1	PSV: Last lsw page	

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: Register Indirect Addressing now addresses a location in the Base Data Space (0x0000-0x8000).

2: An EDS access with DSxPAG = 0x000 will generate an address error trap.

3: Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.

4: Pseudo-Linear Addressing is not supported for large offsets.

5.4 Flash Program Memory Resources

Many useful resources related to Flash program memory are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en554310

5.4.1 KEY RESOURCES

- Section 5. "Flash Programming" (DS70609) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33E/PIC24E Family Reference Manual" Sections
- Development Tools

5.5 Control Registers

Four SFRs are used to read and write the program Flash memory: NVMCON, NVMKEY, NVMADRU and NVMADR.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected row or word for programming operations, or the selected page for erase operations.

The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	_	_		_	—	_	PLLDIV<8>
bit 15		·		·	·		bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLDI	V<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown	
bit 15-9	Unimplemen	ted: Read as '	0'				
bit 8-0	PLLDIV<8:0>	>: PLL Feedbac	k Divisor bits	(also denoted	as 'M', PLL mu	ltiplier)	
	111111111	= 513					
	•						
	•						
	•						
	000110000:	= 50 (default)					
	•						
	•						
	•	_ 4					
		= 4 = 3					
	0000000000	= 2					

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

Note 1: This register is reset only on a Power-on Reset (POR).

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment	Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment
010 1011	I	RPI43	101 1000	I	RPI88
010 1100	I	RPI44	101 1001	I	RPI89
101 1010	_	Reserved	110 1101	I/O	RP109
101 1011	—	Reserved	110 1110	_	Reserved
101 1100	—	Reserved	110 1111	—	Reserved
101 1101	_	Reserved	111 0000	I/O	RP112
101 1110	—	Reserved	111 0001	I/O	RP113
101 1111	—	Reserved	111 0010	—	Reserved
110 0000	I/O	RP96	111 0011		Reserved
110 0001	I/O	RP97	111 0100	_	Reserved
110 0010	I/O	RP98	111 0101	—	Reserved
110 0011	I/O	RP99	111 0110	I/O	RP118
110 0100	I/O	RP100	111 0111	I	RPI119
110 0101	I/O	RP101	111 1000	I/O	RP120
110 0110	I/O	RP102	111 1001	I	RPI121
110 0111	—	Reserved	111 1010	—	Reserved
110 1000	I/O	RP104	111 1011	—	Reserved
110 1001	_	Reserved	111 1100	I	RPI124
110 1010	_	Reserved	111 1101	I/O	RP125
110 1011	—	Reserved	111 1110	I/O	RP126
110 1100	I/O	RP108	111 1111	I/O	RP127

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES (CONTINUED)

Note 1: See Section 11.4.4.2 "Virtual Connections" for more information on selecting this pin assignment.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				T9CKR<6:0>	•		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				T8CKR<6:0>	•		
bit 7	·						bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-8	T9CKR<6:0>	Assign Timer	9 External Cl	ock (T9CK) to th	he Correspon	ding RPn/RPIn F	Pin bits
	(see Table 11	-2 for input pin	selection nur	mbers)			
	1111111 = I r	nput tied to RP	127				
	•						
	0000001 = lr	nput tied to CM	P1				
	II = 0000000	nput tied to Vss	5				
bit 7	Unimplemen	ited: Read as '	0'				
bit 6-0	T8CKR<6:0>	: Assign Timer	8 External Cl	ock (T8CK) to th	he Correspon	ding RPn/RPIn F	Pin bits
	(see Table 11	-2 for input pin	selection nur	mbers)			
	1111111 = I r	nput tied to RP	127				
	•						
	0000001 = Ir	nput tied to CM	P1				
	n l = 0000000 = I	nput tied to Vss	5				

REGISTER 11-7: RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6

REGISTER 11-45: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP67	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP66	₀R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP67R<5:0>: Peripheral Output Function is Assigned to RP67 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP66R<5:0>: Peripheral Output Function is Assigned to RP66 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-46: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—		RP69R<5:0>							
bit 15							bit 8			

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—		RP68R<5:0>							
bit 7							bit 0			

Legend:						
R = Readable bit	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP69R<5:0>:** Peripheral Output Function is Assigned to RP69 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP68R<5:0>:** Peripheral Output Function is Assigned to RP68 Output Pin bits (see Table 11-3 for peripheral function numbers)

FIGURE 13-3: TYPE B/TYPE C TIMER PAIR BLOCK DIAGRAM (32-BIT TIMER)

13.1 Timer Resources

Many useful resources related to timers are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en554310

13.1.1 KEY RESOURCES

- Section 11. "Timers" (DS70362) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- · Development Tools

16.0 HIGH-SPEED PWM MODULE (dsPIC33EPXXX(MC/MU)8XX DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "High-Speed PWM" (DS70645) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXX(MC/MU)806/810/814 devices support a dedicated Pulse-Width Modulation (PWM) module with up to 14 outputs.

The high-speed PWM module consists of the following major features:

- Two master time base modules with Special Event Triggers
- PWM module input clock prescaler
- Two synchronization inputs
- Two synchronization outputs
- · Up to seven PWM generators
- Two PWM outputs per generator (PWMxH and PWMxL)
- Individual period, duty cycle and phase shift for each PWM output
- Period, duty cycle, phase shift and dead-time resolution of 8.32 ns
- Immediate update mode for PWM period, duty cycle and phase shift
- Independent Fault and current-limited inputs for each PWM
- · Cycle-by-Cycle and Latched Fault modes
- · PWM time-base capture upon current limit
- Seven Fault inputs and three comparator outputs available for Faults and current limits
- Programmable ADC trigger with interrupt for each
 PWM pair

- · Complementary PWM outputs
- Push-Pull PWM outputs
- Redundant PWM outputs
- · Edge-Aligned PWM mode
- · Center-Aligned PWM mode
- Variable Phase PWM mode
- · Multi-Phase PWM mode
- · Fixed Off Time PWM mode
- Current-Limit PWM mode
- Current Reset PWM mode
- PWMxH and PWMxL output override control
- PWMxH and PWMxL output pin swapping
- Chopping mode (also known as Gated mode)
- · Dead-time insertion
- Dead-time compensation
- Enhanced Leading-Edge Blanking (LEB)
- 8 mA PWM pin output drive

Note: Duty cycle, dead time, phase shift and frequency resolution is 16.64 ns in Center-Aligned PWM mode.

The high-speed PWM module contains up to seven PWM generators. Each PWM generator provides two PWM outputs: PWMxH and PWMxL. Two master time base generators provide a synchronous signal as a common time base to synchronize the various PWM outputs. Each generator can operate independently or in synchronization with either of the two master time bases. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limited signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known "safe" state.

Each PWM can generate a trigger to the ADC module to sample the analog signal at a specific instance during the PWM period. In addition, the high-speed PWM module also generates two Special Event Triggers to the ADC module based on the two master time bases.

The high-speed PWM module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNCI1 and SYNCI2 pins are the input pins, which can synchronize the high-speed PWM module with an external signal. The SYNCO1 and SYNCO2 pins are output pins that provides a synchronous signal to an external device.

Figure 16-1 illustrates an architectural overview of the high-speed PWM module and its interconnection with the CPU and other peripherals.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			SEVTC	MP<15:8>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	SEVTCMP<7:0>									
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			it	U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set '0' = Bit is cleared		ared	x = Bit is unkr	nown						

REGISTER 16-4: SEVTCMP: PWM PRIMARY SPECIAL EVENT COMPARE REGISTER

bit 15-0 SEVTCMP<15:0>: Special Event Compare Count Value bits

17.1 QEI Resources

Many useful resources related to QEI are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en554310

17.1.1 KEY RESOURCES

- Section 15. "Quadrature Encoder Interface (QEI)" (DS70601) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- Development Tools

REGISTER	REGIS	STER n (n = 0	х ассерт. -15)		R II STANDAI		ER					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x					
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3					
bit 15							bit 8					
R/W-x	R/W-x	R/W-x	11-0	R/W-x	U-0	R/W-x	R/W-x					
SID2	SID1	SID0	_	EXIDE	_	EID17	EID16					
bit 7						I	bit C					
Legend:												
R = Readabl	e bit	W = Writable I	oit	U = Unimplemented bit, read as '0'								
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown								
bit 15-5	SID<10:0>: S 1 = Message 0 = Message	Standard Identifi address bit, SII address bit, SII	er bits Dx, must be ' Dx, must be '	1' to match filte	er							
bit 4	Unimplemen	ited: Read as '0)'									
bit 3	EXIDE: Exter	EXIDE: Extended Identifier Enable bit										
	If MIDE = 1:	If MIDE = 1:										
	1 = Matches 0 = Matches	 1 = Matches only messages with extended identifier addresses 0 = Matches only messages with standard identifier addresses 										
	<u>If MIDE = 0:</u> Ignores EXID	E bit.										
bit 2	Unimplemen	ited: Read as ')'									
bit 1-0	EID<17:16>:	Extended Ident	ifier bits									
	1 = Message 0 = Message	 1 = Message address bit, EIDx, must be '1' to match filter 0 = Message address bit, EIDx, must be '0' to match filter 										

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 25	5-4: CMxN CONT	4: CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER									
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN				
bit 15					·		bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN				
bit 7		-	·	•			bit 0				
Legend:											
R = Readable I	oit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown				
bit 15	HLMS: High 1 = The masl 0 = The masl	or Low-Level N king (blanking) king (blanking)	Aasking Select function will pre function will pre	bits event any asse event any asse	erted ('0') compa erted ('1') compa	arator signal from arator signal from	m propagating m propagating				
bit 14	Unimpleme	nted: Read as	'0'								
bit 13	OCEN: OR (1 = MCI is co 0 = MCI is no	Gate C Input Er onnected to OF ot connected to	nable bit gate OR gate								
bit 12	OCNEN: OR Gate C Input Inverted Enable bit										
	1 = Inverted 0 = Inverted	MCI is connect MCI is not con	ed to OR gate nected to OR g	gate							
bit 11	OBEN: OR 0 1 = MBI is co 0 = MBI is no	Gate B Input Er onnected to OR ot connected to	able bit gate OR gate								
bit 10	OBNEN: OR	Gate B Input I	nverted Enable	e bit							
	1 = Inverted 0 = Inverted	MBI is connect MBI is not coni	ed to OR gate nected to OR g	jate							
bit 9	OAEN: OR (Gate A Input Er	able bit								
	1 = MAI is co 0 = MAI is no	onnected to OR ot connected to	gate OR gate								
bit 8	OANEN: OR	Gate A Input I	nverted Enable	e bit							
	1 = Inverted 0 = Inverted	MAI is connect MAI is not con	ed to OR gate nected to OR g	jate							
bit 7	NAGS: AND 1 = Inverted 0 = Inverted	Gate Output Ir ANDI is conner ANDI is not con	nverted Enable cted to OR gat nnected to OR	e bit e gate							
bit 6	PAGS: AND 1 = ANDI is 0 0 = ANDI is 1	Gate Output E connected to O not connected f	nable bit R gate o OR gate								
bit 5	ACEN: AND 1 = MCI is co	Gate C Input E onnected to AN	Enable bit D gate								
hit 4		D Gate C Input	Inverted Ench	le hit							
	1 = Inverted 0 = Inverted	MCI is connect MCI is not con	ed to AND gat	gate							

INSTRUCTION SET OVERVIEW (CONTINUED) TABLE 30-2:

Base Instr #	Assembly Mnemonic	y Assembly Syntax		Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV f		Move f to f	1	1	None
		MOV f,WREG MOV #lit16,Wn		Move f to WREG	1	1	None
				Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None
		MOVPAG	#lit9,DSWPAG	Move 9-bit literal to DSWPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None
		MOVPAGW	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAGW	Ws, DSWPAG	Move Ws<8:0> to DSWPAG	1	1	None
		MOVPAGW	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
48	MOVSAC	MOVSAC	Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Prefetch and store accumulator	1	1	None
49	MPY	MPY	Wm*Wn, Acc, Wx, Wxd, Wy, Wyd ⁽¹⁾	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd(1)	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
50	MPY.N	MPY.N	Wm*Wn, Acc, Wx, Wxd, Wy, Wyd ⁽¹⁾	-(Multiply Wm by Wn) to Accumulator	1	1	None
51	MSC	MSC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
52	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb, Ws, Acc(1)	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb, Ws, Acc ⁽¹⁾	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb, Ws, Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb, #lit5, Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb, #lit5, Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

Note 1:

This instruction is available in dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only. Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. 2:

TABLE 32-22: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SY00	Τρυ	Power-up Period	_	400	600	μS			
SY10	Tost	Oscillator Start-up Time	_	1024 Tosc		—	Tosc = OSC1 period		
SY11	TPWRT	Power-up Timer Period		_		-	See Section 29.1 "Configuration Bits" and LPRC Parameters F21a and F21b (Table 32-20)		
SY12	Тwdt	Watchdog Timer Time-out Period	_	_	_	_	See Section 29.4 "Watchdog Timer (WDT)" and LPRC Parameters F21a and F21b (Table 32-20)		
SY13	Tioz	I/O H <u>igh-Im</u> pedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS			
SY20	TMCLR	MCLR Pulse Width (low)	2	—	—	μS			
SY30	TBOR	BOR Pulse Width (low)	1	—	—	μS			
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μS	-40°C to +85°C		
SY36	TVREG	Voltage Regulator Standby-to-Active Mode Transition Time		_	30	μs			
SY37	Toscdfrc	FRC Oscillator Start-up Delay	_	—	29	μs			
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay	_	—	70	μs			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
PS1	TdtV2wrH	Data In Valid Before \overline{WR} or \overline{CS} Inactive (setup time)	20	—		ns		
PS2	TwrH2dtl	$\overline{\text{WR}}$ or $\overline{\text{CS}}$ Inactive to Data In Invalid (hold time)	20	_	—	ns		
PS3	TrdL2dtV	$\overline{\text{RD}}$ and $\overline{\text{CS}}$ to Active Data Out Valid	—	—	80	ns		
PS4	TrdH2dtl	RD or CS Inactive to Data Out	10	—	30	ns		
PS5	Tcs	CS Active Time	33.33	_		ns		
PS6	Twr	RD Active Time	33.33	_	_	ns		
PS7	Trd	WR Active Time	33.33	_		ns		

TABLE 32-65: PARALLEL SLAVE PORT TIMING SPECIFICATIONS

Note 1: These parameters are characterized, but not tested in manufacturing.