

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	83
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mu810t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 Digital Signal Controller (DSC) and Microcontroller (MCU) devices. The dsPIC33EPXXX(GP/MC/MU)806/810/814 devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance 16-bit MCU architecture.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 families of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 µF to 47 µF.

2.3 **CPU Logic Filter Capacitor** Connection (VCAP)

A low-ESR (< 1 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor greater than 4.7 µF (10 µF is recommended), 16V connected to ground. The type can be ceramic or tantalum. See Section 32.0 "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See Section 29.2 "On-Chip Voltage Regulator" for details.

Master Clear (MCLR) Pin 2.4

The MCLR pin provides two specific device functions:

- · Device Reset
- · Device Programming and Debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN FIGURE 2-2: CONNECTIONS

- **Note 1:** $R \leq 10 \text{ k}\Omega$ is recommended. A suggested starting value is 10 k Ω . Ensure that the MCLR pin VIH and VIL specifications are met.
 - $R1 \leq 470\Omega$ will limit any current flowing into 2: MCLR from the external capacitor C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met.

3.8 Arithmetic Logic Unit (ALU)

The ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.8.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier, the ALU supports unsigned, signed, or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.8.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.9 DSP Engine (dsPIC33EPXXX(GP/ MC/MU)806/810/814 Devices Only)

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are: ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- Signed, unsigned or mixed-sign DSP multiply (US)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

TABLE 3-2: DSP INSTRUCTIONS SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	$A = x^2$	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

TABLE	4-4:	INT	FERRU	PT CON	ITROLL	ER REGI	STER I	MAP FOF	R dsPIC	33EPXXX	MU810	DEVICES	ONLY					
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	NVMIF	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	T6IF	DMA4IF	PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	_	RTCIF	DMA5IF	DCIIF	DCIEIF	QEI1IF	PSEMIF	C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4	0808	_	_	_	_	QEI2IF	_	PSESMIF	_	C2TXIF	C1TXIF	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	_	0000
IFS5	080A	PWM2IF	PWM1IF	IC9IF	OC9IF	SPI3IF	SPI3EIF	U4TXIF	U4RXIF	U4EIF	USB1IF	_	_	U3TXIF	U3RXIF	U3EIF	_	0000
IFS6	080C	—			—	_	—	—	—	_	—	—	—	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	080E	IC11IF	OC11IF	IC10IF	OC10IF	SPI4IF	SPI4EIF	DMA11IF	DMA10IF	DMA9IF	DMA8IF	—	—	_	—	—	—	0000
IFS8	0810	_	ICDIF	IC16IF	OC16IF	IC15IF	OC15IF	IC14IF	OC14IF	IC13IF	OC13IF	—	DMA14IF	DMA13IF	DMA12IF	IC12IF	OC12IF	0000
IEC0	0820	NVMIE	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	T6IE	DMA4IE	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	—	RTCIE	DMA5IE	DCIIE	DCIEIE	QEI1IE	PSEMIE	C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	0828	—	-	—	—	QEI2IE	_	PSESMIE	_	C2TXIE	C1TXIE	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	_	0000
IEC5	082A	PWM2IE	PWM1IE	IC9IE	OC9IE	SPI3IE	SPI3EIE	U4TXIE	U4RXIE	U4EIE	USB1IE	—	—	U3TXIE	U3RXIE	U3EIE	_	0000
IEC6	082C	—	-	—	—	—	—	—	—	_	—	—	—	PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	082E	IC11IE	OC11IE	IC10IE	OC10IE	SPI4IE	SPI4EIE	DMA11IE	DMA10IE	DMA9IE	DMA8IE	_	—	_	—	—	—	0000
IEC8	0830	—	ICDIE	IC16IE	OC16IE	IC15IE	OC15IE	IC14IE	OC14IE	IC13IE	OC13IE	—	DMA14IE	DMA13IE	DMA12IE	IC12IE	OC12IE	0000
IPC0	0840	—		T1IP<2:0>	•	—		OC1IP<2:0>		_	IC1IP<2:0>		—	— INT		>	4444	
IPC1	0842	—		T2IP<2:0>	•	—		OC2IP<2:0>		_	IC2IP<2:0>			—	[DMA0IP<2:0	>	4444
IPC2	0844	—		U1RXIP<2:	0>	—		SPI1IP<2:0>	•	_		SPI1EIP<2:0>	>	—		T3IP<2:0>		4444
IPC3	0846	_		NVMIP<2:0)>	—		DMA1IP<2:0	>			AD1IP<2:0>		—	l	U1TXIP<2:0	>	4444
IPC4	0848	_		CNIP<2:0	>	—		CMIP<2:0>				MI2C1IP<2:0	>	—	5	SI2C1IP<2:0	>	4444
IPC5	084A	_		IC8IP<2:0	>	_		IC7IP<2:0>				AD2IP<2:0>		—		INT1IP<2:0	>	4444
IPC6	084C	—		T4IP<2:0>	•	—		OC4IP<2:0>		_		OC3IP<2:0>		—	[DMA2IP<2:0	>	4444
IPC7	084E	—		U2TXIP<2:0)>	—		U2RXIP<2:0	>	_		INT2IP<2:0>		—		T5IP<2:0>		4444
IPC8	0850	_		C1IP<2:0>	>	—		C1RXIP<2:0	>			SPI2IP<2:0>		—	9	SPI2EIP<2:0	>	4444
IPC9	0852	_		IC5IP<2:0	>	—		IC4IP<2:0>				IC3IP<2:0>		—	[DMA3IP<2:0	>	4444
IPC10	0854	—		OC7IP<2:0	>	—		OC6IP<2:0>		_		OC5IP<2:0>		—		IC6IP<2:0>		4444
IPC11	0856	—		T6IP<2:0>	`	—		DMA4IP<2:0	>	_		PMPIP<2:0>		—		OC8IP<2:0>	>	4444
IPC12	0858	_		T8IP<2:0>	>	_		MI2C2IP<2:0	>	_		SI2C2IP<2:0>	>	_		T7IP<2:0>		4444
IPC13	085A			C2RXIP<2:	0>	_		INT4IP<2:0>	•	_		INT3IP<2:0>		—	T9IP<2:0>			4444
IPC14	085C	—		DCIEIP<2:0)>	_		QEI1IP<2:0>	>	_		PSEMIP<2:0>	>	_		C2IP<2:0>		4444
IPC15	085E	—	_	—	_	—		RTCIP<2:0>		_		DMA5IP<2:0>	• <u> </u>	—		DCIIP<2:0>		0444

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	_	_	OCSIDL	(OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV		_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC1RS	0904							Out	out Compare	e 1 Seconda	ry Register							XXXX
OC1R	0906								Output Co	mpare 1 Re	gister							XXXX
OC1TMR	0908	Timer Value 1 Register										XXXX						
OC2CON1	090A	_	_	OCSIDL	C	OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV		_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC2RS	090E							Out	out Compare	e 2 Seconda	ry Register							XXXX
OC2R	0910								Output Co	mpare 2 Re	gister							XXXX
OC2TMR	0912								Timer V	alue 2 Regis	ter							XXXX
OC3CON1	0914	—	_	OCSIDL	C	OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC3RS	0918							Out	out Compare	e 3 Seconda	ry Register							XXXX
OC3R	091A								Output Co	mpare 3 Re	gister							XXXX
OC3TMR	091C							_	Timer V	alue 3 Regis	ter							xxxx
OC4CON1	091E	_	_	OCSIDL	0	OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV		_	—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC4RS	0922							Out	out Compare	e 4 Seconda	ry Register							XXXX
OC4R	0924								Output Co	mpare 4 Re	gister							XXXX
OC4TMR	0926		-	r r				1	Timer V	alue 4 Regis	ter							XXXX
OC5CON1	0928	—	—	OCSIDL	C	OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC5CON2	092A	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC5RS	092C							Out	out Compare	e 5 Seconda	ry Register							XXXX
OC5R	092D								Output Co	mpare 5 Re	gister							XXXX
OC5TMR	0930							1	Timer V	alue 5 Regis	ter							XXXX
OC6CON1	0932	_	-	OCSIDL	(OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC6CON2	0934	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC6RS	0936							Out	out Compare	e 6 Seconda	ry Register							XXXX
OC6R	0938								Output Co	mpare 6 Re	gister							XXXX
OC6TMR	093A							1	Timer V	alue 6 Regis	ter			1				XXXX
OC7CON1	093C	_	—	OCSIDL	(OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC7CON2	093E	FLTMD	FLTOUT	FLTTRIEN	OCINV		—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC7RS	0940	Output Compare 7 Secondary Register								XXXX								
OC7R	0942								Output Co	mpare 7 Re	gister							XXXX
OC7TMR	0944								Timer V	alue 7 Regis	ter							XXXX

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

TABLE 4-11: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 16 REGISTER MAP

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER (CONTINUED)

- bit 2 **PPST2:** Channel 2 Ping-Pong Mode Status Flag bit
 - 1 = DMASTB2 register selected0 = DMASTA2 register selected
- bit 1 **PPST1:** Channel 1 Ping-Pong Mode Status Flag bit
- 1 = DMASTB1 register selected
 - 0 = DMASTA1 register selected
- bit 0 PPST0: Channel 0 Ping-Pong Mode Status Flag bit
 - 1 = DMASTB0 register selected
 - 0 = DMASTA0 register selected

REGISTER 11-27: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				U3CTSR<6:0	>		
bit 15	·						bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				U3RXR<6:0>	•		
bit 7	·						bit (
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
Dit 15	Unimpleme	nted: Read as	0,				
bit 14-8	U3CTSR<6:	0>: Assign UAR	T3 Clear-to-S	Send (U3CTS) t	the Corresp	onding RPn/RPI	n Pin bits
	(see Table 1	1-2 for input pin	selection nun	nbers)			
	1111111 = 	nput tied to RP	127				
	•						
	·						
	•	nput tied to CM	D1				
	0000000 =	nput tied to Vss					
bit 7	Unimpleme	ntod: Read as '	,				
bit 6-0	U3RXR<6:0 (see Table 1	Assign UART 1-2 for input pin	3 Receive (U selection num	3RX) to the Co	rresponding F	RPn/RPIn Pin bit	5
		nout tied to RP	127				
	0000001 = 	nput tied to CM	P1				
	0000000 = 	nput tied to Vss					

REGISTER 16-11: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 7-	6	DTC<1:0>: Dead-Time Control bits
		11 = Dead-Time Compensation mode 10 = Dead-time function is disabled
		01 = Negative dead time actively applied for Complementary Output mode
		00 = Positive dead time actively applied for all output modes
bit 5		DTCP: Dead-Time Compensation Polarity bit ⁽³⁾
		<u>When set to '1':</u> If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened. If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened.
		When set to '0':
		If DTCMPx = 0, PWMxH is shortened and PWMxL is lengthened.
		If D I CMPX = 1, PWMXL is shortened and PWMXH is lengthened.
DIT 4		
bit 3		MTBS: Master Time Base Select bit
		1 = PWM generator uses the secondary master time base for synchronization and as the clock source for the PWM generation logic (if secondary time base is available)
		 PWM generation logic (in secondary time base is available) PWM generator uses the primary master time base for synchronization and as the clock source for the PWM generation logic
bit 2		CAM: Center-Aligned Mode Enable bit ^(2,4)
		1 = Center-Aligned mode is enabled
		0 = Edge-Aligned mode is enabled
bit 1		XPRES: External PWM Reset Control bit ⁽⁵⁾
		 1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode
		0 = External pins do not affect PWM time base
bit 0		IUE: Immediate Update Enable bit ⁽²⁾
		1 = Updates to the active MDC/PDCx/SDCx registers are immediate
		0 = Updates to the active PDCx registers are synchronized to the PWM time base
Note	1:	Software must clear the interrupt status here and in the corresponding IFS bit in the interrupt controller.
	2:	These bits should not be changed after the PWM is enabled (PTEN = 1).
	3:	DTC<1:0> = 11 for DTCP to be effective; otherwise, DTCP is ignored.
	4:	The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

REGISTER 17-4: POSxCNTH: POSITION COUNTER x HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSC	NT<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSC	NT<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
р							

bit 15-0 **POSCNT<31:16>:** High Word Used to Form 32-Bit Position Counter Register (POSxCNT) bits

REGISTER 17-5: POSxCNTL: POSITION COUNTER x LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSCN	T<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSCN	IT<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 POSCNT<15:0>: Low Word Used to Form 32-Bit Position Counter Register (POSxCNT) bits

REGISTER 17-6: POSxHLD: POSITION COUNTER x HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			POSHI	_D<15:8>							
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			POSH	LD<7:0>							
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'					
-n = Value at P	n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown										

bit 15-0 **POSHLD<15:0>:** Hold Register for Reading and Writing POSxCNTH bits

FIGURE 21-1: ECANX MODULE BLOCK DIAGRAM

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7	•						bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	= Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown				nown		

REGISTER 21-11: CxFEN1: ECANx ACCEPTANCE FILTER ENABLE REGISTER 1

bit 15-0

FLTENn: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: ECANx FILTER 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F3BF	P<3:0>			F2B	P<3:0>		
bit 15				·				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F1BF	P<3:0>			F0B	P<3:0>		
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown	
bit 15-12	F3BP<3:0>: 1111 = Filte 1110 = Filte	RX Buffer Mas r hits received in r hits received in	k for Filter 3 k n RX FIFO bu n RX Buffer 1	bits ıffer 4				
	•							

	•
	0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0
bit 11-8	F2BP<3:0>: RX Buffer Mask for Filter 2 bits (same values as bit 15-12)
bit 7-4	F1BP<3:0>: RX Buffer Mask for Filter 1 bits (same values as bit 15-12)

bit 3-0 **F0BP<3:0>:** RX Buffer Mask for Filter 0 bits (same values as bit 15-12)

REGISIER	22-4: UXSI	AI: 038 314	105 REGIS	IER			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_		—	—	—	—
bit 15							bit 8
R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	U-0	U-0
	ENDPT	<3:0> ⁽²⁾		DIR	PPBI ⁽¹⁾	<u> </u>	_
bit 7							bit 0
Legend:		U = Unimplen	nented bit, read	d as '0'			
R = Readable	e bit	W = Writable	bit	HSC = Hardw	are Settable/C	Clearable bit	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 7-4	ENDPT<3:0> (represents th 1111 = Endpo 1110 = Endpo	: Last Endpoin ne number of th oint 15 oint 14 oint 1 oint 1	t Activity Numb e endpoint BD	per bits T updated by th	ne last USB tra	ansfer) ⁽²⁾	
bit 3	DIR: Last Buffer Descriptor Direction Indicator bit 1 = The last transaction was a transmit transfer (TX) 0 = The last transaction was a receive transfer (RX)						
bit 2	PPBI: Ping-P 1 = The last t 0 = The last t	ong Buffer Des transaction was transaction was	criptor Pointer to the ODD b to the EVEN	Indicator bit ⁽¹⁾ uffer descriptor buffer descripto	bank r bank		
bit 1-0	Unimplemen	ted: Read as ')'				

Note 1: This bit is only valid for endpoints with available EVEN and ODD buffer descriptor registers.

2: In Host mode, all transactions are processed through Endpoint 0 and the Endpoint 0 BDTs. Therefore, ENDPT<3:0> will always read as '0000'.

-							
R/W-0) U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRO	> _				SAMC<4:0>(1)	
bit 15							bit 8
R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADCS<	7:0> ^(2,3)			
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable t	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ADRC: ADC	Conversion Clo	ck Source bit				
	1 = ADC inte	rnal RC clock					
	0 = Clock De	rived From Syst	em Clock				
bit 14-13	Unimplemen	ited: Read as '0)'				
bit 12-8	SAMC<4:0>:	Auto-Sample T	ïme bits ⁽¹⁾				
	11111 = 31 7	Tad					
	•						
	•						
	•						
	$00001 = 1 T_{A}$	AD.					
	00000 = 0	AD		(23)			
bit 7-0	ADCS<7:0>:	ADC Conversio	on Clock Selec				
	11111111 =	IP • (ADCS<7:0)> + 1) = 256	• ICY = IAD			
	•						
	•						
	•		(-1) = 2 + 1				
	00000010 =	TP • (ADCS<7:0)> + 1) = 3 • 1)> + 1) = 2 • T	CY = TAD			
	000000000	TP • (ADCS<7:0	$() > + 1) = 1 \cdot T$	CY = TAD			
		•					
Note 1:	This bit is only use	ed if ADxCON1<	7:5> (SSRC<	2:0>) = 111 an	nd ADxCON1<	4> (SSRCG) =	0.
2:	This bit is not used	d if ADxCON3<	15> (ADRC) =	1.			
3:	Tp = 1/Fp.						

REGISTER 23-4: ADxCON3: ADCx CONTROL REGISTER 3

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CH0NB	—	—			CH0SB<4:0>(1)			
bit 15							bit 8		
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CH0NA				CH0SA<4:0> ⁽¹⁾					
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'			
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	CH0NB: Char	nnel 0 Negativ	e Input Select	for Sample B b	it				
	Same definition	on as bit 7.							
bit 14-13	Unimplement	ted: Read as '	0'						
bit 12-8	CH0SB<4:0>:	Channel 0 Po	ositive Input Se	elect for Sample	e B bits ⁽¹⁾				
	Same definition	on as bits<4:0>	> .						
bit 7	CH0NA: Char	nnel 0 Negativ	e Input Select	for Sample A b	it				
	1 = Channel 0 negative input is AN1								
hit 6 5		regative input							
bit 4 0		Channel 0 D	U Doitivo Input Sc	last for Sample	A hita(1)				
DIL 4-0	11111 - Cha	nel 0 positive	input is AN31	siect for Sample					
	11111 - Chai 11110 = Chai	nnel 0 positive	input is AN30						
	•								
	•								
	•								
	00010 = Cha i	nnel 0 positive	input is AN2						
	00001 = Cha	nnel 0 positive	input is AN1						
	00000 = Cha i	nnel 0 positive	input is AN0						

REGISTER 23-7: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER

Note 1: The AN16 through AN31 pins are not available for the ADC2 module. The AN16 through AN23 pins are not available for dsPIC33EP256MU806 (64-pin) devices.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 25	5-4: CMxN CONT	I: CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER								
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN			
bit 15					·		bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN			
bit 7		-	·	•			bit 0			
Legend:										
R = Readable I	oit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown			
bit 15	HLMS: High 1 = The masl 0 = The masl	or Low-Level N king (blanking) king (blanking)	Aasking Select function will pre function will pre	bits event any asse event any asse	erted ('0') compa erted ('1') compa	arator signal from arator signal from	m propagating m propagating			
bit 14	Unimpleme	nted: Read as	'0'							
bit 13	OCEN: OR (1 = MCI is co 0 = MCI is no	Gate C Input Er onnected to OF ot connected to	nable bit gate OR gate							
bit 12	OCNEN: OR	OCNEN: OR Gate C Input Inverted Enable bit								
	1 = Inverted 0 = Inverted	MCI is connect MCI is not con	ed to OR gate nected to OR g	gate						
bit 11	OBEN: OR 0 1 = MBI is co 0 = MBI is no	Gate B Input Er onnected to OR ot connected to	able bit gate OR gate							
bit 10	OBNEN: OR	Gate B Input I	nverted Enable	e bit						
	1 = Inverted 0 = Inverted	MBI is connect MBI is not coni	ed to OR gate nected to OR g	jate						
bit 9	OAEN: OR (Gate A Input Er	able bit							
	1 = MAI is co 0 = MAI is no	onnected to OR ot connected to	gate OR gate							
bit 8	OANEN: OR	Gate A Input I	nverted Enable	e bit						
	1 = Inverted 0 = Inverted	MAI is connect MAI is not con	ed to OR gate nected to OR g	jate						
bit 7	NAGS: AND 1 = Inverted 0 = Inverted	Gate Output Ir ANDI is conner ANDI is not con	nverted Enable cted to OR gat nnected to OR	e bit e gate						
bit 6	PAGS: AND 1 = ANDI is 0 0 = ANDI is 1	Gate Output E connected to O not connected f	nable bit R gate o OR gate							
bit 5	ACEN: AND 1 = MCI is co	Gate C Input E onnected to AN	Enable bit D gate							
hit 4		D Gate C Input	Inverted Ench	le hit						
	1 = Inverted 0 = Inverted	MCI is connect MCI is not con	ed to AND gat	gate						

26.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time Clock and Calendar (RTCC)" (DS70584) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter discusses the Real-Time Clock and Calendar (RTCC) module and its operation.

Some of the key features of this module are:

- Time: Hours, Minutes and Seconds
- 24-Hour Format (military time)
- · Calendar: Weekday, Date, Month and Year
- Alarm Configurable
- Year Range: 2000 to 2099
- · Leap Year Correction
- BCD Format for Compact Firmware
- Optimized for Low-Power Operation
- · User Calibration with Auto-Adjust
- · Calibration Range: ±2.64 Seconds Error per Month
- Requirements: External 32.768 kHz Clock Crystal
- · Alarm Pulse or Seconds Clock Output on RTCC Pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

REGISTER 26-4: RTCVAL (WHEN RTCPTR<1:0> = 11): YEAR VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-x	R/W-x						
	YRTEN	<3:0>			YRON	Ξ<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7-4	YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit bits
	Contains a value from 0 to 9.
bit 3-0	YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 26-5: RTCVAL (WHEN RTCPTR<1:0> = 10): MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x
_	—	—	MTHTEN0		MTHON	IE<3:0>	
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTE	N<1:0>		DAYON	IE<3:0>	
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit
	Contains a value of 0 or 1.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits
	Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits
	Contains a value from 0 to 3.
hit 3-0	DAYONE<3:0> Binary Coded Decimal Value of Day's Ones Digit hits

bit 3-0 **DAYONE<3:0>:** Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

FIGURE 32-39: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SSRCG = 0, SAMC<4:0> = 00010)

		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
		operating temperature			$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Param.	Symbol	Characteristic ^(1,2)	Min.	Typ. ⁽³⁾	Max.	Units	Conditions
CS60	TBCLKL	BIT_CLK Low Time	36	40.7	45	ns	
CS61	TBCLKH	BIT_CLK High Time	36	40.7	45	ns	
CS62	TBCLK	BIT_CLK Period	—	81.4		ns	Bit clock is input
CS65	TSACL	Input Setup Time to Falling Edge of BIT_CLK	—	_	10	ns	
CS66	THACL	Input Hold Time from Falling Edge of BIT_CLK	—	-	10	ns	
CS70	TSYNCLO	Sync Data Output Low Time	—	19.5	—	μs	
CS71	TSYNCHI	Sync Data Output High Time	—	1.3		μS	
CS72	TSYNC	Sync Data Output Period	_	20.8	_	μS	
CS77	TRACL	Rise Time, Sync, SDATA_OUT	—			ns	See Parameter DO32
CS78	TFACL	Fall Time, Sync, SDATA_OUT	—			ns	See Parameter DO31
CS80	TOVDACL	Output Valid Delay from Rising Edge of BIT_CLK	_	_	15	ns	

TABLE 32-60: DCI MODULE (AC-LINK MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: These values assume the BIT_CLK frequency is 12.288 MHz.

3: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.