

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	122
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TQFP
Supplier Device Package	144-TQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mu814-i-ph

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

21-1	dsPIC33EP256MU8 dsPIC33EP512MU8								i = pins a	ire up to	ov tolera
_	1	2	3	4	5	6	7	8	9	10	11
	O RE4	O RE3	R G13	O RE0	RG0	RF1	O Vdd	NC	RD12	RD2	RD1
5	NC	RG15	O RE2	O RE1	O RA7	RF0	O VCAP	RD5	RD3	⊖ Vss	O RC14
;	O RE6	O VDD	RG12	RG14	O RA6	NC	O RD7	RD4	NC	O RC13	R D11
,	O RC1	O RE7	O RE5	NC	NC	NC	O RD6	RD13	RD0	NC	R D10
	O RC4	C RC3	O RG6	O RC2	NC	RG1	NC	RA15	RD8	RD9	RA14
	MCLR	O RG8	O RG9	O RG7	⊖ Vss	NC	NC	O VDD	O RC12	⊖ Vss	O RC15
•	C RE8	C RE9	RA0	NC		O Vss	O Vss	NC	RA5	RA3	RA4
I	C) RB5	O RB4	NC	NC	NC		NC	VBUS	USB3V3	() RG2	RA2
	O RB3	O RB2	O RB7	O AVDD	O RB11	RA1	O RB12	NC	NC	RF8	O RG3
	O RB1	O RB0	O RA10	O RB8	NC	RF12	O RB14		RD15	RF3	RF2
	O RB6	O RA9	O AVss	O RB9	O RB10	RF13	O RB13	O RB15	RD14	RF4	RF5

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 Digital Signal Controller (DSC) and Microcontroller (MCU) devices. The dsPIC33EPXXX(GP/MC/MU)806/810/814 devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance 16-bit MCU architecture.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 families of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

TABLE 4	4-9:	TIME	R1 THF	ROUGH	TIMER9	REGIS	TER MA	P										
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								xxxx
PR1	0102		Period Register 1 FFFF															
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	-	TGATE	TCKP	S<1:0>	_	TSYNC	TCS	_	0000
TMR2	0106		Timer2 Register xxxx															
TMR3HLD	0108		Timer3 Holding Register (for 32-bit timer operations only) xxxx															
TMR3	010A								Timer3	Register								XXXX
PR2	010C								Period I	Register 2								FFFF
PR3	010E								Period I	Register 3								FFFF
T2CON	0110	TON	—	TSIDL	—	_	_		—	—	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	_	-	TGATE	TCKP	S<1:0>	_	_	TCS	_	0000
TMR4	0114								Timer4	Register								XXXX
TMR5HLD	0116		Timer5 Holding Register (for 32-bit operations only)									XXXX						
TMR5	0118								Timer5	Register								XXXX
PR4	011A								Period I	Register 4								FFFF
PR5	011C								Period I	Register 5								FFFF
T4CON	011E	TON	—	TSIDL	—	_	_		—	—	TGATE	TCKP	S<1:0>	T32	_	TCS	—	0000
T5CON	0120	TON	—	TSIDL	—	_			—	—	TGATE	TCKP	S<1:0>	—	_	TCS	—	0000
TMR6	0122								Timer6	Register								XXXX
TMR7HLD	0124						Ti	mer7 Holdii	ng Register	(for 32-bit o	operations or	nly)						XXXX
TMR7	0126								Timer7	Register								XXXX
PR6	0128								Period I	Register 6								FFFF
PR7	012A								Period I	Register 7								FFFF
T6CON	012C	TON	—	TSIDL	—	_			—	—	TGATE	TCKP	S<1:0>	T32	_	TCS	—	0000
T7CON	012E	TON	_	TSIDL	_	_	_	_	_	-	TGATE	TCKP	S<1:0>	_	_	TCS	_	0000
TMR8	0130								Timer8	Register								XXXX
TMR9HLD	0132						Ti	mer9 Holdii	ng Register	(for 32-bit o	operations or	ıly)						XXXX
TMR9	0134								Timer9	Register								XXXX
PR8	0136								Period I	Register 8								FFFF
PR9	0138								Period I	Register 9								FFFF
T8CON	013A	TON	—	TSIDL	—	_			—	—	TGATE	TCKP	S<1:0>	T32	—	TCS	_	0000
T9CON	013C	TON	—	TSIDL	—	_			_	_	TGATE	TCKP	S<1:0>	_	—	TCS	_	0000

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.2 RTSP Operation

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 Flash program memory array is organized into rows of 128 instructions or 384 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (1024 instructions) at a time, and to program one row or one word at a time. Table 32-12 lists typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 3072 bytes and 384 bytes, respectively.

The program memory implements holding buffers, which are located in the write latch area, that can contain 128 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 128 TBLWTL and TBLWTH instructions are required to load the instructions.

All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row. For more information on erasing and programming Flash memory, refer to **Section 5. "Flash Programming"** (DS70609) in the *"dsPlC33E/ PlC24E Family Reference Manual"*.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 32-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time and Word Write Cycle Time parameters (see Table 32-12).

EQUATION 5-1: PROGRAMMING TIME

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 5\%$. If the TUN<5:0> bits (see Register 9-4) are set to `b111111, the minimum row write time is equal to Equation 5-2.

EQUATION 5-2: MINIMUM ROW WRITE TIME

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 + 0.05) \times (1 - 0.00375)} = 1.435 ms$$

The maximum row write time is equal to Equation 5-3.

EQUATION 5-3: MAXIMUM ROW WRITE TIME

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 - 0.05) \times (1 - 0.00375)} = 1.586 ms$$

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				IC16R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC15R<6:0>			
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-8	IC16R<6:0>:	Assign Input C	apture 16 (IC	C16) to the Corr	esponding RP	n/RPIn Pin bits	
	(see Table 11	-2 for input pin	selection nur	mbers)			
	1111111 = I r	nput tied to RP	127				
	0000001 – Ir	put tigd to CM	D1				
	0000001 = II 0000000 = Ir	nput tied to Use	Г I 5				
bit 7	Unimplemen	• ited: Read as '	0'				
bit 6-0	IC15R<6:0>:	Assian Input C	apture 15 (IC	(15) to the Corr	espondina RP	n/RPIn Pin bits	
	(see Table 11	-2 for input pin	selection nur	mbers)			
	1111111 = lr	nput tied to RP	127				
	• • • • • • • • •	put tigd to CM	D1				
	0000001 = Ir	nput fied to Vss					
	0000000 – 11	iput licu to voc)				

REGISTER 11-36: RPINR36: PERIPHERAL PIN SELECT INPUT REGISTER 36

NOTES:

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 21-8:	EGISTER 21-8: CXEC: ECANX TRANSMIT/RECEIVE ERROR COUNT REGISTER									
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
			TERR	CNT<7:0>						
bit 15							bit 8			
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
			RERF	RCNT<7:0>						
bit 7							bit 0			
Γ										
Legend:										
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown						

bit 15-8	TERRCNT<7:0>: Transmit Error Count bits
bit 7-0	RERRCNT<7:0>: Receive Error Count bits

REGISTER 21-9: CxCFG1: ECANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SJW<	<1:0>			BRP	? <5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'						
bit 7-6	SJW<1:0>: Synchronization Jump Width bits						
	11 = Length is 4 x TQ						
	10 = Length is 3 x TQ						
	01 = Length is 2 x TQ						
	00 = Length is 1 x TQ						
bit 5-0	BRP<5:0>: Baud Rate Prescaler bits						
	11 1111 = TQ = 2 x 64 x 1/FCAN						
	•						
	•						
	•						
	00 0010 = Tq = 2 x 3 x 1/Fcan						
	00 0001 = Tq = 2 x 2 x 1/Fcan						
	00 0000 = Tq = 2 x 1 x 1/Fcan						

FIGURE 22-1: USB INTERFACE DIAGRAM

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (CONTINUED)

- bit 4 CREF: Comparator Reference Select bit (VIN+ input)
 - 1 = VIN+ input connects to internal CVREFIN voltage
 - 0 = VIN+ input connects to CxIN1+ pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits
 - 11 = VIN- input of comparator connects to IVREF
 - 10 = VIN- input of comparator connects to CxIN3- pin
 - 01 = VIN- input of comparator connects to CxIN1- pin
 - 00 = VIN- input of comparator connects to CxIN2- pin

REGISTER 26-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—		MINTEN<2:0>		MINONE<3:0>				
bit 15							bit 8	
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_		SECTEN<2:0>			SECON	IE<3:0>		
bit 7							bit 0	
Logondy								

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

27.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/810/ 814 and PIC24EPXXX(GP/GU)810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "Programmable Cyclic Redundancy Check (CRC)" (DS70346) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The programmable CRC generator offers the following features:

- User-Programmable (up to 32nd order) Polynomial CRC Equation
- Interrupt Output
- Data FIFO

The programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-Programmable CRC Polynomial Equation, up to 32 bits
- Programmable Shift Direction (little or big-endian)
- · Independent Data and Polynomial Lengths
- Configurable Interrupt Output
- Data FIFO

A simplified block diagram of the CRC generator is shown in Figure 27-1. A simple version of the CRC shift engine is shown in Figure 27-2.

FIGURE 27-1: PROGRAMMABLE CRC BLOCK DIAGRAM

NOTES:

IAD	LL 30-2.	ING					
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	of # of rds Cycles ⁽²⁾	Status Flags Affected
1	ADD	ADD	Acc(1)	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (4)	None
		BRA	GE,Expr	Branch if greater than or equal	1	1 (4)	None
		BRA	GEU,Expr	Branch if unsigned greater than or equal	1	1 (4)	None
		BRA	GT,Expr	Branch if greater than	1	1 (4)	None
		BRA	GTU,Expr	Branch if unsigned greater than	1	1 (4)	None
		BRA	LE,Expr	Branch if less than or equal	1	1 (4)	None
		BRA	LEU,Expr	Branch if unsigned less than or equal	1	1 (4)	None
		BRA	LT,Expr	Branch if less than	1	1 (4)	None
		BRA	LTU,Expr	Branch if unsigned less than	1	1 (4)	None
		BRA	N,Expr	Branch if Negative	1	1 (4)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (4)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (4)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (4)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (4)	None
		BRA	OA, Expr(1)	Branch if Accumulator A overflow	1	1 (4)	None
		BRA	OB, Expr(1)	Branch if Accumulator B overflow	1	1 (4)	None
		BRA	OV, Expr(1)	Branch if Overflow	1	1 (4)	None
		BRA	SA, Expr(1)	Branch if Accumulator A saturated	1	1 (4)	None
		BRA	SB, Expr ⁽¹⁾	Branch if Accumulator B saturated	1	1 (4)	None
		BRA	Expr	Branch Unconditionally	1	4	None
		BRA	Z,Expr	Branch if Zero	1	1 (4)	None
L		BRA	Wn	Computed Branch	1	4	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None

TABLE 30-2 INSTRUCTION SET OVERVIEW

Note 1:

This instruction is available in dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only. Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. 2:

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws (1)	Ws = 0x0000	1	1	None
10		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB(')	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT			1	1	WDTO,Sleep
17	COM	COM	f	t=t	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	Wd = Ws	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CPO	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	
21	CDCEO	CDCTO		$(Wb - Ws - \overline{C})$		1	Nono
21	CPSEQ	CPSEQ	wb,wn		, ,	(2 or 3)	None
	CPBEQ	CPBEQ	Wb, Wn, Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
22	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
L	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
23	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
24	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
	CPBNE	CPBNE	Wb,Wn,Expr	Compare Wb with Wn, branch if \neq	1	1 (5)	None

INSTRUCTION SET OVERVIEW (CONTINUED) TABLE 30-2:

Note 1:

This instruction is available in dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only. Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. 2:

DC CHARACTERISTICS			Standar (unless Operatin	Standard Operating Conditions: 3.0V to 3.6Vunless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param.	Symbol	Characteristic	Min. Typ. Max.			Units	Conditions		
DO10	Voi	Output Low Voltage I/O Pins: 4x Sink Driver Pins – All I/O Pins except OSC2 and SOSCO		_	0.4	V	$IOL \le 10 \text{ mA}, \text{ VDD} = 3.3 \text{V}$		
	VOL	Output Low Voltage I/O Pins: 8x Sink Driver Pins – OSC2 and SOSCO	_	_	0.4	V	$IOL \le 15 \text{ mA}, \text{ VDD} = 3.3 \text{V}$		
DO20		Output High Voltage I/O Pins: 4x Sink Driver Pins – All I/O Pins except OSC2 and SOSCO	2.4	_	_	V	Iон ≥ -10 mA, Vdd = 3.3V		
DO20	VOH	Output High Voltage I/O Pins: 8x Sink Driver Pins – OSC2 and SOSCO	2.4	_	_	V	Іон ≥ -15 mA, Vdd = 3.3V		
		Output High Voltage	1.5 ⁽¹⁾	_	_		IOH \ge -14 mA, VDD = 3.3V		
		4x Sink Driver Pins – All I/O Pins	2.0 ⁽¹⁾	_	_	V	IOH \ge -12 mA, VDD = 3.3V		
0204	Vou1	except OSC2 and SOSCO	3.0 ⁽¹⁾	_	_		IOH \ge -7 mA, VDD = 3.3V		
DOZUA	VUN I	Output High Voltage	1.5 ⁽¹⁾	_	—		$IOH \ge -22 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$		
		8x Sink Driver Pins – OSC2 and	2.0 ⁽¹⁾		_	V	IOH \ge -18 mA, VDD = 3.3V		
		SOSCO	3.0 ⁽¹⁾	_	_		IOH \ge -10 mA, VDD = 3.3V		

TABLE 32-10:	DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS
--------------	---

Note 1: Parameters are characterized, but not tested.

TABLE 32-11: ELECTRICAL CHARACTERISTICS: BOR

			Standard Operating Conditions: 3.0V to 3.6V ⁽²⁾ (unless otherwise stated)					
DC CHARACTERISTICS		Operating temp	Operating temperature $-40^{\circ}C \le T_{c}$		\leq TA \leq +	+85°C for Industrial		
				-40°C ≤	\leq TA \leq +	125°C for	Extended	
Param.	Symbol	Characteristic		Min. ⁽¹⁾	Тур.	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD Tra	ansition	2.7	_	2.9	V	Vdd

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have degraded performance. Device functionality is tested but not characterized.

32.2 AC Characteristics and Timing Parameters

This section defines the dsPIC33EPXXX(GP/MC/ MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 AC characteristics and timing parameters.

TABLE 32-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
AC CHARACTERISTICS	$\begin{array}{rl} \mbox{Operating temperature} & -40^\circ C \leq \mbox{TA} \leq \ +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq \ \mbox{TA} \leq \ \ +125^\circ C \mbox{ for Extended} \end{array}$					
	Operating voltage VDD range as described in Section 32.1 "DC Characteristics".					

FIGURE 32-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 32-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_		15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In l ² C™ mode

FIGURE 32-18: SPI1, SPI3 AND SPI4 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 32-36:SPI1, SPI3 AND SPI4 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
			$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SP10	TscP	Maximum SCKx Frequency	—	—	9	MHz	-40°C to +125°C and see Note 3		
SP20	TscF	SCKx Output Fall Time	_	_		ns	See Parameter DO32 and Note 4		
SP21	TscR	SCKx Output Rise Time	—	_		ns	See Parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See Parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—	_	—	ns	See Parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns			

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

FIGURE 32-39: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SSRCG = 0, SAMC<4:0> = 00010)

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support