

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	122
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	12K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TQFP
Supplier Device Package	144-TQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mu814t-i-ph

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS AND MICROCONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the 16-bit DSCs and microcontrollers requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used) (see Section 2.2 "Decoupling Capacitors")
- VCAP (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

- VUSB3V3 pin is used when utilizing the USB module. If the USB module is not used, VUSB3V3 must be connected to VDD.
- VREF+/VREF- pin is used when external voltage reference for ADC module is implemented

Note:	The AVDD and AVSS pins must be
	connected independent of the ADC
	voltage reference source. The voltage
	difference between AVDD and VDD cannot
	exceed 300 mV at any time during
	operation or start-up.

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, VUSB3V3, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

TABLE 4-64: PORTF REGISTER MAP FOR dsPIC33EPXXX(GP/MC)806 AND PIC24EPXXXGP806 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	0E50		_	_	_			_			TRISG6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	003B
PORTF	0E52	_	_	_	_	_	_	_	_	_	RG6	RF5	RF4	RF3	RF2	RF1	RF0	XXXX
LATF	0E54	_	_	_	_	_	_	_	_	_	LATG6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	XXXX
ODCF	0E56	_	_	_	_	_	_	_	_	_	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000
CNENF	0E58	_	_	_	_	_	_	_	_	_	CNIEG6	CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEF0	0000
CNPUF	0E5A	_	_	_	_	_	_	_	_	_	CNPUG6	CNPUF5	CNPUF4	CNPUF3	CNPUF2	CNPUF1	CNPUF0	0000
CNPDF	0E5C	—	_	_	_	_	_	—	—	_	CNPDG6	CNPDF5	CNPDF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	0000
ANSELF	0E5E	_	_	_	_	_	_	—	—	—	_	—	_	—	—	—	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-65: PORTF REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	0E50	_	_	_	_			_	—	_		TRISF5	TRISF4	TRISF3	_	TRISF1	TRISF0	003B
PORTF	0E52		-	_	_	_	_	_	_	_	_	RF5	RF4	RF3	_	RF1	RF0	XXXX
LATF	0E54	_	—	_	_	_			_	_		LATF5	LATF4	LATF3	—	LATF1	LATF0	XXXX
ODCF	0E56	_	—	_	_	_			_	_		ODCF5	ODCF4	ODCF3	—	ODCF1	ODCF0	0000
CNENF	0E58	_	—	_	_	_			_	_		CNIEF5	CNIEF4	CNIEF3	—	CNIEF1	CNIEF0	0000
CNPUF	0E5A	_	—	_	_	_			_	_		CNPUF5	CNPUF4	CNPUF3	—	CNPUF1	CNPUF0	0000
CNPDF	0E5C	_	—	_	_	_			_	_		CNPDF5	CNPDF4	CNPDF3	—	CNPDF1	CNPDF0	0000
ANSELF	0E5E	_	_	_	_	_			-	_		—	-	—	_			0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-66: PORTG REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E60	TRISG15	TRISG14	TRISG13	TRISG12	_	_	TRISG9	TRISG8	TRISG7	TRISG6	—	_	—	_	TRISG1	TRISG0	F3C3
PORTG	0E62	RG15	RG14	RG13	RG12		_	RG9	RG8	RG7	RG6	-	_	RG3 ⁽¹⁾	RG2 ⁽¹⁾	RG1	RG0	XXXX
LATG	0E64	LATG15	LATG14	LATG13	LATG12		_	LATG9	LATG8	LATG7	LATG6	-	_	_	_	LATG1	LATG0	XXXX
ODCG	0E66	ODCG15	ODCG14	ODCG13	ODCG12		_	_	_	_	_	-	_	_	_	ODCG1	ODCG0	0000
CNENG	0E68	CNIEG15	CNIEG14	CNIEG13	CNIEG12		_	CNIEG9	CNIEG8	CNIEG7	CNIEG6	-	_	CNIEG3 ⁽¹⁾	CNIEG2 ⁽¹⁾	CNIEG1	CNIEG0	0000
CNPUG	0E6A	CNPUG15	CNPUG14	CNPUG13	CNPUG12		_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	-	_	_	_	CNPUG1	CNPUG0	0000
CNPDG	0E6C	CNPDG15	CNPDG14	CNPDG13	CNPDG12	_		CNPDG9	CNPDG8	CNPDG7	CNPDG6	_		_	_	CNPDG1	CNPDG0	0000
ANSELG	0E6E	_	_	_	_	_	_	ANSG9	ANSG8	ANSG7	ANSG6	_	_	_	_	_	-	03C0

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: If RG2 and RG3 are used as general purpose inputs, the VUSB3V3 pin must be connected to VDD.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-75: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions (dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814) and the DSP accumulator class of instructions (dsPIC33EPXXXMU806/810/ 814 only) provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.5.4 MAC INSTRUCTIONS (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.5.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR	_		VREGSF		CM	VREGS
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown
bit 15	•	Reset Flag bit					
		onflict Reset has onflict Reset has		d			
bit 14	•	gal Opcode or			et Flag bit		
		al opcode detec			•	ized W registe	er used as a
		Pointer caused				-	
	-	l opcode or unir		leset has not of	ccurred		
bit 13-12	-	ited: Read as '0			. 1. 11		
bit 11		ash Voltage Reg Itage regulator i			D DIT		
		ltage regulator i			ing Sleep		
bit 10		ited: Read as '0		2	0		
bit 9	CM: Configur	ration Mismatch	Flag bit				
	•	uration Mismatc					
	•	uration Mismatc					
bit 8		age Regulator S		•			
		egulator is activ			en		
bit 7	•	nal Reset (MCLI		liede damig en			
		Clear (pin) Res	,	red			
	0 = A Master	Clear (pin) Res	et has not oc	curred			
bit 6		are Reset (Instru	, .				
		instruction has instruction has					
bit 5		oftware Enable/I					
	1 = WDT is e 0 = WDT is d						
bit 4	WDTO: Watc	hdog Timer Tim	e-out Flag bi	t			
	1 = WDT time	e-out has occurr e-out has not oc	red				
	of the Reset sta use a device Re		set or cleare	d in software. S	etting one of the	ese bits in soft	ware does nc

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

11.7 Peripheral Pin Select Control Registers

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT1R<6:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-8 INT1R<6:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 11111111 = Input tied to RP127 .

0000001 = Input tied to CMP1

0000000 = Input tied to Vss

bit 7-0 Unimplemented: Read as '0'

13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70362) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)
- ADC2 Event Trigger (Timer4/5 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2, Timer4, Timer6 or Timer8 is the least significant word; Timer3, Timer5, Timer7 or Timer9 is the most significant word of the 32-bit timers.

Note: For 32-bit operation, T3CON, T5CON, T7CON and T9CON control bits are ignored. Only T2CON, T4CON, T6CON and T8CON control bits are used for setup and control. Timer2, Timer4, Timer6 and Timer8 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3, Timer5, Ttimer7 and Timer9 interrupt flags.

A block diagram for an example 32-bit timer pair is shown Figure 13-3.

Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—		—	_			_	IC32
bit 15							bit 8
R/W-0	R/W/HS-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG ⁽²⁾) TRIGSTAT ⁽³⁾	_		SY	NCSEL<4:0> ⁽⁴)	
bit 7							bit 0
Legend:							
R = Readab	ole bit	HS = Set by	Hardware	'0' = Bit is cle	eared		
-n = Value a	at POR	W = Writable	e bit	U = Unimplei	mented bit, rea	d as '0'	
bit 15-9	Unimplement	ed: Read as	' 0 '				
bit 8	IC32: 32-Bit T	imer Mode S	elect bit (Cascad	le mode)			
	1 = ODD IC a	nd EVEN IC	form a single 32	-bit input captu	re module ⁽¹⁾		
	0 = Cascade	module operation	ation is disabled				
bit 7	ICTRIG: Trigg	er Operation	Select bit ⁽²⁾				
	1 = Input sour	rce is used to	trigger the input	capture timer	(Trigger mode)		
		rce is used to nization mode	o synchronize the e)	input capture	timer to a timer	of another mo	odule
bit 6	TRIGSTAT: Ti	mer Trigger S	Status bit ⁽³⁾				
	1 = ICxTMR h	nas been trigg	gered and is runr	ning			
	0 = ICxTMR h	nas not been	triggered and is	being held clea	ar		
			00	0			

- Note 1: The IC32 bit in both the ODD and EVEN IC must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by the SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own Sync or Trigger source.
 - **5:** This option should only be selected as a trigger source and not as a synchronization source.

20.3 UARTx Registers

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾	—	USIDL	IREN ⁽²⁾	RTSMD	—	UEN	<1:0>
bit 15							bit 8
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEI	-	STSEL
bit 7	LFDACK	ABAUD	URAINV	BRGH	FDGEI	_<1.0>	bit (
Legend:		HC = Hardwa	re Clearable b	bit			
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	UARTEN: UA	RTx Enable bi	t(1)				
					y UARTx as defin y port latches; L		
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	USIDL: UART	Tx Stop in Idle	Mode bit				
		ues module op s module oper			Idle mode		
bit 12	IREN: IrDA [®] I	Encoder and D	ecoder Enable	e bit ⁽²⁾			
		oder and deco					
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin b	it			
		in in Simplex n in in Flow Con					
bit 10	Unimplemen	ted: Read as '	0'				
bit 9-8	UEN<1:0>: ∪	ARTx Pin Enal	ole bits				
	10 = UxTX, U 01 = UxTX, U	JxRX, UxCTS a JxRX and UxR nd UxRX pins a	and UxRTS pi TS pins are er	ns are enableo nabled an <u>d use</u>	d; UxCTS pin is d an <u>d used</u> ed; UxC <u>TS pin is</u> S and UxRTS/F	s controlled by	port latches
bit 7	WAKE: Wake	-up on Start Bi	t Detect Durin	g Sleep Mode	Enable bit		
	hardware	ontinues to sar on following r -up is enabled	•	K pin; interrupt	is generated or	n falling edge; b	it is cleared in
bit 6		RTx Loopback	Mode Select	bit			
	1 = Enables I	Loopback mod	e				
DIL O	0 = Loopback	k mode is disal					
	-	k mode is disal p-Baud Enable					
bit 5	ABAUD: Auto	o-Baud Enable	bit surement on t		eter – requires re	eception of a S	ync field (55h

REGISTER 20-1: UxMODE: UARTx MODE REGISTER

© 2009-2012 Microchip Technology Inc.

2: This feature is only available for the 16x BRG mode (BRGH = 0).

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit (
Legend:		HC = Hardware	Clearable bit	C = Clearabl			
R = Readable	bit	W = Writable bit		U = Unimple	mented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15,13	11 = Reserv 10 = Interrup transmi 01 = Interrup operatio 00 = Interrup least or	0>: UARTx Transed; do not use of when a character buffer becomes of when the last cross are complete of when a character oper	er is transferre empty haracter is shit d ter is transferr n in the transm	d to the Transn fted out of the ed to the Trans it buffer)	nit Shift Registe Transmit Shift F	Register; all tra	ansmit
bit 14	$\frac{\text{If IREN = 0:}}{1 = \text{UxTX IdI}}$ $0 = \text{UxTX IdI}$ $\frac{\text{If IREN = 1:}}{1 = \text{IrDA end}}$		state is '1'	UIL .			
bit 12	Unimplemen	ted: Read as '0'					
bit 11	UTXBRK: UA	ARTx Transmit Br	eak bit				
	cleared b	ync Break on nex by hardware upor eak transmission	o completion		wed by twelve	'0' bits, followe	ed by Stop bit
bit 10	UTXEN: UAF	RTx Transmit Ena	ble bit ⁽¹⁾				
	0 = Transmit	is enabled, UxT) is disabled, any d by port			borted and the	e buffer is res	et; UxTX pir
bit 9	UTXBF: UAF	RTx Transmit Buff	er Full Status I	oit (read-only)			
	1 = Transmit 0 = Transmit	: buffer is full : buffer is not full,	at least one m	ore character	can be written		
bit 8	1 = Transmit	mit Shift Register Shift Register is e Shift Register is	empty and tran	smit buffer is e			as completed
bit 7-6		0>: UARTx Rece					
	11 = Interrup 10 = Interrup 0x = Interrup	ot is set on UxRSI ot is set on UxRSI ot is set when any receive buffer has	R transfer mak R transfer mak y character is	ing the receive ing the receive received and t	e buffer full (i.e. e buffer 3/4 full	(i.e., has 3 dat	a characters

Note 1: Refer to **Section 17. "UART"** (DS70582) in the *"dsPIC33E/PIC24E Family Reference Manual"* for information on enabling the UARTx module for transmit operation.

21.0 ENHANCED CAN (ECAN™) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70353) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

21.1 Overview

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices contain two ECAN modules.

The ECANx module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN Specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN Specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details. The ECANx module features are as follows:

- Implementation of the CAN Protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and Extended Data Frames
- 0-8 Bytes Data Length
- Programmable Bit Rate up to 1 Mbit/sec
- Automatic Response to Remote Transmission Requests
- Up to 8 Transmit Buffers with Application-Specific Prioritization and Abort Capability (each buffer can contain up to 8 bytes of data)
- Up to 32 Receive Buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 Full (standard/extended identifier) Acceptance Filters
- Three Full Acceptance Filter Masks
- DeviceNet[™] Addressing Support
- Programmable Wake-up Functionality with Integrated Low-Pass Filter
- Programmable Loopback mode Supports Self-Test Operation
- Signaling via Interrupt Capabilities for all CAN Receiver and Transmitter Error States
- · Programmable Clock Source
- Programmable Link to Input Capture Module (IC2 for the ECAN1 and ECAN2 modules) for Time-Stamping and Network Synchronization
- · Low-Power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

REGISTER	21-16: CxRX REGIS	FnSID: ECAN STER n (n = 0		ANCE FILTE	R n STANDA	RD IDENTIFII	ER	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	
bit 15	·	·	·				bit 8	
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x	
SID2	SID1	SID0		EXIDE	_	EID17	EID16	
bit 7							bit (
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown		
bit 15-5	1 = Message	Standard Identif address bit, SI address bit, SI	Dx, must be					
bit 4	•	nted: Read as '						
bit 3	EXIDE: Extended Identifier Enable bit <u>If MIDE = 1:</u> 1 = Matches only messages with extended identifier addresses 0 = Matches only messages with standard identifier addresses							
	<u>If MIDE = 0:</u> Ignores EXIE	DE bit.						
bit 2	Unimplemer	nted: Read as '	0'					
bit 1-0	EID<17:16>:	Extended Iden	tifier bits					
	•	e address bit, El e address bit, El						

REGISTER 22-14: UxIR: USB INTERRUPT STATUS REGISTER (DEVICE MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	—	—	—	—	—
bit 15							bit 8
R/K-0, HS	U-0	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R-0	R/K-0, HS
STALLIF	_	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'				
R = Readable bit	K = Write '1' to clear bit	HS = Hardware Settable bit			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8	Unimplemented: Read as '0'
bit 7	STALLIF: STALL Handshake Interrupt bit
	1 = A STALL handshake was sent by the peripheral during the handshake phase of the transaction in Device mode
	0 = A STALL handshake has not been sent
bit 6	Unimplemented: Read as '0'
bit 5	RESUMEIF: Resume Interrupt bit
	 1 = A K-State is observed on the D+ or D- pin for 2.5 μs (differential '1' for low speed, differential '0' for full speed) 0 = No K-State is observed
L:1 4	
bit 4	IDLEIF: Idle Detect Interrupt bit
	 1 = Idle condition is detected (constant Idle state of 3 ms or more) 0 = No Idle condition is detected
bit 3	TRNIF: Token Processing Complete Interrupt bit
	 1 = Processing of current token is complete; read UxSTAT register for endpoint BDT information 0 = Processing of current token is not complete; clear UxSTAT register or load next token from STAT (clearing this bit causes the the STAT FIFO to advance)
bit 2	SOFIF: Start-of-Frame Token Interrupt bit
	 1 = A Start-of-Frame token was received by the peripheral 0 = A Start-of-Frame token has not been received by the peripheral
bit 1	UERRIF: USB Error Condition Interrupt bit (read-only)
	1 = An unmasked error condition has occurred; only error states enabled in the UxEIE register can set this bit
	0 = No unmasked error condition has occurred
bit 0	URSTIF: USB Reset Interrupt bit
	 1 = Valid USB Reset has occurred for at least 2.5 μs; Reset state must be cleared before this bit can be reasserted
	0 = No USB Reset has occurred

REGISTER 25-3: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER (CONTINUED)

- bit 3-0 SELSRCA<3:0>: Mask A Input Select bits 1111 = FLT4 1110 = FLT2 1101 = PWM7H 1100 = PWM7L 1011 = PWM6H
 - 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4L 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L

0001 = PWM1H 0000 = PWM1L

DS70616G-page 444

REGISTER 26-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

bit 7-0	CAL<7:0>: RTCC Drift Calibration bits
	01111111 = Maximum positive adjustment; adds 508 RTCC clock pulses every one minute
	•
	•
	•
	00000001 = Minimum positive adjustment; adds four RTCC clock pulses every one minute 00000000 = No adjustment
	111111111 = Minimum negative adjustment; subtracts four RTCC clock pulses every one minute
	•
	•
	•
	10000000 = Maximum negative adjustment; subtracts 512 RTCC clock pulses every one minute

- Note 1: The RCFGCAL register is only affected by a POR.
 - 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - 3: This bit is read-only. It is cleared when the lower half of the MINSEC register is written.

REGISTER 26-6: RTCVAL (WHEN RTCPTR<1:0> = 01): WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	
_	—	—	_	—		WDAY<2:0>		
bit 15							bit 8	
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—	—	HRTEN	V<1:0>		HRONE<3:0>			
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpleme	ented bit, rea	d as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown					
bit 15-11	Unimplemen	ited: Read as '0	o'					
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits							

bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 26-7: RTCVAL (WHEN RTCPTR<1:0> = 00): MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_		MINTEN<2:0>			MINON	E<3:0>	
bit 15							bit 8
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

—	SECTEN<2:0>	SECONE<3:0>
bit 7		bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

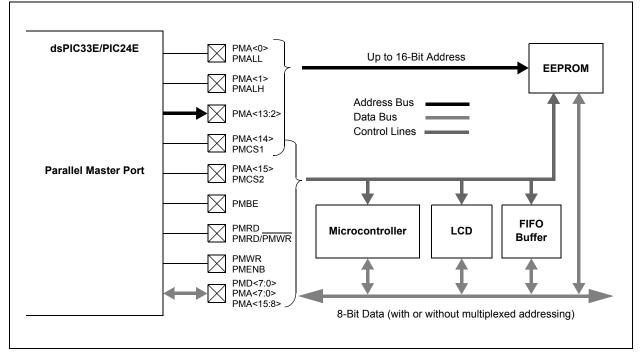
bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

© 2009-2012 Microchip Technology Inc.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	—	DWIDTH<4:0>						
bit 15							bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	—	PLEN<4:0>						
bit 7		•					bit 0		
Legend:									
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-13	Unimplemen	Unimplemented: Read as '0'							
bit 12-8	DWIDTH<4:0	DWIDTH<4:0>: Data Width Select bits							
	These bits se	t the width of th	ne data word	(DWIDTH<4:0>	• + 1).				
bit 7-5	Unimplemen	Unimplemented: Read as '0'							
bit 4-0 PLEN<4:0>: Polynomial Length Select bits									
	These bits se	These bits set the length of the polynomial (Polynomial Length = PLEN<4:0> + 1).							

REGISTER 27-2: CRCCON2: CRC CONTROL REGISTER 2

28.0 PARALLEL MASTER PORT (PMP)

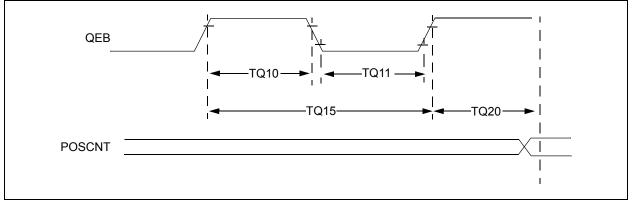

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 28. "Parallel Master Port (PMP)" (DS70576) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

Key features of the PMP module include:

- Eight Data Lines
- Up to 16 Programmable Address Lines
- Up to 2 Chip Select Lines
- Programmable Strobe Options:
 - Individual read and write strobes, or
 - Read/Write strobe with enable strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- · Programmable Polarity on Control Signals
- Legacy Parallel Slave Port (PSP) Support
- Enhanced Parallel Slave Support:
 - Address support
 - 4-byte deep auto-incrementing buffer
- · Programmable Wait States

FIGURE 28-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES



REGISTER 28-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER (CONTINUED)

bit 3	CS1P: Chip Select 0 Polarity bit ⁽¹⁾ 1 = Active-high (PMCS1/PMCS) ⁽²⁾ 0 = Active-low (PMCS1/PMCS)
bit 2	BEP: Byte Enable Polarity bit 1 = Byte enable active-high (PMBE) 0 = Byte enable active-low (PMBE)
bit 1	WRSP: Write Strobe Polarity bit For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10): 1 = Write strobe is active-high (PMWR) 0 = Write strobe is active-low (PMWR) For Master Mode 1 (PMMODE<9:8> = 11):
	1 = Enables strobe active-high (PMENB)0 = Enables strobe active-low (PMENB)
bit 0	RDSP: Read Strobe Polarity bit For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10): 1 = Read strobe is active-high (PMRD) 0 = Read strobe is active-low (PMRD) For Master Mode 1 (PMMODE<9:8> = 11): 1 = Enables strobe active-high (PMRD/PMWR) 0 = Enables strobe active-low (PMRD/PMWR)

- Note 1: These bits have no effect when their corresponding pins are used as address lines.
 - 2: PMCS1 applies to Master mode and PMCS applies to Slave mode.

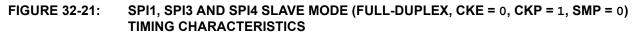




TABLE 32-26: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions
TQ10	TtQH	TQCK High Time	Synchronous, with Prescaler	-			ns	Must also meet Parameter TQ15
TQ11	TtQL	TQCK Low Time	Synchronous, with Prescaler	[Greater of (12.5 or 0.5 Tcy)/N] + 25	_	_	ns	Must also meet Parameter TQ15
TQ15	TtQP	TQCP Input Period	Synchronous, with Prescaler	[Greater of (25 or Tcy)/N] + 50	_	_	ns	
TQ20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		—	1	Тсү	_	

Note 1: These parameters are characterized but not tested in manufacturing.

