

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	122
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256mu814t-i-pl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3:PIN NAMES: PIC24EP256GU810 AND PIC24EP512GU810DEVICES^(1,2) (CONTINUED)

Pin Number	Full Pin Name
E1	AN19/RPI52/RC4
E2	AN18/RPI51/RC3
E3	C1IN3-/SCK2/PMA5/RP118/RG6
E4	AN17/RPI50/RC2
E5	No Connect
E6	RP113/RG1
E7	No Connect
K4	AN8/PMA6/RPI40/RB8
K5	No Connect
K6	RP108/RF12
K7	AN14/PMA1/RPI46/RB14
K8	VDD
K9	RP79/RD15
K10	USBID/RP99/RF3
K11	RP98/RF2
L1	PGEC1/AN6/RPI38/RB6
L2	VREF-/RA9

Pin Number	Full Pin Name
J8	No Connect
J 9	No Connect
J10	RP104/RF8
J11	D-/RG3 ⁽⁵⁾
K1	PGEC3/AN1/RPI33/RB1
K2	PGED3/AN0/RPI32/RB0
K3	VREF+/RA10
L3	AVss
L4	AN9/PMA7/RPI41/RB9
L5	AN10/CVREF/PMA13/RPI42/RB10
L6	RP109/RF13
L7	AN13/PMA10/RPI45/RB13
L8	AN15/PMA0/RPI47/RB15
L9	RPI78/RD14
L10	SDA2 ⁽³⁾ /PMA9/RP100/RF4
L11	SCL2 ⁽³⁾ /PMA8/RP101/RF5

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.

2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

3: The availability of I²C™ interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is made using the device Configuration bits, ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 29.0 "Special Features" for more information.

4: The pin name is SCL1/RG2 for the dsPIC33EP512(GP/MC)806 and PIC24EP512GP806 devices.

5: The pin name is SDA1/RG3 for the dsPIC33EP512(GP/MC)806 and PIC24EP512GP806 devices.

FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33EP256MU806/810/814 DEVICES WITH 28-KBYTE RAM

TABLE 4-11: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 16 REGISTER MAP (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC8CON1	0946	_	_	OCSIDL	(OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC8CON2	0948	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0)>		000C
OC8RS	094A							Out	out Compare	e 8 Seconda	ry Register							XXXX
OC8R	094C								Output Co	mpare 8 Re	gister							XXXX
OC8TMR	094E								Timer V	alue 8 Regis	ster							XXXX
OC9CON1	0950		—	OCSIDL	(OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC9CON2	0952	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	-	—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0)>		000C
OC9RS	0954							Out	out Compare	e 9 Seconda	ry Register							XXXX
OC9R	0956								Output Co	mpare 9 Re	gister							xxxx
OC9TMR	0958								Timer V	alue 9 Regis	ster							xxxx
OC10CON1	095A		—	OCSIDL	(OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC10CON2	095C	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	-	—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0)>		000C
OC10RS	095E							Outp	ut Compare	10 Seconda	ary Register							XXXX
OC10R	0960								Output Cor	mpare 10 Re	egister							XXXX
OC10TMR	0962								Timer Va	alue 10 Regi	ster							XXXX
OC11CON1	0964		—	OCSIDL	(OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC11CON2	0966	FLTMD	FLTOUT	FLTTRIEN	OCINV	_		—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0)>		000C
OC11RS	0968							Outp	out Compare	11 Seconda	ary Register							XXXX
OC11R	096A								Output Co	mpare 11 Re	egister							XXXX
OC11TMR	096C								Timer Va	alue 11 Regi	ster							xxxx
OC12CON1	096E		—	OCSIDL	(OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC12CON2	0970	FLTMD	FLTOUT	FLTTRIEN	OCINV	_		—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0)>		000C
OC12RS	0972							Outp	ut Compare	12 Seconda	ary Register							XXXX
OC12R	0974								Output Cor	mpare 12 Re	egister							xxxx
OC12TMR	0976								Timer Va	alue 12 Regi	ster							xxxx
OC13CON1	0978		—	OCSIDL	(OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC13CON2	097A	FLTMD	FLTOUT	FLTTRIEN	OCINV	_		—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0)>		000C
OC13RS	097C							Outp	ut Compare	13 Seconda	ary Register							XXXX
OC13R	097E								Output Cor	mpare 13 Re	egister							XXXX
OC13TMR	0980) Timer Value 13 Register										XXXX						
OC14CON1	0982	_	_	OCSIDL	(OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC14CON2	0984	FLTMD	FLTOUT	FLTTRIEN	OCINV	—		—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0)>		000C
OC14RS	0986							Outp	ut Compare	14 Seconda	ary Register							XXXX
OC14R	0988								Output Cor	mpare 14 Re	egister							XXXX
OC14TMR	098A		_		_				Timer Va	alue 14 Regi	ster				_		_	XXXX

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70616G-page 74

IADE																
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	—	—	DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD
PMD2	0762	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD
PMD3	0764	T9MD	T8MD	T7MD	T6MD	_	CMPMD	RTCCMD	PMPMD	CRCMD	_	-	_	U3MD	_	I2C2MD
PMD4	0766	_	_	_	—	_	_	_	_	_	_	U4MD	_	REFOMD	—	_
PMD5	0768	IC16MD	IC15MD	IC14MD	IC13MD	IC12MD	IC11MD	IC10MD	IC9MD	OC16MD	OC15MD	OC14MD	OC13MD	OC12MD	OC11MD	OC10MD

_

_

_

_

PMD REGISTER MAP FOR dePIC33EPXXXGP8XX AND PIC24EPXXXGP8XX DEVICES ONLY TABLE 4-51.

_

_

_

_

_ x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

_

_

_

_

TABLE 4-52: PMD REGISTER MAP FOR PIC24EPXXXGU810/814 DEVICES ONLY

_

_

_

_

_

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	—	—	DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD	0000
PMD2	0762	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	T9MD	T8MD	T7MD	T6MD	_	CMPMD	RTCCMD	PMPMD	CRCMD	_	_	_	U3MD	_	I2C2MD	AD2MD	0000
PMD4	0766	_	_	_	_	_	_	_	_	_	_	U4MD	_	REFOMD	_	_	USB1MD	0000
PMD5	0768	IC16MD	IC15MD	IC14MD	IC13MD	IC12MD	IC11MD	IC10MD	IC9MD	OC16MD	OC15MD	OC14MD	OC13MD	OC12MD	OC11MD	OC10MD	OC9MD	0000
PMD6	076A	_	_	_	_	_	_	_	_	_	_	_	_	_	_	SPI4MD	SPI3MD	0000
		_	_	—	—	—	_	—	_	DMA12MD	DMA8MD	DMA4MD	DMA0MD	—	—	—		0000
	0760	_	_	_	_	_	_	_	_	DMA13MD	DMA9MD	DMA5MD	DMA1MD	_	_	_	_	0000
PIVID7	0760	_	_	—	—	—	_	—	_	DMA14MD	DMA10MD	DMA6MD	DMA2MD	—	—	—		0000
		_	_	_	_	_	_	_	_	_	DMA11MD	DMA7MD	DMA3MD	_	_	_		0000

_

_

_

_

_

DMA12MD

DMA13MD

DMA14MD

DMA8MD

DMA9MD

DMA10MD

DMA11MD

DMA4ME

DMA5MD

DMA6ME

DMA7MD

DMA0MD

DMA1MD

DMA2MD

DMA3MD

_

_

_

_

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PMD6

PMD7

076A

076C

_

_

_

_

_

_

_

_

_

_

_

_

_

All

Resets

0000

0000

0000 0000

0000

0000

0000

0000

0000

0000

Bit 0

AD1MD

OC1MD

AD2MD

_

OC9MD

SPI3MD

_

_

_

_

SPI4MD

_

_

_

_

_

_

_

_

_

4.6 Modulo Addressing (dsPIC33EPXXXMU806/810/814 Devices Only)

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y data spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.6.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Y space Modulo Addressing EA calcula-
	tions assume word-sized data (LSb of
	every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.6.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled.
- If YWM = 1111, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '1111' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '1111' and the YMODEN bit is set at MODCON<14>.

Byte MOV #0x1100, W0 Address MOV W0, XMODSRT ;set modulo start address #0x1163, W0 0x1100 MOV WO, MODEND MOV ;set modulo end address MOV #0x8001, W0 W0, MODCON ;enable W1, X AGU for modulo MOV MOV #0x0000, W0 ;WO holds buffer fill value MOV #0x1110, W1 ;point W1 to buffer 0x1163 ;fill the 50 buffer locations DO AGAIN, #0x31 MOV WO, [W1++] ;fill the next location AGAIN: INC WO, WO ; increment the fill value Start Addr = 0x1100 End Addr = 0x1163Length = 0x0032 words

FIGURE 4-10: MODULO ADDRESSING OPERATION EXAMPLE

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER	10-4: PMD4	4: PERIPHER		DISABLE C	ONTROL RE	GISTER 4	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—		—	—		—
bit 15							bit 8
U-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0
—	—	U4MD	—	REFOMD	—	—	USB1MD ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-6	Unimplemen	ted: Read as ')'				
bit 5	U4MD: UART	4 Module Disa	ble bit				
	1 = UART4 m	nodule is disabl	ed				
	0 = UART4 m	nodule is enable	ed				
bit 4	Unimplemen	ted: Read as ')'				
bit 3	REFOMD: Re	eference Clock	Module Disabl	e bit			
	1 = Reference	e clock module	is disabled				
	0 = Reference	e clock module	is enabled				
bit 2-1	Unimplemen	ted: Read as ')'				
bit 0	USB1MD: US	SB Module Disa	ıble bit ⁽¹⁾				
	1 = USB mod	lule is disabled					
	0 = USB mod	lule is enabled					

Note 1: This bit is only available on dsPIC33EPXXXMU8XXX and PIC24EPXXXGU8XX devices.

	-	-	-	_		-				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_				SCK4R<6:0>	>					
bit 15							bit			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—				SDI4R<6:0>						
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'				
n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown						
bit 14-8	SCK4R<6:0 (see Table 1 1111111 =	>: Assign SPI4 1-2 for input pin Input tied to RP	Clock Input (S selection nun 127	SCK4) to the Co nbers)	orresponding F	RPn/RPIn Pin bit	S			
	0000001 = 0000000 =	Input tied to CM Input tied to Vss	P1							
bit 7	Unimpleme	nted: Read as '	0'							
bit 6-0	SDI4R<6:0> (see Table 1	: Assign SPI4 D 1-2 for input pin	ata Input (SD) selection nun	014) to the Corre	esponding RPr	n/RPIn Pin bits				
	1111111 =	Input tied to RP	127							
	•									
			1.14							

REGISTER 11-31: RPINR31: PERIPHERAL PIN SELECT INPUT REGISTER 31

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 16-12: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	Cx<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable b	oit	U = Unimplei	mented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown

bit 15-0 PDCx<15:0>: PWM Generator # Duty Cycle Value bits

Note 1: In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In the Complementary, Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both the PWMxH and PWMxL.

REGISTER 16-13: SDCx: PWMx SECONDARY DUTY CYCLE REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			SDC	x<15:8>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			SDC	x<7:0>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown										

bit 15-0 SDCx<15:0>: Secondary Duty Cycle bits for PWMxL Output Pin bits

Note 1: The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IFLTMOD		C	LSRC<4:0>(2	2,3)		CLPOL ⁽¹⁾	CLMOD
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FL	_TSRC<4:0> ^{(2,3})		FLTPOL ⁽¹⁾	FLTMC	D<1:0>
bit 7							bit 0
							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	IFLTMOD: In 1 = Indepen maps FL 0 = Normal outputs:	dependent Fau dent Fault mode TDAT<0> to PV Fault mode: Cu the PWM Fault	It Mode Enab e: Current-limi VMxL output; urrent-Limit m mode maps f	le bit t input maps F the CLDAT<1 ode maps CL FI TDAT<1:0>	ELTDAT<1> to P :0> bits are not to .DAT<1:0> bits to the PWMxH a	WMxH output a used for overric to the PWMxH and PWMxI ou	ind Fault input le functions I and PWMxL touts.
bit 14-10	CLSRC<4:0: 11111 = Res 01001 = Res 01010 = Cor 01001 = Cor 01000 = Cor 01000 = Cor 00111 = Res 00110 = Fau 00101 = Fau 00101 = Fau 00011 = Fau 00010 = Fau 00001 = Fau	Current-Limit served Served mparator 3 mparator 2 mparator 1 served ilt 7 ilt 6 ilt 5 ilt 4 ilt 3 ilt 2 ilt 1	Control Signa	al Source Sele	ect for PWM Ger	herator # bits ^{(2,}	3)
bit 9	CLPOL: Cur 1 = The sele 0 = The sele	rent-Limit Polari cted current-lim cted current-lim	ity bit for PWN it source is ac it source is ac	/I Generator # tive-low tive-high	(1)		
bit 8	CLMOD: Cur 1 = Current-L 0 = Current-L	rrent-Limit Mode _imit mode is er _imit mode is dis	e Enable bit fo nabled sabled	or PWM Gene	rator #		
Note 1: The yie	ese bits should ld unpredictabl	be changed on e results.	ly when PTEN	N = 0. Changir	ng the clock sele	ection during op	eration will

REGISTER 16-21: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER

- 2: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = 01000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.
- **3:** When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = 01000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.

© 2009-2012 Microchip Technology Inc.

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70569) the "dsPIC33E/PIC24E of Family Reference Manual", which is available the Microchip from web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The SPI module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, ADC Converters, etc. The SPI module is compatible with the Motorola[®] SPI and SIOP interfaces. Four SPI modules are provided on a single device. These modules, which are designated as SPI1, SPI2, SPI3 and SPI4, are functionally identical with the exception that SPI2 is not remappable. The dedicated SDI2, SDO2 and SCK2 connections provide improved performance over SPI1, SPI3 and SPI4 (see **Section 32.0 "Electrical Characteristics"**). Each SPI module includes an eight-word FIFO buffer and allows DMA bus connections. When using the SPI module with DMA, FIFO operation can be disabled.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1, SPI2, SPI3 and SPI4. Special Function Registers follow a similar notation. For example, SPIxCON refers to the control register for the SPI1, SPI2, SPI3 or SPI4 module.

The SPIx serial interface consists of four pins, as follows:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx/FSYNCx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPIx module can be configured to operate with two, three or four pins. In 3-pin mode, SSx is not used. In 2-pin mode, neither SDOx nor SSx is used.

Figure 18-1 illustrates the block diagram of the SPI module in Standard and Enhanced modes.

FIGURE 18-1: SPIX MODULE BLOCK DIAGRAM

REGISTER 2	1-2: CxCTI	RL2: ECANx	CONTROL	REGISTER 2	2			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	
—	—	—	DNCNT<4:0>					
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable b			bit U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-5	Unimplemented: Read as '0'						
bit 4-0	DNCNT<4:0>: DeviceNet™ Filter Bit Number bits						
	10010-11111 = Invalid selection 10001 = Compares up to Data Byte 3, bit 6 with EID<17>						
	•						
	•						
	•						
	00001 = Compares up to Data Byte 1, bit 7 with EID<0> 00000 = Does not compare data bytes						

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	_		—	—	_		—				
bit 15							bit				
R/K-0, HS	R/K-0,HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS				
BISEF	BUSACCEF	DMAEF	BIOFF	DFN8EF	CRC16EF	CRC5EF	PIDEF				
							DIL				
_eaend:		U = Unimplem	ented bit. read	d as '0'							
R = Readable	e bit	K = Write '1' to	o clear bit	HS = Hardwa	re Settable bit						
n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown				
oit 15-8	Unimplement	ted: Read as '@)'								
oit 7	BTSEF: Bit St	tuff Error Flag b	oit								
	1 = Bit stuff error has been detected										
		m error nas bee	en detected								
DIT 6	BUSACCEF:	Bus Access Er	ror Flag bit	aantad BAM la	action						
	0 = RAM loca	 Peripheral tried to access an unimplemented RAM location RAM location access was successful 									
bit 5	DMAEF: DMA	Error Flag bit									
	1 = A USB DI	1 = A USB DMA error condition is detected: the data size indicated by the buffer descriptor byte coun									
	field is less than the number of received bytes; the received data is truncated										
	0 = No DMA	error									
bit 4	BTOEF: Bus Turnaround Time-out Error Flag bit										
	1 = Bus turnaround time-out has occurred										
hit 3	DENSEE: Dat	a Field Size Fr	out has occur or Flag hit	cu							
	1 = Data field was not an integral number of bytes										
	0 = Data field was an integral number of bytes										
bit 2	CRC16EF: CF	RC16 Failure F	lag bit								
	1 = CRC16 failed										
	0 = CRC16 passed										
bit 1	CRC5EF: CR	CRC5EF: CRC5 Host Error Flag bit									
	1 = 1 loken particular	1 = Token packet rejected due to CRC5 error									
nit O		beck Failure F	an hit	· ·)							
	1 = PID chec	k failed									

24.2 DCI Resources

Many useful resources related to DCI are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en554310

24.2.1 KEY RESOURCES

- Section 20. "Data Converter Interface (DCI)" (DS70356) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- Development Tools

FIGURE 25-2: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

FIGURE 25-3: USER-PROGRAMMABLE BLANKING FUNCTION BLOCK DIAGRAM

REGISTER 26-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—		MINTEN<2:0>			MINON	IE<3:0>	
bit 15							bit 8
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—		SECTEN<2:0>			SECON	IE<3:0>	
bit 7							bit 0
Lagand							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

REGISTER 28-2: PMMODE: PARALLEL MASTER PORT MODE REGISTER (CONTINUED)

- bit 1-0 WAITE<1:0>: Data Hold After Strobe Wait State Configuration bits^(1,2,3)
 - 11 = Wait of 4 TP 10 = Wait of 3 TP 01 = Wait of 2 TP 00 = Wait of 1 TP
- Note 1: The applied Wait state depends on whether data and address are multiplexed or demultiplexed. See Section 28.4.1.8. "Wait States" in Section 28. "Parallel Master Port (PMP)" (DS70576) in the "dsPIC33E/PIC24E Family Reference Manual" for more information.
 - 2: WAITB<1:0> and WAITE<1:0> bits are ignored whenever WAITM<3:0> = 0000.
 - **3:** TP = 1/FP.

31.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

31.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

31.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

TABLE 32-22: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

AC CHARACTERISTICS			Stand (unles Opera	ard Operations otherwise o	ng Cor state ture	ndition: d) -40°C ≤ -40°C ≤	s: 3.0V to 3.6V \leq TA \leq +85°C for Industrial \leq TA \leq +125°C for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SY00	Τρυ	Power-up Period	_	400	600	μS	
SY10	Tost	Oscillator Start-up Time	_	1024 Tosc	-	—	Tosc = OSC1 period
SY11	TPWRT	Power-up Timer Period		_		-	See Section 29.1 "Configuration Bits" and LPRC Parameters F21a and F21b (Table 32-20)
SY12	Тwdt	Watchdog Timer Time-out Period	_	_	_	_	See Section 29.4 "Watchdog Timer (WDT)" and LPRC Parameters F21a and F21b (Table 32-20)
SY13	Tioz	I/O H <u>igh-Im</u> pedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS	
SY20	TMCLR	MCLR Pulse Width (low)	2	—	—	μS	
SY30	TBOR	BOR Pulse Width (low)	1	—	—	μS	
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μS	-40°C to +85°C
SY36	TVREG	Voltage Regulator Standby-to-Active Mode Transition Time		_	30	μs	
SY37	Toscdfrc	FRC Oscillator Start-up Delay	_	—	29	μs	
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay	_	—	70	μs	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 32-26: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 32-44:SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHARACTERISTICS			Standard (unless of Operating	Operatir otherwise	ng Condit stated) ture -40	ions: 3.0 $^{\circ}C < TA <$	V to 3.6V +85°C for Industrial		
			oporating	, comporta	-40	$^{\circ}C \leq TA \leq$	+125°C for Extended		
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SP10	TscP	Maximum SCKx Frequency	—	—	10	MHz	-40°C to +125°C and see Note 3		
SP20	TscF	SCKx Output Fall Time	—	_		ns	See Parameter DO32 and Note 4		
SP21	TscR	SCKx Output Rise Time	—	_		ns	See Parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See Parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—	_	—	ns	See Parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns			

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

NOTES: