

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gp806t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CPU Control Registers 3.7

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R -0	R/W-0
0A ⁽¹⁾	OB ⁽¹⁾	SA ^(1,4)	SB ^(1,4)	OAB ⁽¹⁾	SAB ⁽¹⁾	DA ⁽¹⁾	DC
bit 15			I		I	1	bit 8
R/W-0 ^(2,3)	R/W-0 ^(2,3)	R/W-0 ^(2,3)		DAVA	DAMA	DAMO	DAMA
R/W-0(-,-,)		R/W-0(-,-,-)	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0>		RA	N	OV	Z	С
bit 7							bit (
Legend:		U = Unimplen	nented bit, rea	ad as '0'			
R = Readable	bit	W = Writable	bit	C = Clearable	e bit		
-n = Value at I	POR	'1'= Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	OA: Accumu	lator A Overflov	v Status bit ⁽¹⁾				
		ator A has over					
		ator A has not o					
bit 14		lator B Overflov					
		ator B has over					
		ator B has not o		(1 4)			
bit 13		lator A Saturatio					
		ator A is saturat ator A is not sat		en saturated at	some time		
bit 12		lator B Saturatio		tue hit(1,4)			
DIT 12		ator B is saturat			some time		
		ator B is not sat			Some time		
bit 11	0AB: 0A 0	OB Combined A	ccumulator O	verflow Status	bit ⁽¹⁾		
		ators A or B hav					
	0 = Neither A	Accumulators A	or B have ove	erflowed			
bit 10	SAB: SA S	B Combined Ad	cumulator 'Si	ticky' Status bit	(1)		
		ators A or B are Accumulator A o			urated at some	time	
bit 9	DA: DO Loop						
bit 9	1 = DO loop i						
		not in progress					
bit 8		U Half Carry/Bo	prrow bit				
	1 = A carry-	out from the 4th		for byte-sized o	data) or 8th low	order bit (for wo	rd-sized data
		-out from the 4	th low order b	oit (for byte-siz	ed data) or 8th	low order bit (f	or word-size
		the result occur					
Note 1: Thi	s bit is availab	le on dsPIC33E	PXXX(GP/MC	C/MU)806/810/	814 devices on	lv.	
		are concatenat	-	-		-	errupt Priority
		n parentheses i					
• T					4 .4 5.)		

REGISTER 3-1: SR: CPU STATUS REGISTER

- 3: The IPL<2:0> bits are read-only when NSTDIS = 1 (INTCON1<15>).
- 4: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

4.2.5 X AND Y DATA SPACES

The dsPIC33EPXXX(GP/MC/MU)806/810/814 core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The PIC24EPXXX(GP/GU)806/810/814 devices do not have a Y data space and a Y AGU. For these devices, the entire data space is treated as X data space.

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space. Modulo Addressing and Bit-Reversed Addressing are not present in PIC24EPXXX(GP/ GU)806/810/814 devices.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

4.2.6 DMA RAM

Each dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 device contains 4 Kbytes of dual ported DMA RAM located at the end of Y data RAM and is part of Y data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA Controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU. When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note 1:	DMA	RAM	can	be	used	for	general
	purpo	se data	a stor	age	if the D	DMA	function
	is not	require	ed in a	an a	pplicat	ion.	

2: On PIC24EPXXX(GP/GU)806/810/814 devices, DMA RAM is located at the end of X data RAM and is part of X data space.

4.3 Program Memory Resources

Many useful resources related to the Program Memory are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en554310

4.3.1 KEY RESOURCES

- Section 4. "Program Memory" (DS70612) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- Development Tools

4.4 Special Function Register Maps

Table 4-1 through Table 4-72 provide mapping tables for all Special Function Registers (SFRs).

IABLE	4-4.						SILKI		V USFIC	3357777	WICOID	DEVICES		CONTIN				
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC16	0860	_		CRCIP<2:0	>	_		U2EIP<2:0>		_		U1EIP<2:0>		_	_			4440
IPC17	0862	_		C2TXIP<2:0)>	_		C1TXIP<2:0>	•	_		DMA7IP<2:0>	•	-	[DMA6IP<2:0	>	4444
IPC18	0864	_		QEI2IP<2:0)>	_	_	_	_	-		PSESMIP<2:0	>	_	_	_	-	4040
IPC20	0868	_		U3TXIP<2:0)>	_		U3RXIP<2:0>	>	_		U3EIP<2:0>		_	_	_	_	4440
IPC21	086A	_		U4EIP<2:0	>	_		USB1IP<2:0>	•	_	_	—	_	_	_	_	_	4400
IPC22	086C	_		SPI3IP<2:0	>	_		SPI3EIP<2:0>	>	_		U4TXIP<2:0>		_	ι	J4RXIP<2:0	>	4444
IPC23	086E	_		PWM2IP<2:	0>	_		PWM1IP<2:0	>	_		IC9IP<2:0>		_		OC9IP<2:0>		4444
IPC24	0870	_		PWM6IP<2:	0>	_		PWM5IP<2:0	>	_		PWM4IP<2:0>	>	_	F	WM3IP<2:0	>	4444
IPC29	087A	_		DMA9IP<2:	0>	_		DMA8IP<2:0>	>	_	_	—	_	_	_	—	_	4400
IPC30	087C	_		SPI4IP<2:0	>	_		SPI4EIP<2:0>	>	_		DMA11IP<2:02	>	_	D	MA10IP<2:0)>	4444
IPC31	087E	_		IC11IP<2:0	>	_		OC11IP<2:0>		_		IC10IP<2:0>		_	(OC10IP<2:0	>	4444
IPC32	0880	_	[DMA13IP<2	:0>	_		DMA12IP<2:0	>	_		IC12IP<2:0>		_	(OC12IP<2:0	>	4444
IPC33	0882	_		IC13IP<2:0	>	_		OC13IP<2:0>	•	_	_	—	_	_	D	MA14IP<2:0)>	4404
IPC34	0884	_		IC15IP<2:0	>	_		OC15IP<2:0>	•	_		IC14IP<2:0>	•	_	(OC14IP<2:0	>	4444
IPC35	0886	_	_	_	—	_		ICDIP<2:0>		_		IC16IP<2:0>		_	(DC16IP<2:0	>	0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	_	_	—	_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	_	_	-	_	_	_	—	_	UAE	DAE	DOOVR	_	_	_	_	0000
INTCON4	08C6	_	_	_	-	_	_	_	—	_	_	-	—	_	_	_	SGHT	0000
INTTREG	08C8	_	_	_	_	_		ILR	<3:0>				VE	CNUM<7:0>			•	0000
Lonondi																		

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMU810 DEVICES ONLY (CONTINUED)

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IABLE	4-0.		RRUP	CONT	RULLE	KEGIS			PIC24	EPXXXGU	J010/01/	4 DEVIC	ES UNL		INUED)			
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC20	0868	—		U3TXIP<2:	0>	_	-	U3RXIP<2:0)>	_		U3EIP<2:0	>	_	_	—	_	4440
IPC21	086A	—		U4EIP<2:0)>	_	I	USB1IP<2:0)>	_	_	_	_	_	_	_	—	4400
IPC22	086C	_		SPI3IP<2:0)>	_	5	SPI3EIP<2:0)>	_		U4TXIP<2:0	>	-	ι	J4RXIP<2:0	>	4444
IPC23	086E	_	_	—	_	_	_	_	—	_		IC9IP<2:0>		-		OC9IP<2:0>		0044
IPC29	087A	_	[DMA9IP<2:	0>	_	ſ	DMA8IP<2:0)>	_	_	_	_	-	_	_	_	4400
IPC30	087C	—		SPI4IP<2:0)>	_	SPI4EIP<2:0> OC11IP<2:0>			_		DMA11IP<2:0)>	_	D	MA10IP<2:0)>	4444
IPC31	087E	—		IC11IP<2:0)>	_	OC11IP<2:0>			_		IC10IP<2:03	>	_	(C10IP<2:0	>	4444
IPC32	0880	_	C	MA13IP<2	:0>	_	OC11IP<2:0> DMA12IP<2:0>			_		IC12IP<2:0	>	-	(OC12IP<2:0	>	4444
IPC33	0882	_		IC13IP<2:0)>	_	DMA12IP<2:0> OC13IP<2:0>			_	_	_	_	-	D	MA14IP<2:0	>	4404
IPC34	0884	_		IC15IP<2:0)>	_	,	OC15IP<2:0	>	_		IC14IP<2:02	>	-	(OC14IP<2:0	>	4444
IPC35	0886	_	_	—	—	_		ICDIP<2:0>	>	_		IC16IP<2:0	>	-	(OC16IP<2:0	>	4444
INTCON1	08C0	NSTDIS	_	—	_	_	_	_	—	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	_	_	_	_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	—	_	—	_	_	_	_	_	—	UAE	DAE	DOOVR	_	_	_	_	0000
INTCON4	08C6	—	_	_	_	_	_	_	_	—	—	—	_	_	_	_	SGHT	0000
INTTREG	08C8	—	_	_	_	_		ILF	R<3:0>	•		•	VE	CNUM<7:0>	•	•	•	0000

TABLE 4-8: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXGU810/814 DEVICES ONLY (CONTINUED)

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

		0011				00011								-,				
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC15CON1	098C	_	_	OCSIDL	C	OCTSEL<2:0)>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC15CON2	098E	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC15RS	0990							Outp	ut Compare	15 Seconda	ary Register							XXXX
OC15R	0992		Output Compare 15 Register															XXXX
OC15TMR	0994		Output Compare 15 Register Timer Value 15 Register															XXXX
OC16CON1	0996	_	_	OCSIDL	C	OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC16CON2	0998	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC16RS	099A							Outp	ut Compare	16 Seconda	ary Register							XXXX
OC16R	099C								Output Cor	mpare 16 Re	egister							XXXX
OC16TMR	099E								Timer Va	alue 16 Regi	ster							XXXX

TABLE 4-11: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 16 REGISTER MAP (CONTINUED)

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PWM GENERATOR 4 REGISTER MAP FOR dsPIC33EPXXX(MC/MU)806/810/814 DEVICES ONLY **TABLE 4-16**: All File Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Addr. Resets 0C80 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<1:0> DTCP MTBS CAM XPRES IUE PWMCON4 0000 _ IOCON4 0C82 PENH PENL POLH POLL PMOD<1:0> **OVRENH** OVRENL OVRDAT<1:0> FLTDAT<1:0> CLDAT<1:0> SWAP OSYNC 0000 FCLCON4 0C84 IFLTMOD CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> FLTPOL FLTMOD<1:0> 0000 PDC4 0C86 PDC4<15:0> 0000 0C88 PHASE4 PHASE4<15:0> 0000 DTR4 0C8A DTR4<13:0> 0000 ALTDTR4 0C8C ALTDTR4<13:0> _ ____ 0000 SDC4 0C8E SDC4<15:0> 0000 0C90 SPHASE4 SPHASE4<15:0> 0000 0C92 TRIG4 TRGCMP<15:0> 0000 0C94 TRGDIV<3:0> TRGCON4 _ _ _ TRGSTRT<5:0> 0000 PWMCAP4 0C98 PWMCAP4<15:0> 0000 LEBCON4 0C9A PHR PHF PLR PLF FLTLEBEN CLLEBEN _ _ _ _ BCH BCL BPHH BPHL BPLH BPLL 0000 LEBDLY4 0C9C LEB<11:0> _ 0000 _ _ _ AUXCON4 0C9E BLANKSEL<3:0> CHOPSEL<3:0> CHOPHEN CHOPLEN _ _ _ _ _ 0000 _

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: PWM GENERATOR 5 REGISTER MAP FOR dsPIC33EPXXX(MC/MU)810/814 DEVICES ONLY

WMCON5 CON5 CLCON5 DC5		Bit 15 FLTSTAT PENH	Bit 14 CLSTAT	Bit 13	Bit 12	N CLIEN TRGIEN ITB MDCS DTC<1:0> DTCP — MTBS CAM XPRES IUE - PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDAT<1:0> CLDAT<1:0> SWAP OSYNC 4:0 · · · · MTBS CAM XPRES IUE 4:0 · · · · · MTBS CAM XPRES IUE 4:0 ·													
DCON5 CLCON5	0CA2			TRGSTAT		IEN CLIEN TRGIEN ITB MDCS DTC<1:0> DTCP — MTBS CAM XPRES IUE OC												Resets	
CLCON5		PENH		-	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	1:0>	DTCP	_	MTBS	CAM	XPRES	IUE	0000	
	0CA4		PENL	POLH	POLL	PMOD	<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	T<1:0>	CLDA	AT<1:0>	SWAP	OSYNC	0000	
DC5		IFLTMOD		C	CLSRC<4:0	>		CLPOL	CLMOD		FLT	SRC<4:0	>		FLTPOL	FLTMO	D<1:0>	0000	
	0CA6								PDC5<15:0>									0000	
HASE5	0CA8							F	PHASE5<15:0)>								0000	
TR5	0CAA	_	_															0000	
LTDTR5	0CAC	_	_			ALTDTR5<13:0> 00													
DC5	0CAE																	0000	
PHASE5	0CB0							S	PHASE5<15:	0>								0000	
RIG5	0CB2							Т	RGCMP<15:	0>								0000	
RGCON5	0CB4		TRGDI	V<3:0>		_	_	_	_	_	_			TRO	GSTRT<5:0	>		0000	
WMCAP5	0CB8							PW	M Capture<1	5:0>								0000	
EBCON5	0CBA	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN		_	_		BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000	
EBDLY5	0CBC	_	_	_	—						LEB<11:0)>						0000	
UXCON5	0CBE	—	_	—	—		BLANKS	SEL<3:0>		_	_		CHOPS	EL<3:0>		CHOPHEN	CHOPLEN	0000	
LTDTR5 DC5 PHASE5 RIG5 RGCON5 WMCAP5 EBCON5 EBCLY5	0CAC 0CAE 0CB0 0CB2 0CB4 0CB8 0CBA 0CBC	PHR –	TRGDI PHF 	PLR			CLLEBEN	S T — PW —	AL SDC5<15:0> PHASE5<15: RGCMP<15: —	TDTR5<13: 	:0> — — LEB<11:0		-	BPHH	BPHL	BPI		LH BPLL PHEN CHOPLEN	

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-61: PORTE REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	0E40	_	_	_	_		—	TRISE9	TRISE8	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	03FF
PORTE	0E42	_	_	-		_	_	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	XXXX
LATE	0E44	_	_	-		_	_	LATE9	LATE8	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	XXXX
ODCE	0E46	_	_	-		_	_	_	_	—	_	_	_	_	_	_	_	0000
CNENE	0E48	_	_	-		_	_	CNIEE9	CNIEE8	CNIEE7	CNIEE6	CNIEE5	CNIEE4	CNIEE3	CNIEE2	CNIEE1	CNIEE0	0000
CNPUE	0E4A	_	_	-		_	_	CNPUE9	CNPUE8	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPUE3	CNPUE2	CNPUE1	CNPUE0	0000
CNPDE	0E4C	_	_	-		_	_	CNPDE9	CNPDE8	CNPDE7	CNPDE6	CNPDE5	CNPDE4	CNPDE3	CNPDE2	CNPDE1	CNPDE0	0000
ANSELE	0E4E	_	_	_	_	_	—	ANSE9	ANSE8	ANSE7	ANSE6	ANSE5	ANSE4	ANSE3	ANSE2	ANSE1	ANSE0	03FF

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-62: PORTE REGISTER MAP FOR dsPIC33EPXXX(GP/MC/MU)806 AND PIC24EPXXXGP806 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	0E40	_	—	—	_	—	_			TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	OOFF
PORTE	0E42	_	_	_	_	_	_	_	_	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	XXXX
LATE	0E44	_	_	_	_	_	_	_	_	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	XXXX
ODCE	0E46	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
CNENE	0E48	_	_	_	_	_	_	_	_	CNIEE7	CNIEE6	CNIEE5	CNIEE4	CNIEE3	CNIEE2	CNIEE1	CNIEE0	0000
CNPUE	0E4A	_	_	_	_	_	_	_	_	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPUE3	CNPUE2	CNPUE1	CNPUE0	0000
CNPDE	0E4C	_	_	_	_	_	_	_	_	CNPDE7	CNPDE6	CNPDE5	CNPDE4	CNPDE3	CNPDE2	CNPDE1	CNPDE0	0000
ANSELE	0E4E	—	_	_	_	_	_	_	_	ANSE7	ANSE6	ANSE5	ANSE4	ANSE3	ANSE2	ANSE1	ANSE0	OOFF

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-63: PORTF REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	0E50	_		TRISF13	TRISF12	_	_		TRISF8	_		TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	313F
PORTF	0E52	_	—	RF13	RF12	_			RF8	_		RF5	RF4	RF3	RF2	RF1	RF0	XXXX
LATF	0E54		_	LATF13	LATF12	_	_	_	LATF8	-	_	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	XXXX
ODCF	0E56	_	—	ODCF13	ODCF12	_			ODCF8	_		ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000
CNENF	0E58	_	—	CNIEF13	CNIEF12	_			CNIEF8	_		CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEF0	0000
CNPUF	0E5A	_	—	CNPUF13	CNPUF12	_			CNPUF8	_		CNPUF5	CNPUF4	CNPUF3	CNPUF2	CNPUF1	CNPUF0	0000
CNPDF	0E5C	-	—	CNPDF13	CNPDF12		-		CNPDF8	-		CNPDF5	CNPDF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	0000
ANSELF	0E5E	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-64: PORTF REGISTER MAP FOR dsPIC33EPXXX(GP/MC)806 AND PIC24EPXXXGP806 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	0E50		_	_	_			_			TRISG6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	003B
PORTF	0E52	_	_	_	_	_	_	_	_	_	RG6	RF5	RF4	RF3	RF2	RF1	RF0	XXXX
LATF	0E54	_	_	_	_	_	_	_	_	_	LATG6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	XXXX
ODCF	0E56	_	_	_	_	_	_	_	_	_	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000
CNENF	0E58	_	_	_	_	_	_	_	_	_	CNIEG6	CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEF0	0000
CNPUF	0E5A	_	_	_	_	_	_	_	_	_	CNPUG6	CNPUF5	CNPUF4	CNPUF3	CNPUF2	CNPUF1	CNPUF0	0000
CNPDF	0E5C	—	_	_	_	_	_	—	—	_	CNPDG6	CNPDF5	CNPDF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	0000
ANSELF	0E5E	_	_	_	_	_	_	—	—	—	_	—	_	—	—	—	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-65: PORTF REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	0E50	_	_	_	_			_	—	_		TRISF5	TRISF4	TRISF3	_	TRISF1	TRISF0	003B
PORTF	0E52		-	_	_	_	_	_	_	_	_	RF5	RF4	RF3	_	RF1	RF0	XXXX
LATF	0E54	_	—	_	_	_			_	_		LATF5	LATF4	LATF3	—	LATF1	LATF0	XXXX
ODCF	0E56	_	—	_	_	_			_	_		ODCF5	ODCF4	ODCF3	—	ODCF1	ODCF0	0000
CNENF	0E58	_	—	_	_	_			_	_		CNIEF5	CNIEF4	CNIEF3	—	CNIEF1	CNIEF0	0000
CNPUF	0E5A	_	—	_	_	_			_	_		CNPUF5	CNPUF4	CNPUF3	—	CNPUF1	CNPUF0	0000
CNPDF	0E5C	_	—	_	_	_			_	_		CNPDF5	CNPDF4	CNPDF3	—	CNPDF1	CNPDF0	0000
ANSELF	0E5E	_	_	_	_	_			_	_		—	-	—	_			0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-66: PORTG REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E60	TRISG15	TRISG14	TRISG13	TRISG12	_	_	TRISG9	TRISG8	TRISG7	TRISG6	—	_	—	_	TRISG1	TRISG0	F3C3
PORTG	0E62	RG15	RG14	RG13	RG12		_	RG9	RG8	RG7	RG6	-	_	RG3 ⁽¹⁾	RG2 ⁽¹⁾	RG1	RG0	XXXX
LATG	0E64	LATG15	LATG14	LATG13	LATG12		_	LATG9	LATG8	LATG7	LATG6	-	_	_	_	LATG1	LATG0	XXXX
ODCG	0E66	ODCG15	ODCG14	ODCG13	ODCG12		_	_	_	_	_	-	_	_	_	ODCG1	ODCG0	0000
CNENG	0E68	CNIEG15	CNIEG14	CNIEG13	CNIEG12		_	CNIEG9	CNIEG8	CNIEG7	CNIEG6	-	_	CNIEG3 ⁽¹⁾	CNIEG2 ⁽¹⁾	CNIEG1	CNIEG0	0000
CNPUG	0E6A	CNPUG15	CNPUG14	CNPUG13	CNPUG12		_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	-	_	_	_	CNPUG1	CNPUG0	0000
CNPDG	0E6C	CNPDG15	CNPDG14	CNPDG13	CNPDG12	_		CNPDG9	CNPDG8	CNPDG7	CNPDG6	_		_	_	CNPDG1	CNPDG0	0000
ANSELG	0E6E	_	_	_	_	_	_	ANSG9	ANSG8	ANSG7	ANSG6	_	_	_	_	_	-	03C0

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: If RG2 and RG3 are used as general purpose inputs, the VUSB3V3 pin must be connected to VDD.

	D 444.0	DAMA	DAM 0		DAMA	D 444.0	DAMA
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				DTCMP3R<6:	/>		L:+ 0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				DTCMP2R<6:)>		
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable	bit	U = Unimpler	nented bit, rea	id as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown
		Input tied to RP Input tied to CM Input tied to Vss	P1				
bit 7		ented: Read as '					
bit 6-0	DTCMP2R< (see Table 2	6:0>: Assign PW 11-2 for input pin Input tied to RP	M Dead-Time		nput 2 to the C	orresponding RP	'n/RPIn Pin bits
		Input tied to CM Input tied to Vss					

0000000 = Input tied to Vss

REGISTER 11-51: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—			RP97	R<5:0>		
						bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—			RP96	R<5:0>		
	-					bit 0
	_	-	_	— RP97 U-0 R/W-0 R/W-0 R/W-0	— RP97R<5:0>	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP97R<5:0>: Peripheral Output Function is Assigned to RP97 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP96R<5:0>: Peripheral Output Function is Assigned to RP96 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-52: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP99	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP98	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

bit 13-8	RP99R<5:0>: Peripheral Output Function is Assigned to RP99 Output Pin bits
	(see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'

bit 5-0 **RP98R<5:0>:** Peripheral Output Function is Assigned to RP98 Output Pin bits (see Table 11-3 for peripheral function numbers)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_				
bit 15							bit			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	_	BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL			
bit 7			•				bit			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown			
bit 15	PHR: PWM	xH Rising Edge	Trigger Enab	le bit						
		edge of PWMxH								
	-	-Edge Blanking		-	κH					
bit 14		xH Falling Edge edge of PWMxH	00		anking counter					
		-Edge Blanking								
bit 13	-	xL Rising Edge	-							
		edge of PWMxL			nking counter					
	0 = Leading	I-Edge Blanking	ignores rising	edge of PWM	٢L					
bit 12		PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter								
		edge of PWMxL I-Edge Blanking								
bit 11	FLTLEBEN	FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit								
		-Edge Blanking -Edge Blanking								
bit 10	CLLEBEN:	Current-Limit Le	ading-Edge I	Blanking Enable	e bit					
		-Edge Blanking -Edge Blanking								
bit 9-6	-	ented: Read as								
bit 5	BCH: Blanking in Selected Blanking Signal High Enable bit ⁽¹⁾									
		anking (of currer			nals) when seled	ted blanking si	gnal is high			
		king when selec	•	• •						
bit 4		ing in Selected I								
	 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low 									
bit 3	BPHH: Blanking in PWMxH High Enable bit									
		anking (of currer			nals) when PWM	1xH output is hi	igh			
bit 2	 0 = No blanking when PWMxH output is high BPHL: Blanking in PWMxH Low Enable bit 									
5112	1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low									
		king when PWM			,					
bit 1		king in PWMxL	-							
		anking (of currer king when PWN		· · ·	nals) when PWM	1xL output is hi	gh			
bit 0		king in PWMxL	-	-						
		anking (of currer			nals) when PWM	1xL output is lo	w			

REGISTER 16-22: LEBCONX: LEADING-EDGE BLANKING CONTROL REGISTER x

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEIGE	C<31:24>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEIGE	C<23:16>				
bit 7							bit C	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared		x = Bit is unknown			

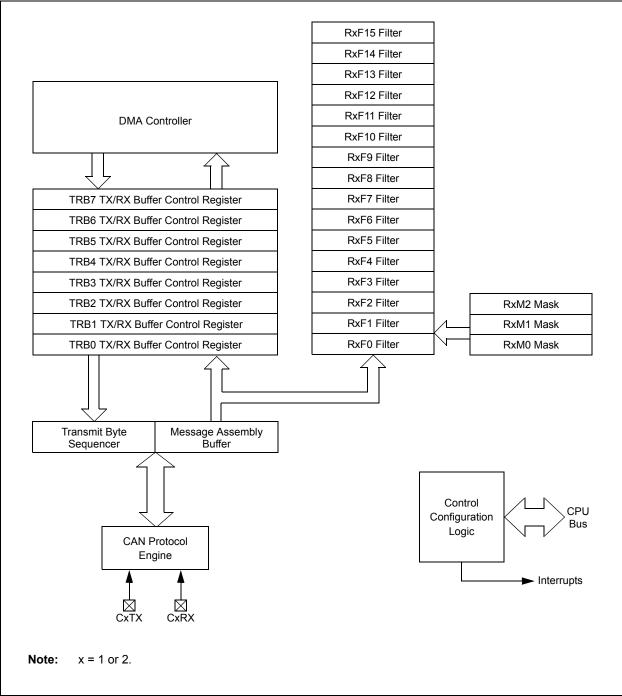
REGISTER 17-15: QEIxGECH: QEIx GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER

REGISTER 17-16: QEIxGECL: QEIx GREATER THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		QEIGE	EC<15:8>				
						bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		QEIG	EC<7:0>				
						bit 0	
bit	W = Writable b	oit	U = Unimplemented bit, read as '0'				
OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
	R/W-0	R/W-0 R/W-0	QEIGE R/W-0 R/W-0 QEIG oit W = Writable bit	QEIGEC<15:8> R/W-0 R/W-0 QEIGEC<7:0> Dit W = Writable bit U = Unimplement	QEIGEC<15:8> R/W-0 R/W-0 R/W-0 QEIGEC<7:0> QEIGEC<7:0>	QEIGEC<15:8> R/W-0 R/W-0 R/W-0 R/W-0 QEIGEC<7:0> U = Unimplemented bit, read as '0'	

bit 15-0 **QEIGEC<15:0>:** QEIx Low Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEIxGEC) bits

REGISTER 17-17: INTxTMRH: INTERVAL TIMER x HIGH WORD REGISTER


(QEIxGEC) bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			INTTM	R<31:24>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			INTTM	R<23:16>				
bit 7							bit 0	
Legend:								
R = Readable	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unkno			nown	

bit 15-0 INTTMR<31:16>: High Word Used to Form 32-Bit Interval Timer Register (INTxTMR) bits

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC	
ACKSTAT	TRSTAT		_	_	BCL	GCSTAT	ADD10	
oit 15							bit	
R/C-0, HS	R/C-0, HS	R-0, HSC		R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC TBF	
IWCOL bit 7	I2COV	D_A	Р	S	R_W	RBF	bit	
							- Dit	
Legend:		C = Clearab	ole bit	U = Unimpler	nented bit, read	as '0'		
R = Readable	e bit	W = Writabl	e bit	HS = Hardwa	re Settable bit	HSC = Hardware S	ettable/Clearable	
-n = Value at	POR	'1' = Bit is s	et	'0' = Bit is cle	ared	x = Bit is unknown		
bit 15	ACKSTAT: A					<i></i> .		
		-		plicable to ma	ster transmit op	eration)		
	1 = NACK re 0 = ACK rec							
				a slave Ackn	owledge.			
oit 14					-	cable to master trar	nsmit operation)	
	1 = Master t	ransmit is in	progress (8	bits + ACK)			. ,	
			ot in progress					
	Hardware is Acknowledg		beginning of	a master tra	nsmission. Har	dware is clear at t	the end of a sla	
oit 13-11	Unimplemented: Read as '0'							
pit 10	BCL: Maste	r Bus Collisi	on Detect bit					
			een detected	d during a mas	ster operation			
	0 = No collis		the states in the second					
-: · ·			tion of a bus	COIIISION.				
bit 9	GCSTAT: Ge		status bit s was receive	d				
			s was receive s was not rec	-				
					eral call address	. Hardware is clear	at a Stop detectio	
bit 8	ADD10: 10-	Bit Address	Status bit					
	1 = 10-bit ac	ddress was r	natched					
	0 = 10-bit ac							
				yte of a matche	ed 10-bit addres	s. Hardware is clear	at a Stop detection	
bit 7	IWCOL: Wri					20		
	1 = An atten 0 = No collis		o the I2Cx I R	RN register fail	ed because the	I ² C module is bus	У	
			currence of a	a write to I2Cx	TRN while busy	/ (cleared by softwa	are).	
bit 6			verflow Flag I			(
			-		er is still holding	the previous byte		
	0 = No over							
			-		-	eared by software)		
	D_A: Data/A	Address bit (v	•	ng as I ² C slav	ve)			
bit 5				ad waa data				
bit 5	1 = Indicates							
oit 5	0 = Indicates	s that the las	st byte receiv	ed was a devi		ocontion of a alave	buto	
	0 = Indicates Hardware is	s that the las	st byte receiv	ed was a devi		eception of a slave	byte.	
bit 5 bit 4	0 = IndicatesHardware isP: Stop bit	s that the las clear at a de	evice address	ed was a devi s match. Hard	ware is set by r	eception of a slave	byte.	
	0 = IndicatesHardware isP: Stop bit	s that the las clear at a do s that a Stop	st byte receive evice address bit has beer	ed was a devi	ware is set by r	eception of a slave	byte.	

FIGURE 21-1: ECANX MODULE BLOCK DIAGRAM

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0			
CON	COE	CPOL	_	_		CEVT	COUT			
bit 15	001	0. 01					bit 8			
DAMA	DAMO						D/// 0			
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
bit 7	OL<1:0>	_	CREF	_		CCH	bit			
							DIL			
Legend:										
R = Readable		W = Writable		-	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	Iown			
bit 15	CON: Comp	arator Enable bi	4							
DIL 15		itor is enabled	il i							
	•	itor is disabled								
bit 14	COE: Compa	arator Output Ei	nable bit							
		tor output is pre tor output is int		xOUT pin						
bit 13	•	parator Output I	3	bit						
	1 = Compara	tor output is invitor output is no	verted							
bit 12-10	-	nted: Read as '								
bit 9		CEVT: Comparator Event bit								
	interrupt	ator event acco s until the bit is ator event did n	cleared	OL<1:0> setti	ngs occurred;	disables future	e triggers an			
bit 8		parator Output k								
		= 0 (non-invert								
	1 = VIN+ > VI 0 = VIN+ < VI									
	When CPOL = 1 (inverted polarity):									
	1 = VIN + < VIN - 0 = VIN + > VIN - 0									
bit 7-6	0 = VIN+ > VI			rity Select bits	i					
bit 7-6	0 = VIN+ > VI EVPOL<1:0> 11 = Trigger/ 10 = Trigger/	N- ≻: Trigger/Even /Event/Interrupt /Event/Interrupt	/Interrupt Pola generated on generated only	any change of	the comparate	or output (while e polarity select				
bit 7-6	0 = VIN+ > VI EVPOL<1:0> 11 = Trigger/ 10 = Trigger/ output (<u>If CPOL</u>	N- : Trigger/Event/ /Event/Interrupt Event/Interrupt while CEVT = 0 _ = 1 (inverted p	/Interrupt Pola generated on generated only) polarity):	any change of on high-to-low	the comparate	• •				
bit 7-6	0 = VIN+ > VI EVPOL<1:0> 11 = Trigger/ 10 = Trigger/ output (<u>If CPOI</u> <u>If CPOI</u>	N- >: Trigger/Event/ /Event/Interrupt Event/Interrupt while CEVT = 0	/Interrupt Pola generated on generated only) <u>polarity):</u> of the compara <u>ted polarity):</u>	any change of on high-to-low ator output.	the comparate	• •	,			
bit 7-6	0 = VIN+ > VI EVPOL<1:0> 11 = Trigger/ 10 = Trigger/ output (<u>If CPOI</u> <u>High-to</u> 01 = Trigger/	N- : Trigger/Event /Event/Interrupt Event/Interrupt while CEVT = 0 <u>- = 1 (inverted p</u> high transition of <u>- = 0 (non-inver</u> -low transition of	t/Interrupt Pola generated on generated only) <u>polarity):</u> of the compara ted polarity): of the compara generated only	any change of on high-to-low ator output. tor output.	the comparate	• •	ed comparato			
bit 7-6	0 = VIN+ > VI EVPOL<1:0> 11 = Trigger/ 10 = Trigger/ output (<u>If CPOI</u> Low-to- <u>If CPOI</u> High-to- 01 = Trigger/ output (<u>If CPOI</u>	N- : Trigger/Event /Event/Interrupt Event/Interrupt while CEVT = 0 <u>-</u> = 1 (inverted p high transition of <u>-</u> = 0 (non-inver -low transition of Event/Interrupt	/Interrupt Pola generated on generated only) <u>polarity):</u> of the compara <u>ted polarity):</u> of the compara generated only) <u>polarity):</u>	any change of on high-to-low ator output. tor output. on low-to-high	the comparate	e polarity select	ed comparato			
bit 7-6	0 = VIN+ > VI EVPOL<1:0> 11 = Trigger/ 10 = Trigger/ output (<u>If CPOI</u> High-to- 01 = Trigger/ output (<u>If CPOI</u> High-to- <u>If CPOI</u> High-to- <u>If CPOI</u>	N- : Trigger/Event /Event/Interrupt Event/Interrupt while CEVT = 0 _ = 1 (inverted p high transition of _ = 0 (non-inver -low transition of Event/Interrupt while CEVT = 0 _ = 1 (inverted p -low transition of _ = 0 (non-inver	(Interrupt Pola generated on generated only) oolarity): of the compara ted polarity): of the compara generated only) oolarity): of the compara ted polarity):	any change of on high-to-low ator output. tor output. on low-to-high tor output.	the comparate	e polarity select	ed comparato			
bit 7-6	0 = VIN+ > VI EVPOL<1:0> 11 = Trigger/ 10 = Trigger/ output (<u>If CPOI</u> High-to 01 = Trigger/ output (<u>If CPOI</u> High-to <u>If CPOI</u> Low-to-	N- : Trigger/Event /Event/Interrupt Event/Interrupt while CEVT = 0 <u>- = 1 (inverted p</u> high transition of <u>- = 0 (non-inver</u> -low transition of <u>- = 1 (inverted p</u> -low transition of <u>- = 0 (non-inver</u> high transition of - = 0 (non-inverted p) - = 0 (non-inverted p)	t/Interrupt Pola generated on generated only) <u>polarity):</u> of the compara <u>ted polarity):</u> of the compara generated only) <u>polarity):</u> of the compara <u>ted polarity):</u> of the compara	any change of on high-to-low ator output. tor output. on low-to-high tor output.	the comparate	e polarity select	ed comparato			
bit 7-6 bit 5	0 = VIN+ > VI EVPOL<1:0> 11 = Trigger/ 10 = Trigger/ output (<u>If CPOI</u> High-to- 01 = Trigger/ output (<u>If CPOI</u> High-to- <u>If CPOI</u> U High-to- 01 = Trigger/ 00 = Trigger/	N- : Trigger/Event /Event/Interrupt Event/Interrupt while CEVT = 0 _ = 1 (inverted p high transition of _ = 0 (non-inver -low transition of Event/Interrupt while CEVT = 0 _ = 1 (inverted p -low transition of _ = 0 (non-inver	t/Interrupt Pola generated on generated only) <u>polarity):</u> of the compara <u>ted polarity):</u> of the compara generated only) <u>polarity):</u> of the compara <u>ted polarity):</u> of the compara generation is o	any change of on high-to-low ator output. tor output. on low-to-high tor output.	the comparate	e polarity select	ed comparato			

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER

	ER 28-2: PMM	IODE: PARA	LLEL MAST	ER PORT MO	DE REGIST	ER	
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUSY	′ IRQN	VI<1:0>	INC	CM<1:0>	MODE16	MOD	E<1:0>
bit 15							bit
R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAI	TB<1:0> ^(1,2,3)		WAI	TM<3:0>		WAITE<	:1:0> (1,2,3)
bit 7							bit
Legend:							
R = Read	lable bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Valu	e at Reset	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15	DUCV. Duov	bit (Master mo	do ophy)				
DIL 15	1 = Port is bu	•	de only)				
	0 = Port is no						
bit 14-13	IRQM<1:0>:	Interrupt Requ	est Mode bits				
	mode), 10 = Reserve 01 = Interrup	or on a read/w ed ot is generated	rite operation at the end of t	Buffer 3 is read when PMA<1:0 the read/write cy	> = 11 (Addres		
hi+ 10 11		rrupt is genera					
bit 12-11		Increment Mod		rement (Legacy	DSD mode on	by)	
	10 = Decrem 01 = Increme	ents ADDR by ents ADDR by ement or decre	1 every read/ 1 every read/v	write cycle vrite cycle	FSF mode on	y)	
bit 10	MODE16: Pa	arallel Master F	Port Mode 8/16	6-Bit Mode bit			
				a read/write to th ead/write to the			
bit 9-8		: Parallel Maste					
	10 = Master 01 = Enhanc	Mode 2 (PMCS ed PSP, contro	Sx, PMRD, PN ols signals (PN	WR, PMENB, P /WR, PMBE, PI /RD, PMWR, PI signals (PMRD	MA <x:0> and F MCSx, PMD<7</x:0>	2MD<7:0>) 2:0> and PMA<	1:0>)
bit 7-6	WAITB<1:0>	: Data Setup te	o Read/Write/	Address Phase	Wait State Cor	nfiguration bits ⁽¹	,2,3)
	10 = Data wa 01 = Data wa	ait of 3 TP (dem ait of 2 TP (dem	nultiplexed/mu nultiplexed/mu	Itiplexed); addre Itiplexed); addre Itiplexed); addre Itiplexed); addre	ess phase of 3 ess phase of 2	TP (multiplexed TP (multiplexed	1) 1)
bit 5-2		Read to Byte of additional 1		e Wait State Co	onfiguration bits	3	
	•	e. additional h					
	•						
		of additional 1 dditional Wait o		ion forced into o	ne TP)		
			• • • •				
Note 1:	Section 28.4.1.8	8. "Wait States	" in Section 2		ster Port (PM		
Note 1: 2:		8. "Wait States 4E Family Refe	" in Section 2 erence Manua	28. "Parallel Manual Ma Manual Manual Ma Manual Manual Ma Manual Manual Ma Manual Manual Manu Manual Manual Man	ster Port (PM mation.	P) " (DS70576)	

DECISTED 20 2 DADALLEL MASTED DODT MODE DECISTED

29.5 JTAG Interface

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.

Note: Refer to Section 24. "Programming and Diagnostics" (DS70608) of the "dsPIC33E/PIC24E Family Reference Manual" for further information on usage, configuration and operation of the JTAG interface.

29.6 In-Circuit Serial Programming

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the *"dsPIC33E/PIC24E Flash Programming Specification"* (DS70619) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

29.7 In-Circuit Debugger

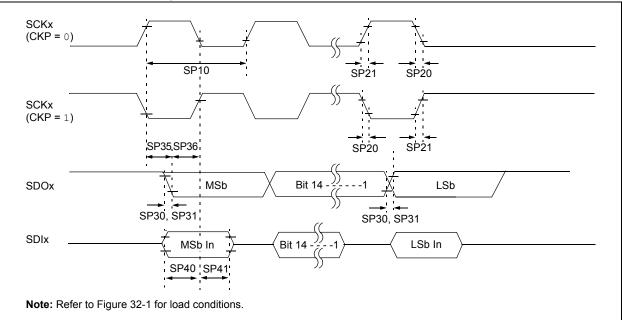
When MPLAB[®] ICD 3 or REAL ICE[™] is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

29.8 Code Protection and CodeGuard™ Security


The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices offer basic implementation of CodeGuard Security that supports only General Segment (GS) security. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IPs reside on the single chip. The code protection features vary depending on the actual dsPIC33E implemented. The following sections provide an overview of these features.

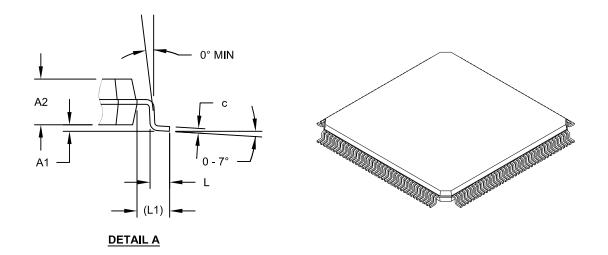
The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices do not support Boot Segment (BS), Secure Segment (SS) and RAM protection.

Note: Refer to Section 23. "CodeGuard™ Security" (DS70634) of the "dsPIC33E/ PIC24E Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

FIGURE 32-18: SPI1, SPI3 AND SPI4 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 32-36:SPI1, SPI3 AND SPI4 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

АС СНА	RACTERIST	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	TscP	Maximum SCKx Frequency	_	—	9	MHz	-40°C to +125°C and see Note 3
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See Parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	_	_	—	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	—	—	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	-	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns	


Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

144-Lead Plastic Low Profile Quad Flatpack (PL) – 20x20x1.40 mm Body, with 2.00 mm Footprint [LQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Dimension Limits			MAX
Number of Leads	Ν		144	
Lead Pitch	е		0.50 BSC	
Overall Height	А	-	-	1.60
Molded Package Height	A2	1.35	1.40	1.45
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 (REF)	
Overall Width	Е		22.00 BSC	
Overall Length	D		22.00 BSC	
Molded Body Width	E1	20.00 BSC		
Molded Body Length	D1		20.00 BSC	
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-044B Sheet 2 of 2

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2009-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-62076-624-8

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.