



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                          |
|----------------------------|-----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                             |
| Core Size                  | 16-Bit                                                                            |
| Speed                      | 60 MIPs                                                                           |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, QEI, SPI, UART/USART                      |
| Peripherals                | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT                     |
| Number of I/O              | 53                                                                                |
| Program Memory Size        | 512KB (170K x 24)                                                                 |
| Program Memory Type        | FLASH                                                                             |
| EEPROM Size                | -                                                                                 |
| RAM Size                   | 24K x 16                                                                          |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                         |
| Data Converters            | A/D 24x10/12b                                                                     |
| Oscillator Type            | Internal                                                                          |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                     |
| Package / Case             | 64-TQFP                                                                           |
| Supplier Device Package    | 64-TQFP (10x10)                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512mc806t-e-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Pin<br>Number | Full Pin Name                          | Pin<br>Number | Full Pin Name                        |
|---------------|----------------------------------------|---------------|--------------------------------------|
| A1            | AN28/PWM3L/PMD4/RP84/RE4               | E8            | RPI31/RA15                           |
| A2            | AN27/PWM2H/PMD3/RPI83/RE3              | E9            | RTCC/DMLN/RPI72/RD8                  |
| A3            | RP125/RG13                             | E10           | ASDA1 <sup>(3)</sup> /DPLN/RPI73/RD9 |
| A4            | AN24/PWM1L/PMD0/RP80/RE0               | E11           | RPI30/RA14                           |
| A5            | RP112/RG0                              | F1            | MCLR                                 |
| A6            | VCMPST2/RP97/RF1                       | F2            | C2IN3-/SDO2/PMA3/RP120/RG8           |
| A7            | Vdd                                    | F3            | C2IN1-/PMA2/RPI121/RG9               |
| A8            | No Connect                             | F4            | C1IN1-/SDI2/PMA4/RPI119/RG7          |
| A9            | RPI76/RD12                             | F5            | Vss                                  |
| A10           | DPH/RP66/RD2                           | F6            | No Connect                           |
| A11           | VCPCON/RP65/RD1                        | F7            | No Connect                           |
| B1            | No Connect                             | F8            | VDD                                  |
| B2            | RP127/RG15                             | F9            | OSC1/RPI60/RC12                      |
| B3            | AN26/PWM2L/PMD2/RP82/RE2               | F10           | Vss                                  |
| B4            | AN25/PWM1H/PMD1/RPI81/RE1              |               | OSC2/CLKO/RC15                       |
| B5            | AN23/RPI23/RA7                         | G1            | AN20/RPI88/RE8                       |
| B6            | VCMPST1/RP96/RF0                       | G2            | AN21/RPI89/RE9                       |
| B7            | VCAP                                   | G3            | TMS/RPI16/RA0                        |
| B8            | PMRD/RP69/RD5                          | G4            | No Connect                           |
| B9            | PMBE/RP67/RD3                          | G5            | VDD                                  |
| B10           | Vss                                    | G6            | Vss                                  |
| B11           | PGEC2/SOSCO/C3IN1-/T1CK/RPI62/RC14     | G7            | Vss                                  |
| C1            | AN30/PWM4L/PMD6/RPI86/RE6              | G8            | No Connect                           |
| C2            | Vdd                                    | G9            | TDO/RPI21/RA5                        |
| C3            | RPI124/RG12                            | G10           | ASDA2 <sup>(3)</sup> /RPI19/RA3      |
| C4            | RP126/RG14                             | G11           | TDI/RPI20/RA4                        |
| C5            | AN22/RPI22/RA6                         | H1            | AN5/C1IN1+/VBUSON/VBUSST/RPI37/RB5   |
| C6            | No Connect                             | H2            | AN4/C1IN2-/USBOEN/RPI36/RB4          |
| C7            | C3IN1+/VCMPST3/RP71/RD7                | НЗ            | No Connect                           |
| C8            | PMWR/RP68/RD4                          | H4            | No Connect                           |
| C9            | No Connect                             | H5            | No Connect                           |
| C10           | PGED2/SOSCI/C3IN3-/RPI61/RC13          | H6            | Vdd                                  |
| C11           | PMCS1/RPI75/RD11                       | H7            | No Connect                           |
| D1            | AN16/PWM5L/RPI49/RC1                   | H8            | VBUS                                 |
| D2            | AN31/PWM4H/PMD7/RP87/RE7               | Н9            | VUSB3V3                              |
| D3            | AN29/PWM3H/PMD5/RP85/RE5               | H10           | D+/RG2 <sup>(4)</sup>                |
| D4            | No Connect                             | H11           | ASCL2 <sup>(3)</sup> /RPI18/RA2      |
| D5            | No Connect                             | J1            | AN3/C2IN1+/VPIO/RPI35/RB3            |
| D6            | No Connect                             | J2            | AN2/C2IN2-/VMIO/RPI34/RB2            |
| D7            | C3IN2-/RP70/RD6                        | J3            | PGED1/AN7/RCV/RPI39/RB7              |
| D8            | RPI77/RD13                             | J4            | AVdd                                 |
| D9            | INT0/DMH/RP64/RD0                      | J5            | AN11/PMA12/RPI43/RB11                |
| D10           | No Connect                             | J6            | TCK/RPI17/RA1                        |
| D11           | ASCL1 <sup>(3)</sup> /PMCS2/RPI74/RD10 | J7            | AN12/PMA11/RPI44/RB12                |
|               |                                        |               |                                      |

#### TABLE 2: PIN NAMES: dsPIC33EP256MU810 AND dsPIC33EP512MU810 DEVICES<sup>(1,2)</sup>

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.

2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

3: The availability of <sup>12</sup>C<sup>™</sup> interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is made using the device Configuration bits, ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 29.0 "Special Features" for more information.
 The pin name is SCL1/RG2 for the dsPIC33EP512(GP/MC)806 and PIC24EP512GP806 devices.

5: The pin name is SDA1/RG3 for the dsPIC33EP512(GP/MC)806 and PIC24EP512GP806 devices.

| File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12       | Bit 11     | Bit 10 | Bit 9 | Bit 8   | Bit 7 | Bit 6 | Bit 5 | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|-----------|-------|--------|--------|--------|--------------|------------|--------|-------|---------|-------|-------|-------|--------|-------|-------|-------|-------|---------------|
| W0        | 0000  |        |        |        |              |            |        |       | W0 (WR  | EG)   |       |       |        |       |       |       |       | 0000          |
| W1        | 0002  |        |        |        |              |            |        |       | W1      |       |       |       |        |       |       |       |       | 0000          |
| W2        | 0004  |        |        |        |              |            |        |       | W2      |       |       |       |        |       |       |       |       | 0000          |
| W3        | 0006  |        |        |        |              |            |        |       | W3      |       |       |       |        |       |       |       |       | 0000          |
| W4        | 0008  |        |        |        |              |            |        |       | W4      |       |       |       |        |       |       |       |       | 0000          |
| W5        | 000A  |        |        |        |              |            |        |       | W5      |       |       |       |        |       |       |       |       | 0000          |
| W6        | 000C  |        |        |        |              |            |        |       | W6      |       |       |       |        |       |       |       |       | 0000          |
| W7        | 000E  |        |        |        |              |            |        |       | W7      |       |       |       |        |       |       |       |       | 0000          |
| W8        | 0010  |        |        |        |              |            |        |       | W8      |       |       |       |        |       |       |       |       | 0000          |
| W9        | 0012  |        |        |        |              |            |        |       | W9      |       |       |       |        |       |       |       |       | 0000          |
| W10       | 0014  |        |        |        |              |            |        |       | W10     |       |       |       |        |       |       |       |       | 0000          |
| W11       | 0016  |        |        |        |              |            |        |       | W11     |       |       |       |        |       |       |       |       | 0000          |
| W12       | 0018  |        |        |        |              |            |        |       | W12     |       |       |       |        |       |       |       |       | 0000          |
| W13       | 001A  |        |        |        |              |            |        |       | W13     |       |       |       |        |       |       |       |       | 0000          |
| W14       | 001C  |        |        |        |              |            |        |       | W14     |       |       |       |        |       |       |       |       | 0000          |
| W15       | 001E  |        |        |        |              |            |        |       | W15     |       |       |       |        |       |       |       |       | 1000          |
| SPLIM     | 0020  |        |        |        |              |            |        |       | SPLIN   | Л     |       |       |        |       |       |       |       | 0000          |
| ACCAL     | 0022  |        |        |        |              |            |        |       | ACCA    | L     |       |       |        |       |       |       |       | 0000          |
| ACCAH     | 0024  |        |        |        |              |            |        |       | ACCA    | Н     |       |       |        |       |       |       |       | 0000          |
| ACCAU     | 0026  |        |        | Sig    | gn-Extensior | n of ACCA< | 39>    |       |         |       |       |       | AC     | CAU   |       |       |       | 0000          |
| ACCBL     | 0028  |        |        |        |              |            |        |       | ACCB    | L     |       |       |        |       |       |       |       | 0000          |
| ACCBH     | 002A  |        |        |        |              |            |        |       | ACCB    | Н     |       |       |        |       |       |       |       | 0000          |
| ACCBU     | 002C  |        |        | Sig    | gn-Extensior | n of ACCB< | 39>    |       |         |       |       |       | AC     | CBU   |       |       |       | 0000          |
| PCL       | 002E  |        |        |        |              |            |        |       | PCL     |       |       |       |        |       |       |       | _     | 0000          |
| PCH       | 0030  | —      | _      | —      |              |            | —      | —     | _       |       |       |       |        | PCH   |       |       |       | 0000          |
| DSRPAG    | 0032  | —      | _      | —      |              |            | —      |       |         |       |       | DSRF  | PAG    |       |       |       |       | 0001          |
| DSWPAG    | 0034  | —      | _      | —      |              |            | —      | —     |         |       |       |       | DSWPAG |       |       |       |       | 0001          |
| RCOUNT    | 0036  |        |        |        |              |            |        |       | RCOU    | NT    |       |       |        |       |       |       |       | 0000          |
| DCOUNT    | 0038  |        |        |        |              |            |        |       | DCOU    | T     |       |       |        |       |       |       |       | 0000          |
| DOSTARTL  | 003A  |        |        |        |              |            |        | D     | OSTARTL |       |       |       |        |       |       |       | _     | 0000          |
| DOSTARTH  | 003C  | _      | —      | —      | _            | _          | —      |       | —       | _     | _     |       |        | DOST  | TARTH |       |       | 0000          |
| DOENDL    | 003E  |        |        |        |              |            |        |       | DOENDL  |       |       |       |        |       | -     |       | _     | 0000          |
| DOENDH    | 0040  | _      | —      |        | _            | —          |        |       | _       | —     | _     |       |        | DOE   | INDH  |       |       | 0000          |

## TABLE 4-1: CPU CORE REGISTER MAP FOR dsPIC33EPXXX(GP/MC/MU)806/810/814 DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

## TABLE 4-33: ECAN2 REGISTER MAP WHEN WIN (C2CTRL<0>) = 1

| File Name  | Addr.         | Bit 15    | Bit 14                 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9               | Bit 8  | Bit 7     | Bit 6    | Bit 5  | Bit 4 | Bit 3 | Bit 2 | Bit 1  | Bit 0  | All<br>Resets |
|------------|---------------|-----------|------------------------|--------|--------|--------|--------|---------------------|--------|-----------|----------|--------|-------|-------|-------|--------|--------|---------------|
| _          | 0500-<br>051E |           |                        |        |        |        |        |                     | See Ta | able 4-31 |          |        |       |       |       |        |        | -             |
| C2BUFPNT1  | 0520          |           | F3BF                   | P<3:0> |        |        | F2BF   | <b>?&lt;3:0&gt;</b> |        |           | F1BP     | <3:0>  |       |       | F0BI  | P<3:0> |        | 0000          |
| C2BUFPNT2  | 0522          |           | F7BF                   | P<3:0> |        |        | F6BF   | <b>~</b> 3:0>       |        |           | F5BP     | <3:0>  |       |       | F4BI  | P<3:0> |        | 0000          |
| C2BUFPNT3  | 0524          |           | F11B                   | P<3:0> |        |        | F10B   | ><3:0>              |        |           | F9BP     | <3:0>  |       |       | F8BI  | P<3:0> |        | 0000          |
| C2BUFPNT4  | 0526          |           | F15B                   | P<3:0> |        |        | F14BI  | ><3:0>              |        |           | F13BF    | P<3:0> |       |       | F12B  | P<3:0> |        | 0000          |
| C2RXM0SID  | 0530          |           |                        |        | SID<   | 10:3>  |        |                     |        |           | SID<2:0> |        | _     | MIDE  | _     | EID<'  | 17:16> | XXXX          |
| C2RXM0EID  | 0532          |           |                        |        | EID<   | 15:8>  |        |                     |        |           |          |        | EID   | <7:0> |       |        |        | XXXX          |
| C2RXM1SID  | 0534          |           |                        |        | SID<   | 10:3>  |        |                     |        |           | SID<2:0> |        | —     | MIDE  | _     | EID<'  | 17:16> | XXXX          |
| C2RXM1EID  | 0536          |           |                        |        | EID<   | 15:8>  |        |                     |        |           |          |        | EID   | <7:0> |       |        |        | xxxx          |
| C2RXM2SID  | 0538          |           | SID<10:3><br>EID<15:8> |        |        |        |        |                     |        |           | SID<2:0> |        | —     | MIDE  | _     | EID<   | 17:16> | xxxx          |
| C2RXM2EID  | 053A          |           |                        |        | EID<   | 15:8>  |        |                     |        |           |          |        | EID   | <7:0> |       |        |        | xxxx          |
| C2RXF0SID  | 0540          |           |                        |        | SID<   | 10:3>  |        |                     |        |           | SID<2:0> |        | —     | EXIDE | —     | EID<'  | 17:16> | XXXX          |
| C2RXF0EID  | 0542          |           |                        |        | EID<   | 15:8>  |        |                     |        |           |          |        | EID   | <7:0> | 1     | - r    |        | XXXX          |
| C2RXF1SID  | 0544          |           | SID<10:3>              |        |        |        |        |                     |        | SID<2:0>  |          | —      | EXIDE |       | EID<' | 17:16> | XXXX   |               |
| C2RXF1EID  | 0546          |           | EID<15:8>              |        |        |        |        |                     |        |           |          | EID    | <7:0> |       |       |        | XXXX   |               |
| C2RXF2SID  | 0548          |           | SID<10:3>              |        |        |        |        |                     |        | SID<2:0>  |          | —      | EXIDE | —     | EID<' | 17:16> | XXXX   |               |
| C2RXF2EID  | 054A          |           |                        |        | EID<   | 15:8>  |        |                     |        |           |          |        | EID   | <7:0> |       | 1      |        | XXXX          |
| C2RXF3SID  | 054C          |           |                        |        | SID<   | 10:3>  |        |                     |        |           | SID<2:0> |        | —     | EXIDE | _     | EID<   | 17:16> | XXXX          |
| C2RXF3EID  | 054E          |           |                        |        | EID<   | 15:8>  |        |                     |        |           |          |        | EID   | <7:0> |       |        |        | XXXX          |
| C2RXF4SID  | 0550          |           |                        |        | SID<   | 10:3>  |        |                     |        |           | SID<2:0> |        | _     | EXIDE | _     | EID<'  | 17:16> | XXXX          |
| C2RXF4EID  | 0552          |           |                        |        | EID<   | 15:8>  |        |                     |        |           |          |        | EID   | <7:0> |       | 1      |        | XXXX          |
| C2RXF5SID  | 0554          |           |                        |        | SID<   | 10:3>  |        |                     |        |           | SID<2:0> |        | —     | EXIDE |       | EID<'  | 17:16> | XXXX          |
| C2RXF5EID  | 0556          |           |                        |        | EID<   | 15:8>  |        |                     |        |           |          |        | EID   | <7:0> |       | 1      |        | XXXX          |
| C2RXF6SID  | 0558          |           |                        |        | SID<   | 10:3>  |        |                     |        |           | SID<2:0> |        | —     | EXIDE |       | EID<'  | 17:16> | XXXX          |
| C2RXF6EID  | 055A          |           |                        |        | EID<   | 15:8>  |        |                     |        |           |          |        | EID   | <7:0> |       | 1      |        | XXXX          |
| C2RXF7SID  | 055C          |           |                        |        | SID<   | 10:3>  |        |                     |        |           | SID<2:0> |        | —     | EXIDE | —     | EID<'  | 17:16> | XXXX          |
| C2RXF7EID  | 055E          | EID<15:8> |                        |        |        |        |        |                     |        |           | EID      | <7:0>  |       | 1     |       | XXXX   |        |               |
| C2RXF8SID  | 0560          | SID<10:3> |                        |        |        |        |        |                     |        | SID<2:0>  |          | —      | EXIDE | _     | EID<' | 17:16> | XXXX   |               |
| C2RXF8EID  | 0562          | EID<15:8> |                        |        |        |        |        |                     |        |           |          | EID    | <7:0> |       |       |        | XXXX   |               |
| C2RXF9SID  | 0564          | SID<10:3> |                        |        |        |        |        |                     |        | SID<2:0>  |          | —      | EXIDE |       | EID<' | 17:16> | XXXX   |               |
| C2RXF9EID  | 0566          |           |                        |        | EID<   | 15:8>  |        |                     |        |           |          |        | EID   | <7:0> |       |        |        | XXXX          |
| C2RXF10SID | 0568          | SID<10:3> |                        |        |        |        |        |                     |        | SID<2:0>  |          |        | EXIDE | —     | EID<' | 17:16> | XXXX   |               |
| C2RXF10EID | 056A          |           | EID<15:8>              |        |        |        |        |                     |        |           |          |        | EID   | <7:0> |       |        |        | XXXX          |
| C2RXF11SID | 056C          |           |                        |        | SID<   | 10:3>  |        |                     |        |           | SID<2:0> |        | —     | EXIDE | —     | EID<'  | 17:16> | XXXX          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-49: PMD REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

| File<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7   | Bit 6   | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|--------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|--------|--------|--------|--------|--------|--------|---------------|
| PMD1         | 0760  | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   | QEI1MD | PWMMD  | DCIMD  | I2C1MD  | U2MD    | U1MD   | SPI2MD | SPI1MD | C2MD   | C1MD   | AD1MD  | 0000          |
| PMD2         | 0762  | IC8MD  | IC7MD  | IC6MD  | IC5MD  | IC4MD  | IC3MD  | IC2MD  | IC1MD  | OC8MD   | OC7MD   | OC6MD  | OC5MD  | OC4MD  | OC3MD  | OC2MD  | OC1MD  | 0000          |
| PMD3         | 0764  | T9MD   | T8MD   | T7MD   | T6MD   | _      | CMPMD  | RTCCMD | PMPMD  | CRCMD   | —       | QEI2MD |        | U3MD   | —      | I2C2MD | AD2MD  | 0000          |
| PMD4         | 0766  | —      |        |        |        | _      | —      | _      | —      | _       | —       | U4MD   |        | REFOMD | —      | —      | USB1MD | 0000          |
| PMD5         | 0768  | IC16MD | IC15MD | IC14MD | IC13MD | IC12MD | IC11MD | IC10MD | IC9MD  | OC16MD  | OC15MD  | OC14MD | OC13MD | OC12MD | OC11MD | OC10MD | OC9MD  | 0000          |
| PMD6         | 076A  | —      |        |        |        | PWM4MD | PWM3MD | PWM2MD | PWM1MD | _       | —       | _      |        | —      | —      | SPI4MD | SPI3MD | 0000          |
|              |       | —      |        |        |        | _      | —      | _      | —      | DMA12MD | DMA8MD  | DMA4MD | DMA0MD | —      | —      | —      | _      | 0000          |
|              | 0760  | _      |        |        |        | _      | —      | _      | —      | DMA13MD | DMA9MD  | DMA5MD | DMA1MD | —      | —      | —      | _      | 0000          |
|              | 0760  | _      | _      | _      | _      | _      | _      | _      | _      | DMA14MD | DMA10MD | DMA6MD | DMA2MD | _      | _      | _      | _      | 0000          |
|              |       | _      | _      | _      | _      | _      | _      | _      | _      | _       | DMA11MD | DMA7MD | DMA3MD | _      | _      | _      | _      | 0000          |

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-50: PMD REGISTER MAP FOR dsPIC33EPXXXMC806 DEVICES ONLY

| File<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7   | Bit 6   | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|--------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|--------|--------|--------|--------|--------|--------|---------------|
| PMD1         | 0760  | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   | QEI1MD | PWMMD  | DCIMD  | I2C1MD  | U2MD    | U1MD   | SPI2MD | SPI1MD | C2MD   | C1MD   | AD1MD  | 0000          |
| PMD2         | 0762  | IC8MD  | IC7MD  | IC6MD  | IC5MD  | IC4MD  | IC3MD  | IC2MD  | IC1MD  | OC8MD   | OC7MD   | OC6MD  | OC5MD  | OC4MD  | OC3MD  | OC2MD  | OC1MD  | 0000          |
| PMD3         | 0764  | T9MD   | T8MD   | T7MD   | T6MD   | _      | CMPMD  | RTCCMD | PMPMD  | CRCMD   | _       | QEI2MD | _      | U3MD   | _      | I2C2MD | AD2MD  | 0000          |
| PMD4         | 0766  | —      | _      | _      | _      | _      | _      | _      | —      | _       | _       | U4MD   | _      | REFOMD | _      | _      | _      | 0000          |
| PMD5         | 0768  | IC16MD | IC15MD | IC14MD | IC13MD | IC12MD | IC11MD | IC10MD | IC9MD  | OC16MD  | OC15MD  | OC14MD | OC13MD | OC12MD | OC11MD | OC10MD | OC9MD  | 0000          |
| PMD6         | 076A  | —      | _      | _      | _      | PWM4MD | PWM3MD | PWM2MD | PWM1MD | _       | _       | _      | _      | _      | _      | SPI4MD | SPI3MD | 0000          |
|              |       | —      | _      | _      | _      | _      | _      | —      | —      | DMA12MD | DMA8MD  | DMA4MD | DMA0MD | _      | _      | _      | _      | 0000          |
| DMDZ         | 0700  | —      | _      | _      | _      | _      | _      | —      | —      | DMA13MD | DMA9MD  | DMA5MD | DMA1MD | _      | _      | _      | _      | 0000          |
| PIVID7       | 0760  | —      | _      | _      | _      | _      | _      | —      | —      | DMA14MD | DMA10MD | DMA6MD | DMA2MD | _      | _      | _      | _      | 0000          |
|              | 1     | —      |        | _      | _      | _      |        | _      | _      | _       | DMA11MD | DMA7MD | DMA3MD |        | _      |        | _      | 0000          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-58: PORTC REGISTER MAP FOR dsPIC33EPXXX(GP/MC/MU)806 AND PIC24EPXXXGP806 DEVICES ONLY

| File<br>Name | Addr, | Bit 15  | Bit 14  | Bit 13  | Bit 12  | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|--------------|-------|---------|---------|---------|---------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|
| TRISC        | 0E20  | TRISC15 | TRISC14 | TRISC13 | TRISC12 | —      | —      | —     | —     | —     | —     | —     | —     | —     | —     | -     | —     | F000          |
| PORTC        | 0E22  | RC15    | RC14    | RC13    | RC12    | _      | _      | _     | _     | _     | _     | _     | _     | _     | _     | _     | _     | XXXX          |
| LATC         | 0E24  | LATC15  | LATC14  | LATC13  | LATC12  | _      | _      | _     | _     | _     | _     | _     | _     | _     | _     | _     | _     | XXXX          |
| ODCC         | 0E26  | _       | _       | _       | _       | _      | _      | _     | _     | _     | _     | _     | _     | _     | _     | _     | _     | 0000          |
| CNENC        | 0E28  | CNIEC15 | CNIEC14 | CNIEC13 | CNIEC12 | _      | _      | _     | _     | _     | _     | _     | _     | _     | _     | _     | _     | 0000          |
| CNPUC        | 0E2A  | CNPUC15 | CNPUC14 | CNPUC13 | CNPUC12 | _      | _      | _     | _     | _     | _     | _     | _     | _     | _     | _     | _     | 0000          |
| CNPDC        | 0E2C  | CNPDC15 | CNPDC14 | CNPDC13 | CNPDC12 | _      | _      | _     | _     | _     | _     | _     | _     | _     | _     | _     | _     | 0000          |
| ANSELC       | 0E2E  | _       | ANSC14  | ANSC13  | _       | _      | _      |       |       | _     | _     |       |       | _     | _     | _     | _     | 6000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal

#### TABLE 4-59: PORTD REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

| File<br>Name | Addr. | Bit 15  | Bit 14  | Bit 13  | Bit 12  | Bit 11  | Bit 10  | Bit 9  | Bit 8  | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|--------------|-------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|
| TRISD        | 0E30  | TRISD15 | TRISD14 | TRISD13 | TRISD12 | TRISD11 | TRISD10 | TRISD9 | TRISD8 | TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISD0 | FFFF          |
| PORTD        | 0E32  | RD15    | RD14    | RD13    | RD12    | RD11    | RD10    | RD9    | RD8    | RD7    | RD6    | RD5    | RD4    | RD3    | RD2    | RD1    | RD0    | XXXX          |
| LATD         | 0E34  | LATD15  | LATD14  | LATD13  | LATD12  | LATD11  | LATD10  | LATD9  | LATD8  | LATD7  | LATD6  | LATD5  | LATD4  | LATD3  | LATD2  | LATD1  | LATD0  | XXXX          |
| ODCD         | 0E36  | ODCD15  | ODCD14  | ODCD13  | ODCD12  | ODCD11  | ODCD10  | ODCD9  | ODCD8  |        | —      | ODCD5  | ODCD4  | ODCD3  | ODCD2  | ODCD1  | ODCD0  | 0000          |
| CNEND        | 0E38  | CNIED15 | CNIED14 | CNIED13 | CNIED12 | CNIED11 | CNIED10 | CNIED9 | CNIED8 | CNIED7 | CNIED6 | CNIED5 | CNIED4 | CNIED3 | CNIED2 | CNIED1 | CNIED0 | 0000          |
| CNPUD        | 0E3A  | CNPUD15 | CNPUD14 | CNPUD13 | CNPUD12 | CNPUD11 | CNPUD10 | CNPUD9 | CNPUD8 | CNPUD7 | CNPUD6 | CNPUD5 | CNPUD4 | CNPUD3 | CNPUD2 | CNPUD1 | CNPUD0 | 0000          |
| CNPDD        | 0E3C  | CNPDD15 | CNPDD14 | CNPDD13 | CNPDD12 | CNPDD11 | CNPDD10 | CNPDD9 | CNPDD8 | CNPDD7 | CNPDD6 | CNPDD5 | CNPDD4 | CNPDD3 | CNPDD2 | CNPDD1 | CNPDD0 | 0000          |
| ANSELD       | 0E3E  | -       | -       | —       | -       | —       | —       | —      |        | ANSD7  | ANSD6  | —      | —      |        | —      |        |        | 00C0          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

## TABLE 4-60: PORTD REGISTER MAP FOR dsPIC33EPXXX(GP/MC/MU)806 AND PIC24EPXXXGP806 DEVICES ONLY

| File<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11  | Bit 10  | Bit 9  | Bit 8  | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|--------------|-------|--------|--------|--------|--------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|
| TRISD        | 0E30  | _      |        | _      |        | TRISD11 | TRISD10 | TRISD9 | TRISD8 | TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISD0 | OFFF          |
| PORTD        | 0E32  | —      |        |        |        | RD11    | RD10    | RD9    | RD8    | RD7    | RD6    | RD5    | RD4    | RD3    | RD2    | RD1    | RD0    | XXXX          |
| LATD         | 0E34  | —      |        |        |        | LATD11  | LATD10  | LATD9  | LATD8  | LATD7  | LATD6  | LATD5  | LATD4  | LATD3  | LATD2  | LATD1  | LATD0  | XXXX          |
| ODCD         | 0E36  | —      |        |        |        | ODCD11  | ODCD10  | ODCD9  | ODCD8  |        | —      | ODCD5  | ODCD4  | ODCD3  | ODCD2  | ODCD1  | ODCD0  | 0000          |
| CNEND        | 0E38  | —      |        |        |        | CNIED11 | CNIED10 | CNIED9 | CNIED8 | CNIED7 | CNIED6 | CNIED5 | CNIED4 | CNIED3 | CNIED2 | CNIED1 | CNIED0 | 0000          |
| CNPUD        | 0E3A  | —      |        |        |        | CNPUD11 | CNPUD10 | CNPUD9 | CNPUD8 | CNPUD7 | CNPUD6 | CNPUD5 | CNPUD4 | CNPUD3 | CNPUD2 | CNPUD1 | CNPUD0 | 0000          |
| CNPDD        | 0E3C  | —      |        |        |        | CNPDD11 | CNPDD10 | CNPDD9 | CNPDD8 | CNPDD7 | CNPDD6 | CNPDD5 | CNPDD4 | CNPDD3 | CNPDD2 | CNPDD1 | CNPDD0 | 0000          |
| ANSELD       | 0E3E  | _      | _      |        | -      | -       | _       | —      | —      | ANSD7  | ANSD6  | —      |        |        | _      | -      | —      | 00C0          |

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2009-2012 Microchip Technology Inc.

# 7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. "Interrupts" (DS70600) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 CPU.

The interrupt controller has the following features:

- Up to eight processor exceptions and software traps
- Eight user-selectable priority levels
- Interrupt Vector Table (IVT) with a unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- · Fixed interrupt entry and return latencies

## 7.1 Interrupt Vector Table

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 Interrupt Vector Table (IVT), shown in Figure 7-1, resides in the General Segment of program memory, starting at location, 0x000004, and is used when executing code from the General Segment. The IVT contains seven nonmaskable trap vectors and up to 114 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with vector 0 takes priority over interrupts at any other vector address.

**Note:** Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

# 7.2 Auxiliary Interrupt Vector

When code is being executed in the Auxiliary Segment, a special single interrupt vector, located at address, 0x7FFFFA, is used for all interrupt sources and traps. Once vectored to this single routine, the VECNUM<7:0> bits (INTTREG<7:0>, Register 7-7) can be examined to determine the source of the interrupt or trap so that it can be properly processed.

## 7.3 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices clear their registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Reset locations are also located in the Auxiliary Segment at the addresses 0x7FFFFC and 0x7FFFFE. The Reset Target Vector Select bit, RSTPRI (FICD<2>) controls whether the primary (General Segment) or Auxiliary Segment Reset location is used.

**FIGURE 11-3:** 

#### 11.4.4.1 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6 bit fields, with each set associated with one RPn pin (see Register 11-44 through Register 11-51). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3).

A null output is associated with the Output Register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

#### **REMAPPABLE OUTPUT** FOR RPn RPnR<5:0> Default 0 U1TX Output 1 **U1RTS** Output 2 RPn Output Data . $\mathbb{N}$ . • **QEI2CCMP** Output 48 **REFCLK Output** 49

MULTIPLEXING OF

| Function     | RPnR<5:0> | Output Name                         |
|--------------|-----------|-------------------------------------|
| DEFAULT PORT | 000000    | RPn tied to Default Pin             |
| U1TX         | 000001    | RPn tied to UART1 Transmit          |
| U1RTS        | 000010    | RPn tied to UART1 Ready-to-Send     |
| U2TX         | 000011    | RPn tied to UART2 Transmit          |
| U2RTS        | 000100    | RPn tied to UART2 Ready-to-Send     |
| SDO1         | 000101    | RPn tied to SPI1 Data Output        |
| SCK1         | 000110    | RPn tied to SPI1 Clock Output       |
| SS1          | 000111    | RPn tied to SPI1 Slave Select       |
| SS2          | 001010    | RPn tied to SPI2 Slave Select       |
| CSDO         | 001011    | RPn tied to DCI Data Output         |
| CSCK         | 001100    | RPn tied to DCI Clock Output        |
| COFS         | 001101    | RPn tied to DCI FSYNC Output        |
| C1TX         | 001110    | RPn tied to CAN1 Transmit           |
| C2TX         | 001111    | RPn tied to CAN2 Transmit           |
| OC1          | 010000    | RPn tied to Output Compare 1 Output |
| OC2          | 010001    | RPn tied to Output Compare 2 Output |
| OC3          | 010010    | RPn tied to Output Compare 3 Output |
| OC4          | 010011    | RPn tied to Output Compare 4 Output |
| OC5          | 010100    | RPn tied to Output Compare 5 Output |
| OC6          | 010101    | RPn tied to Output Compare 6 Output |
| OC7          | 010110    | RPn tied to Output Compare 7 Output |
| OC8          | 010111    | RPn tied to Output Compare 8 Output |
| C1OUT        | 011000    | RPn tied to Comparator Output 1     |
| C2OUT        | 011001    | RPn tied to Comparator Output 2     |
| C3OUT        | 011010    | RPn tied to Comparator Output 3     |
| U3TX         | 011011    | RPn tied to UART3 Transmit          |
| U3RTS        | 011100    | RPn tied to UART3 Ready-to-Send     |

#### TABLE 11-3: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

**Note 1:** This function is available in dsPIC33EPXXX(MC/MU)806/810/814 devices only.

# dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

#### REGISTER 11-57: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

| U-0    | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0   | R/W-0 | R/W-0 |
|--------|-----|-------|-------|-------|---------|-------|-------|
| —      | —   |       |       | RP118 | 3R<5:0> |       |       |
| bit 15 |     |       |       |       |         |       | bit 8 |
|        |     |       |       |       |         |       |       |
| U-0    | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0   | R/W-0 | R/W-0 |
| —      | —   |       |       | RP113 | 3R<5:0> |       |       |
| bit 7  |     |       |       |       |         |       | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| bit 15-14 | Unimplemented: Read as '0'                                                                                                                 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|
| bit 13-8  | <b>RP118R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP118 Output Pin bits (see Table 11-3 for peripheral function numbers) |
| bit 7-6   | Unimplemented: Read as '0'                                                                                                                 |
| bit 5-0   | <b>RP113R&lt;5:0&gt;:</b> Peripheral Output Function is Assigned to RP113 Output Pin bits (see Table 11-3 for peripheral function numbers) |

#### REGISTER 11-58: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

| U-0    | U-0 | R/W-0 | R/W-0       | R/W-0 | R/W-0 | R/W-0 | R/W-0 |  |  |
|--------|-----|-------|-------------|-------|-------|-------|-------|--|--|
| —      |     |       | RP125R<5:0> |       |       |       |       |  |  |
| bit 15 |     |       |             |       |       |       | bit 8 |  |  |
|        |     |       |             |       |       |       |       |  |  |
| U-0    | U-0 | R/W-0 | R/W-0       | R/W-0 | R/W-0 | R/W-0 | R/W-0 |  |  |
|        |     |       | RP120R<5:0> |       |       |       |       |  |  |

| bit | 7 |
|-----|---|
| DIL |   |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'             |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP125R<5:0>:** Peripheral Output Function is Assigned to RP125 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP120R<5:0>:** Peripheral Output Function is Assigned to RP120 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 0

| R/W-0         | R/W-0                                     | R/W-0                                                                | R/W-0                      | R/W-0              | R/W-0                 | R/W-0           | R/W-0  |  |  |  |  |
|---------------|-------------------------------------------|----------------------------------------------------------------------|----------------------------|--------------------|-----------------------|-----------------|--------|--|--|--|--|
| PENH          | PENL                                      | POLH                                                                 | POLL                       | PMOD               | )<1:0> <sup>(1)</sup> | OVRENH          | OVRENL |  |  |  |  |
| bit 15        |                                           |                                                                      |                            |                    |                       |                 | bit 8  |  |  |  |  |
|               |                                           |                                                                      |                            |                    |                       |                 |        |  |  |  |  |
| R/W-0         | R/W-0                                     | R/W-0                                                                | R/W-0                      | R/W-0              | R/W-0                 | R/W-0           | R/W-0  |  |  |  |  |
| OVRD          | AT<1:0>                                   | FLTDA                                                                | T<1:0>                     | CLDA               | AT<1:0>               | SWAP            | OSYNC  |  |  |  |  |
| bit 7         |                                           |                                                                      |                            |                    |                       |                 | bit 0  |  |  |  |  |
|               |                                           |                                                                      |                            |                    |                       |                 |        |  |  |  |  |
| Legend:       |                                           |                                                                      |                            |                    |                       |                 |        |  |  |  |  |
| R = Readable  | e bit                                     | W = Writable                                                         | bit                        | U = Unimpler       | nented bit, rea       | d as '0'        |        |  |  |  |  |
| -n = Value at | POR                                       | '1' = Bit is set                                                     |                            | '0' = Bit is cle   | ared                  | x = Bit is unkr | IOWN   |  |  |  |  |
| bit 15        |                                           | xH Output Pin (                                                      | Ownershin hit              | ŀ                  |                       |                 |        |  |  |  |  |
| bit io        | 1 = PWM mo                                | dule controls P                                                      | WMxH pin                   | L .                |                       |                 |        |  |  |  |  |
|               | 0 = GPIO mo                               | dule controls P                                                      | WMxH pin                   |                    |                       |                 |        |  |  |  |  |
| bit 14        | PENL: PWM>                                | kL Output Pin C                                                      | Ownership bit              |                    |                       |                 |        |  |  |  |  |
|               | 1 = PWM mo                                | dule controls P                                                      | WMxL pin                   |                    |                       |                 |        |  |  |  |  |
|               | 0 = GPIO mo                               | dule controls P                                                      | WMxL pin                   |                    |                       |                 |        |  |  |  |  |
| bit 13        | POLH: PWM                                 | xH Output Pin                                                        | Polarity bit               |                    |                       |                 |        |  |  |  |  |
|               | 1 = PWMxH p                               | pin is active-low                                                    | <i>I</i>                   |                    |                       |                 |        |  |  |  |  |
|               | 0 = PWMxH p                               | oin is active-hig                                                    | n<br>                      |                    |                       |                 |        |  |  |  |  |
| bit 12        | POLL: PWM>                                | KL Output Pin F                                                      | olarity bit                |                    |                       |                 |        |  |  |  |  |
|               | 1 = PWMxL p<br>0 = PWMxL p                | oin is active-low                                                    | ĥ                          |                    |                       |                 |        |  |  |  |  |
| bit 11-10     | PMOD<1:0>:                                | PWM # I/O Pir                                                        | n Mode bits <sup>(1)</sup> | )                  |                       |                 |        |  |  |  |  |
|               | 11 = PWM I/C                              | D pin pair is in t                                                   | he True Inde               | pendent Output     | t mode                |                 |        |  |  |  |  |
|               | 10 = PWM I/C                              | D pin pair is in t                                                   | he Push-Pull               | Output mode        |                       |                 |        |  |  |  |  |
|               | 01 = PWM I/C<br>00 = PWM I/C              | ) pin pair is in t<br>) pin pair is in f                             | ne Redundar<br>he Complem  | nt Output mode     | node                  |                 |        |  |  |  |  |
| hit 9         | OVRENH: Override Enable for PWMxH Pin bit |                                                                      |                            |                    |                       |                 |        |  |  |  |  |
| bit b         | 1 = OVRDAT                                | <1> controls or                                                      | itout on PWM               | IxH pin            |                       |                 |        |  |  |  |  |
|               | 0 = PWM gen                               | nerator controls                                                     | PWMxH pin                  |                    |                       |                 |        |  |  |  |  |
| bit 8         | OVRENL: Ov                                | erride Enable f                                                      | or PWMxL Pi                | in bit             |                       |                 |        |  |  |  |  |
|               | 1 = OVRDAT                                | <0> controls ou                                                      | Itput on PWN               | IxL pin            |                       |                 |        |  |  |  |  |
|               | 0 = PWM gen                               | nerator controls                                                     | PWMxL pin                  |                    |                       |                 |        |  |  |  |  |
| bit 7-6       | OVRDAT<1:0                                | )>: Data for PV                                                      | /MxH, PWMx                 | L Pins if Overri   | de is Enabled I       | bits            |        |  |  |  |  |
|               |                                           | If OVERENH = 1, PWMxH is driven to the state specified by OVRDAT<1>. |                            |                    |                       |                 |        |  |  |  |  |
| hit E 1       |                                           | $- \perp$ , F VVIVIXL IS                                             |                            |                    |                       | od hita         |        |  |  |  |  |
| DIL 5-4       |                                           |                                                                      |                            | ivixL Pilis II FLI | INOD IS ENADI         | ed bits         |        |  |  |  |  |
|               | If Fault is activ                         | ve. PWMxH is                                                         | driven to the              | state specified    | bv FLTDAT<1>          | •.              |        |  |  |  |  |
|               | If Fault is activ                         | ve, PWMxL is o                                                       | driven to the s            | state specified I  | by FLTDAT<0>          |                 |        |  |  |  |  |
|               | IFLTMOD (FC                               | CLCONx<15>)                                                          | = 1: Independ              | dent Fault mode    | e:                    |                 |        |  |  |  |  |
|               | If current limit                          | is active, PWN                                                       | /IxH is driven             | to the state spe   | ecified by FLTD       | )AT<1>.         |        |  |  |  |  |
|               | IT Fault is activ                         | ve, PVVIVIXL IS (                                                    | ariven to the s            | state specified I  | oy FLIDAI<0>          |                 |        |  |  |  |  |
|               |                                           |                                                                      |                            |                    |                       |                 |        |  |  |  |  |

## REGISTER 16-19: IOCONX: PWMx I/O CONTROL REGISTER

Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).

| U-0          | U-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U-0                                                                                                                                                                                                                                                             | U-0                                                                                                                                 | R/W-0                                                             | R/W-0           | R/W-0           | R/W-0   |  |  |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------|-----------------|---------|--|--|--|
| _            | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | —                                                                                                                                                                                                                                                               | _                                                                                                                                   | BLANKSEL<3:0>                                                     |                 |                 |         |  |  |  |
| bit 15       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                 |                                                                                                                                     |                                                                   |                 |                 | bit 8   |  |  |  |
| U-0          | U-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R/W-0                                                                                                                                                                                                                                                           | R/W-0                                                                                                                               | R/W-0                                                             | R/W-0           | R/W-0           | R/W-0   |  |  |  |
| _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                 | CHOP                                                                                                                                | SEL<3:0>                                                          |                 | CHOPHEN         | CHOPLEN |  |  |  |
| bit 7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                 |                                                                                                                                     |                                                                   |                 |                 | bit 0   |  |  |  |
| Legend:      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                 |                                                                                                                                     |                                                                   |                 |                 |         |  |  |  |
| R = Readab   | le bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W = Writable                                                                                                                                                                                                                                                    | bit                                                                                                                                 | U = Unimpler                                                      | nented bit, rea | ıd as '0'       |         |  |  |  |
| -n = Value a | t POR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | '1' = Bit is set                                                                                                                                                                                                                                                |                                                                                                                                     | '0' = Bit is cle                                                  | ared            | x = Bit is unkr | nown    |  |  |  |
| hit 15-12    | Unimpleme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nted: Read as '                                                                                                                                                                                                                                                 | ∩ <b>'</b>                                                                                                                          |                                                                   |                 |                 |         |  |  |  |
| bit 11-8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <3:0>: PWM St                                                                                                                                                                                                                                                   | o<br>ate Blank Soi                                                                                                                  | irce Select hits                                                  |                 |                 |         |  |  |  |
| hit 7.6      | BCH and BC<br>1001 = Rese<br>1000 = Rese<br>0111 = PWN<br>0110 = PWN<br>0101 = PWN<br>0011 = PWN<br>0011 = PWN<br>0010 = PWN<br>0010 = PWN<br>0001 = PWN<br>0000 = No s                                                                                                                                                                                                                                                                                                                                                                                                                             | CL bits in the LE<br>erved<br>M7H selected as<br>M6H selected as<br>M5H selected as<br>M4H selected as<br>M3H selected as<br>M2H selected as<br>M1H selected as<br>M1H selected as                                                                              | BCONx regist<br>state blank s<br>state blank s<br>state blank s<br>state blank s<br>state blank s<br>state blank s<br>state blank s | ter).<br>Source<br>Source<br>Source<br>Source<br>Source<br>Source |                 |                 |         |  |  |  |
| bit 5-2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.0>: PWM Cho                                                                                                                                                                                                                                                   | u<br>Na Clack Sour                                                                                                                  | rca Salact hits                                                   |                 |                 |         |  |  |  |
|              | CHOPSEL<3:0>: PWM Chop Clock Source Select bits<br>The selected signal will enable and disable (CHOP) the selected PWM outputs.<br>1001 = Reserved<br>1000 = Reserved<br>0111 = PWM7H selected as CHOP clock source<br>0110 = PWM6H selected as CHOP clock source<br>0101 = PWM5H selected as CHOP clock source<br>0100 = PWM4H selected as CHOP clock source<br>0111 = PWM3H selected as CHOP clock source<br>0111 = PWM3H selected as CHOP clock source<br>0110 = PWM1H selected as CHOP clock source<br>0110 = PWM1H selected as CHOP clock source<br>0001 = PWM1H selected as CHOP clock source |                                                                                                                                                                                                                                                                 |                                                                                                                                     |                                                                   |                 |                 |         |  |  |  |
| bit 1        | CHOPHEN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PWMxH Output                                                                                                                                                                                                                                                    | Chopping Er                                                                                                                         | nable bit                                                         |                 |                 |         |  |  |  |
|              | 1 = PWMxH<br>0 = PWMxH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | chopping functi<br>chopping functi                                                                                                                                                                                                                              | on is enabled<br>on is disabled                                                                                                     | l<br>t                                                            |                 |                 |         |  |  |  |
| bit 0        | <b>CHOPLEN:</b><br>1 = PWMxL<br>0 = PWMxL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>1 = PWMxH chopping function is enabled</li> <li>0 = PWMxH chopping function is disabled</li> <li>CHOPLEN: PWMxL Output Chopping Enable bit</li> <li>1 = PWMxL chopping function is enabled</li> <li>0 = PWMxL chopping function is disabled</li> </ul> |                                                                                                                                     |                                                                   |                 |                 |         |  |  |  |

#### .....

| REGISTER      | 19-2: I2C                                                                                                                                                                                                                                     | XSTAT: I2C                                                                                                                                                                                     | x STATUS                                         | REGISTER                                        |                                 |                                  |                        |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|---------------------------------|----------------------------------|------------------------|--|--|
| R-0, HSC      | R-0, HSC                                                                                                                                                                                                                                      | U-0                                                                                                                                                                                            | U-0                                              | U-0                                             | R/C-0, HS                       | R-0, HSC                         | R-0, HSC               |  |  |
| ACKSTAT       | TRSTAT                                                                                                                                                                                                                                        | —                                                                                                                                                                                              | —                                                | _                                               | BCL                             | GCSTAT                           | ADD10                  |  |  |
| bit 15        |                                                                                                                                                                                                                                               |                                                                                                                                                                                                |                                                  |                                                 |                                 |                                  | bit 8                  |  |  |
| R/C-0 HS      | R/C-0 HS                                                                                                                                                                                                                                      | R-0 HSC                                                                                                                                                                                        | R/C-0 HSC                                        | R/C-0 HSC                                       | R-0 HSC                         | R-0 HSC                          | R-0 HSC                |  |  |
|               | 1200,110                                                                                                                                                                                                                                      |                                                                                                                                                                                                | P                                                | S                                               | R W                             | RBE                              | TBE                    |  |  |
| bit 7         | 12001                                                                                                                                                                                                                                         | <u> </u>                                                                                                                                                                                       | •                                                | 0                                               | <u></u>                         |                                  | bit 0                  |  |  |
|               |                                                                                                                                                                                                                                               |                                                                                                                                                                                                |                                                  | -                                               |                                 |                                  |                        |  |  |
| Legend:       |                                                                                                                                                                                                                                               | C = Clearab                                                                                                                                                                                    | le bit                                           | U = Unimpler                                    | nented bit, read                | as '0'                           |                        |  |  |
| R = Readable  | e bit                                                                                                                                                                                                                                         | W = Writabl                                                                                                                                                                                    | e bit                                            | HS = Hardwa                                     | re Settable bit                 | HSC = Hardware S                 | ettable/Clearable bit  |  |  |
| -n = Value at | POR                                                                                                                                                                                                                                           | '1' = Bit is s                                                                                                                                                                                 | et                                               | '0' = Bit is cle                                | ared                            | x = Bit is unknown               |                        |  |  |
| bit 15        | ACKSTAT:<br>(when oper<br>1 = NACK r                                                                                                                                                                                                          | Acknowledge<br>ating as I <sup>2</sup> C™<br>received from                                                                                                                                     | e Status bit<br><sup>™</sup> master, ap<br>slave | plicable to ma                                  | ster transmit op                | peration)                        |                        |  |  |
|               | 0 = ACK re<br>Hardware is                                                                                                                                                                                                                     | ceived from s<br>s set or clear                                                                                                                                                                | lave<br>at the end of                            | f a slave Ackn                                  | owledge.                        |                                  |                        |  |  |
| bit 14        | TRSTAT: Tr                                                                                                                                                                                                                                    | ransmit Statu                                                                                                                                                                                  | s bit (when o                                    | perating as I <sup>2</sup>                      | C master, appli                 | cable to master tra              | nsmit operation)       |  |  |
|               | <ul> <li>1 = Master transmit is in progress (8 bits + ACK)</li> <li>0 = Master transmit is not in progress</li> <li>Hardware is set at the beginning of a master transmission. Hardware is clear at the end of a slave Acknowledge</li> </ul> |                                                                                                                                                                                                |                                                  |                                                 |                                 |                                  |                        |  |  |
| bit 13-11     | Unimpleme                                                                                                                                                                                                                                     | Unimplemented: Read as '0'                                                                                                                                                                     |                                                  |                                                 |                                 |                                  |                        |  |  |
| bit 10        | BCL: Master Bus Collision Detect bit                                                                                                                                                                                                          |                                                                                                                                                                                                |                                                  |                                                 |                                 |                                  |                        |  |  |
|               | 1 = A bus c<br>0 = No colli<br>Hardware is                                                                                                                                                                                                    | ollision has b<br>sion<br>s set at detec                                                                                                                                                       | een detected                                     | d during a mas<br>collision.                    | ster operation                  |                                  |                        |  |  |
| bit 9         | GCSTAT: G                                                                                                                                                                                                                                     | eneral Call S                                                                                                                                                                                  | status bit                                       |                                                 |                                 |                                  |                        |  |  |
|               | 1 = Genera<br>0 = Genera<br>Hardware is                                                                                                                                                                                                       | l call address<br>l call address<br>s set when an                                                                                                                                              | was receive<br>was not rec<br>address mat        | ed<br>eived<br>tches the gene                   | eral call address               | . Hardware is clear              | at a Stop detection.   |  |  |
| bit 8         | <b>ADD10:</b> 10                                                                                                                                                                                                                              | -Bit Address                                                                                                                                                                                   | Status bit                                       |                                                 |                                 |                                  |                        |  |  |
|               | 1 = 10-bit a<br>0 = 10-bit a<br>Hardware is                                                                                                                                                                                                   | ddress was r<br>ddress was r<br>set at a matc                                                                                                                                                  | natched<br>lot matched<br>h of the 2nd b         | oyte of a match                                 | ed 10-bit addres                | s. Hardware is clea              | r at a Stop detection. |  |  |
| bit 7         | IWCOL: Wr                                                                                                                                                                                                                                     | rite Collision I                                                                                                                                                                               | Detect bit                                       |                                                 |                                 |                                  |                        |  |  |
|               | 1 = An atter<br>0 = No colli<br>Hardware is                                                                                                                                                                                                   | mpt to write to<br>sion<br>s set at an oc                                                                                                                                                      | o the I2CxTF                                     | RN register fail<br>a write to I2Cx             | ed because the<br>TRN while bus | e I <sup>2</sup> C module is bus | are).                  |  |  |
| bit 6         | 12COV: 12C                                                                                                                                                                                                                                    | x Receive Ov                                                                                                                                                                                   | erflow Flag                                      | bit                                             |                                 | , ( <b>, ,</b>                   | /                      |  |  |
|               | 1 = A byte v<br>0 = No over<br>Hardware is                                                                                                                                                                                                    | 1 = A byte was received while the I2CxRCV register is still holding the previous byte<br>0 = No overflow<br>Hardware is set at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software) |                                                  |                                                 |                                 |                                  |                        |  |  |
| bit 5         | D_A: Data/                                                                                                                                                                                                                                    | Address bit (v                                                                                                                                                                                 | when operati                                     | ing as I <sup>2</sup> C slav                    | ve)                             |                                  |                        |  |  |
|               | 1 = Indicate<br>0 = Indicate<br>Hardware is                                                                                                                                                                                                   | es that the las<br>es that the las<br>s clear at a de                                                                                                                                          | t byte receiv<br>t byte receiv<br>evice addres   | red was data<br>red was a devi<br>s match. Hard | ce address<br>ware is set by i  | reception of a slave             | e byte.                |  |  |
| bit 4         | P: Stop bit                                                                                                                                                                                                                                   |                                                                                                                                                                                                |                                                  |                                                 |                                 |                                  |                        |  |  |
|               | 1 = Indicate<br>0 = Stop bit<br>Hardware is                                                                                                                                                                                                   | es that a Stop<br>was not dete<br>s set or clear                                                                                                                                               | bit has beer<br>ected last<br>when a Start       | n detected last<br>t, Repeated St               | :<br>art or Stop is d           | etected.                         |                        |  |  |

## 20.1 UARTx Helpful Tips

- In multi-node direct-connect UARTx networks, UARTx receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the Idle state, the default of which is logic high (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a Start bit detection and will cause the first byte received, after the device has been initialized, to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
  - a) If URXINV = 0, use a pull-up resistor on the RX pin.
  - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode, caused by activity on the UxRX pin of the UARTx module, will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock, relative to the incoming UxRX bit timing, is no longer synchronized resulting in the first character being invalid. This is to be expected.

#### 20.2 UARTx Resources

Many useful resources related to the UARTx are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

| Note: | In the event you are not able to access the |
|-------|---------------------------------------------|
|       | product page using the link above, enter    |
|       | this URL in your browser:                   |
|       | http://www.microchip.com/wwwproducts/       |
|       | Devices.aspx?dDocName=en554310              |

#### 20.2.1 KEY RESOURCES

- Section 17. "UART" (DS70582) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- · Development Tools

# dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

| REGISTER 24-5: RSCON: DCI RECEIVE SLOT CONTROL REGISTE | REGISTER 24-5: | RSCON: DCI RECEIVE SLOT CONTROL | REGISTER |
|--------------------------------------------------------|----------------|---------------------------------|----------|
|--------------------------------------------------------|----------------|---------------------------------|----------|

| R/W-0  | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|--------|-------|-------|-------|-------|-------|-------|-------|
| RSE15  | RSE14 | RSE13 | RSE12 | RSE11 | RSE10 | RSE9  | RSE8  |
| bit 15 |       |       |       |       |       |       | bit 8 |
|        |       |       |       |       |       |       |       |
| R/W-0  | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| RSE7   | RSE6  | RSE5  | RSE4  | RSE3  | RSE2  | RSE1  | RSE0  |

bit 0

| Legend:           |                  |                       |                                    |  |  |
|-------------------|------------------|-----------------------|------------------------------------|--|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | U = Unimplemented bit, read as '0' |  |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown                 |  |  |

bit 15-0

bit 7

RSE<15:0>: Receive Slot Enable bits

 $\ensuremath{\mathtt{1}}$  = CSDI data is received during the individual time slot n

 $_{\rm 0}$  = CSDI data is ignored during the individual time slot n

#### REGISTER 24-6: TSCON: DCI TRANSMIT SLOT CONTROL REGISTER

| R/W-0  | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|--------|-------|-------|-------|-------|-------|-------|-------|
| TSE15  | TSE14 | TSE13 | TSE12 | TSE11 | TSE10 | TSE9  | TSE8  |
| bit 15 |       |       |       |       |       |       | bit 8 |

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| TSE7  | TSE6  | TSE5  | TSE4  | TSE3  | TSE2  | TSE1  | TSE0  |
| bit 7 |       |       |       |       |       |       | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-0

TSE<15:0>: Transmit Slot Enable Control bits

1 = Transmit buffer contents are sent during the individual time slot n

0 = CSDO pin is tri-stated or driven to logic '0' during the individual time slot, depending on the state of the CSDOM bit

### 32.1 DC Characteristics

#### TABLE 32-1: OPERATING MIPS VS. VOLTAGE

|                | Voo Bango                 | Tomp Bango      | Maximum MIPS                                                     |  |  |
|----------------|---------------------------|-----------------|------------------------------------------------------------------|--|--|
| Characteristic | (in Volts)                | (in °C)         | dsPIC33EPXXX(GP/MC/MU)806/810<br>814 and PIC24EPXXX(GP/GU)810/81 |  |  |
| _              | 2.95V-3.6V <sup>(1)</sup> | -40°C to +85°C  | 70                                                               |  |  |
| —              | 2.95V-3.6V <sup>(1)</sup> | -40°C to +125°C | 60                                                               |  |  |

**Note 1:** Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 32-11 for the minimum and maximum BOR values.

#### TABLE 32-2: THERMAL OPERATING CONDITIONS

| Rating                                                                                                                         | Symbol | Min.        | Тур.        | Max. | Unit |
|--------------------------------------------------------------------------------------------------------------------------------|--------|-------------|-------------|------|------|
| Industrial Temperature Devices                                                                                                 |        |             |             |      |      |
| Operating Junction Temperature Range                                                                                           | TJ     | -40         | —           | +125 | °C   |
| Operating Ambient Temperature Range                                                                                            | TA     | -40         | —           | +85  | °C   |
| Extended Temperature Devices                                                                                                   |        |             |             |      |      |
| Operating Junction Temperature Range                                                                                           | TJ     | -40         | _           | +140 | °C   |
| Operating Ambient Temperature Range                                                                                            | TA     | -40         | _           | +125 | °C   |
| Power Dissipation:<br>Internal chip power dissipation:<br>$PINT = VDD \times (IDD - \Sigma IOH)$<br>I/O Pin Power Dissipation: | PD     | Pint + Pi/o |             | W    |      |
| $I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$                                                            |        |             |             |      |      |
| Maximum Allowed Power Dissipation                                                                                              | PDMAX  | (           | TJ — TA)/θJ | IA   | W    |

#### TABLE 32-3: THERMAL PACKAGING CHARACTERISTICS

| Characteristic                                       | Symbol | Тур. | Max. | Unit | Notes |
|------------------------------------------------------|--------|------|------|------|-------|
| Package Thermal Resistance, 64-pin QFN (9x9 mm)      | θJA    | 28   |      | °C/W | 1     |
| Package Thermal Resistance, 64-pin TQFP (10x10 mm)   | θJA    | 47   | -    | °C/W | 1     |
| Package Thermal Resistance, 100-pin TQFP (12x12 mm)  | θJA    | 43   | _    | °C/W | 1     |
| Package Thermal Resistance, 100-pin TQFP (14x14 mm)  | θJA    | 43   | _    | °C/W | 1     |
| Package Thermal Resistance, 121-pin TFBGA (10x10 mm) | θJA    | 40   | -    | °C/W | 1     |
| Package Thermal Resistance, 144-pin LQFP (20x20 mm)  | θJA    | 33   | —    | °C/W | 1     |
| Package Thermal Resistance, 144-pin TQFP (16x16 mm)  | θJA    | 33   | _    | °C/W | 1     |

**Note 1:** Junction to ambient thermal resistance, Theta-JA ( $\theta$ JA) numbers are achieved by package simulations.

| DC CHARACT            | ERISTICS            |      | Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |        |       |            |  |  |
|-----------------------|---------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------------|--|--|
| Param. <sup>(2)</sup> | Тур. <sup>(3)</sup> | Max. | Units Conditions                                                                                                                                                                                     |        |       |            |  |  |
| Idle Current (li      | dle) <sup>(1)</sup> |      |                                                                                                                                                                                                      |        |       |            |  |  |
| DC40d                 | 6                   | 10   | mA                                                                                                                                                                                                   | -40°C  |       |            |  |  |
| DC40a                 | 7                   | 12   | mA                                                                                                                                                                                                   | +25°C  |       |            |  |  |
| DC40b                 | 8                   | 13   | mA                                                                                                                                                                                                   | +85°C  | 3.3V  |            |  |  |
| DC40c                 | 9                   | 15   | mA                                                                                                                                                                                                   | +125°C |       |            |  |  |
| DC42d                 | 11                  | 18   | mA                                                                                                                                                                                                   | -40°C  |       |            |  |  |
| DC42a                 | 12                  | 20   | mA                                                                                                                                                                                                   | +25°C  | 3.31/ |            |  |  |
| DC42b                 | 13                  | 21   | mA                                                                                                                                                                                                   | +85°C  | 5.5V  | 20 10115 3 |  |  |
| DC42c                 | 15                  | 24   | mA                                                                                                                                                                                                   | +125°C |       |            |  |  |
| DC44d                 | 23                  | 37   | mA                                                                                                                                                                                                   | -40°C  |       |            |  |  |
| DC44a                 | 24                  | 39   | mA                                                                                                                                                                                                   | +25°C  | 2 2)/ |            |  |  |
| DC44b                 | 25                  | 40   | mA                                                                                                                                                                                                   | +85°C  | 3.3V  | 40 1011-5  |  |  |
| DC44c                 | 27                  | 44   | mA                                                                                                                                                                                                   | +125°C |       |            |  |  |
| DC45d                 | 34                  | 55   | mA                                                                                                                                                                                                   | -40°C  |       |            |  |  |
| DC45a                 | 35                  | 56   | mA                                                                                                                                                                                                   | +25°C  | 2 2)/ |            |  |  |
| DC45b                 | 36                  | 58   | mA                                                                                                                                                                                                   | +85°C  | 3.3V  | 00 1011-3  |  |  |
| DC45c                 | 38                  | 61   | mA                                                                                                                                                                                                   | +125°C |       |            |  |  |
| DC46d                 | 39                  | 63   | mA                                                                                                                                                                                                   | -40°C  |       |            |  |  |
| DC46a                 | 41                  | 66   | mA                                                                                                                                                                                                   | +25°C  | 3.3V  | 70 MIPS    |  |  |
| DC46b                 | 42                  | 68   | mA                                                                                                                                                                                                   | +85°C  |       |            |  |  |

#### TABLE 32-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Base IIDLE current is measured as follows:

- CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC Clock Overshoot/Undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- External Secondary Oscillator (SOSC) is disabled (i.e., SOSCO and SOSCI pins are configured as digital I/O inputs)
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to stand-by while the device is in Idle mode)
- JTAG is disabled
- 2: These parameters are characterized but not tested in manufacturing.
- 3: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

| DC CHARACTER                       | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$ |    |               |       |            |       |         |
|------------------------------------|----------------------------------------------------------|----|---------------|-------|------------|-------|---------|
| Parameter Typ. <sup>(2)</sup> Max. |                                                          |    | Doze<br>Ratio | Units | Conditions |       |         |
| DC73a                              | 57                                                       | 86 | 1:2           | mA    | 10°C       | 2 21/ |         |
| DC73g                              | 40                                                       | 60 | 1:128         | mA    | -40 C      | 5.50  | 70 WIF5 |
| DC70a                              | 58                                                       | 87 | 1:2           | mA    | +25%       | 2 21/ | 70 MIPS |
| DC70g                              | 41                                                       | 62 | 1:128         | mA    | 720 C      | 3.3V  |         |
| DC71a                              | 58                                                       | 87 | 1:2           | mA    | 195%       | 2 21/ |         |
| DC71g                              | 42                                                       | 63 | 1:128         | mA    | +05 C      | 3.3V  | 70 MIPS |
| DC72a                              | 53                                                       | 80 | 1:2           | mA    | ±125°C     | 2 21/ | 60 MIDS |
| DC72g                              | 38                                                       | 57 | 1:128         | mA    | +120 C     | 3.3V  |         |

## TABLE 32-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)<sup>(1)</sup>

**Note 1:** IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

 Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail with Overshoot/Undershoot < 250 mV</li>

• CLKO is configured as an I/O input pin in the Configuration Word

· All I/O pins are configured as inputs and pulled to Vss

• MCLR = VDD, WDT and FSCM are disabled

• CPU, SRAM, program memory and data memory are operational

• No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)

- CPU executing while (1) statement
- JTAG is disabled
- 2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

|        |         |                                                          | Standard Operating Conditions: 3.0V to 3.6V<br>(unless otherwise stated)                                                         |            |            |    |                        |  |  |
|--------|---------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------|------------|----|------------------------|--|--|
| DC CHA | ARACTER | ISTICS                                                   | Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |            |            |    |                        |  |  |
| Param. | Symbol  | Characteristic                                           | Min.                                                                                                                             | Conditions |            |    |                        |  |  |
|        | VIL     | Input Low Voltage                                        |                                                                                                                                  |            |            |    |                        |  |  |
| DI10   |         | I/O Pins                                                 | Vss                                                                                                                              | —          | 0.2 Vdd    | V  |                        |  |  |
| DI11   |         | PMP Pins                                                 | Vss                                                                                                                              | —          | 0.15 VDD   | V  | PMPTTL = 1             |  |  |
| DI15   |         | MCLR                                                     | Vss                                                                                                                              | —          | 0.2 Vdd    | V  |                        |  |  |
| DI16   |         | I/O Pins with OSC1 or SOSCI                              | Vss                                                                                                                              | —          | 0.2 Vdd    | V  |                        |  |  |
| DI18   |         | I/O Pins with SDAx, SCLx                                 | Vss                                                                                                                              | —          | 0.3 Vdd    | V  | SMBus disabled         |  |  |
| DI19   |         | I/O Pins with SDAx, SCLx                                 | Vss                                                                                                                              | —          | 0.8        | V  | SMBus enabled          |  |  |
|        | Vih     | Input High Voltage                                       |                                                                                                                                  |            |            |    |                        |  |  |
| DI20   |         | I/O Pins Not 5V Tolerant <sup>(4)</sup>                  | 0.7 Vdd                                                                                                                          | —          | Vdd        | V  |                        |  |  |
|        |         | I/O Pins 5V Tolerant <sup>(4)</sup>                      | 0.7 VDD                                                                                                                          | —          | 5.3        | V  |                        |  |  |
|        |         |                                                          | 0.25 VDD + 0.8                                                                                                                   | —          |            | V  | PMPIIL = 1             |  |  |
|        |         | I/O Pins with SDAx, SCLx                                 | 0.7 VDD<br>2.1                                                                                                                   | _          | 5.3<br>5.3 | V  | SMBus disabled         |  |  |
|        | ICNPU   | Change Notification Pull-up                              |                                                                                                                                  |            |            | -  |                        |  |  |
|        |         | Current                                                  |                                                                                                                                  |            |            |    |                        |  |  |
| DI30   |         |                                                          | 50                                                                                                                               | 250        | 400        | μA | VDD = 3.3V, VPIN = VSS |  |  |
|        | ICNPD   | Change Notification<br>Pull-down Current <sup>(10)</sup> |                                                                                                                                  |            |            |    |                        |  |  |
| DI31   |         |                                                          | —                                                                                                                                | 50         | —          | μA | VDD = 3.3V, VPIN = VDD |  |  |

#### TABLE 32-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

**Note 1:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for the 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.
- **10:** These parameters are characterized, but not tested.

| АС СНА | RACTERI | STICS             | (2)                       | Standard Op<br>(unless other<br>Operating terr | erating (<br>rwise sta<br>perature | Conditio<br>ated)<br>-40°C<br>-40°C | ns: 3.0V to 3.6V<br>$C \le TA \le +85^{\circ}C$ for Industrial<br>$C \le TA \le +125^{\circ}C$ for Extended |
|--------|---------|-------------------|---------------------------|------------------------------------------------|------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Param. | Symbol  | Characte          | eristic <sup>(3)</sup>    | Min.                                           | Max.                               | Units                               | Conditions                                                                                                  |
| IS10   | TLO:SCL | Clock Low Time    | 100 kHz mode              | 4.7                                            | —                                  | μS                                  |                                                                                                             |
|        |         |                   | 400 kHz mode              | 1.3                                            | —                                  | μS                                  |                                                                                                             |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | 0.5                                            | —                                  | μS                                  |                                                                                                             |
| IS11   | THI:SCL | Clock High Time   | 100 kHz mode              | 4.0                                            | _                                  | μS                                  | Device must operate at a minimum of 1.5 MHz                                                                 |
|        |         |                   | 400 kHz mode              | 0.6                                            | —                                  | μS                                  | Device must operate at a minimum of 10 MHz                                                                  |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | 0.5                                            | _                                  | μS                                  |                                                                                                             |
| IS20   | TF:SCL  | SDAx and SCLx     | 100 kHz mode              | —                                              | 300                                | ns                                  | CB is specified to be from                                                                                  |
|        |         | Fall Time         | 400 kHz mode              | 20 + 0.1 Св                                    | 300                                | ns                                  | 10 to 400 pF                                                                                                |
|        |         |                   | 1 MHz mode <sup>(1)</sup> |                                                | 100                                | ns                                  |                                                                                                             |
| IS21   | TR:SCL  | SDAx and SCLx     | 100 kHz mode              |                                                | 1000                               | ns                                  | CB is specified to be from                                                                                  |
|        |         | Rise Time         | 400 kHz mode              | 20 + 0.1 Св                                    | 300                                | ns                                  | 10 to 400 pF                                                                                                |
|        |         |                   | 1 MHz mode <sup>(1)</sup> |                                                | 300                                | ns                                  |                                                                                                             |
| IS25   | TSU:DAT | Data Input        | 100 kHz mode              | 250                                            | _                                  | ns                                  |                                                                                                             |
|        |         | Setup Time        | 400 kHz mode              | 100                                            |                                    | ns                                  |                                                                                                             |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | 100                                            |                                    | ns                                  |                                                                                                             |
| IS26   | THD:DAT | Data Input        | 100 kHz mode              | 0                                              |                                    | μS                                  |                                                                                                             |
|        |         | Hold Time         | 400 kHz mode              | 0                                              | 0.9                                | μS                                  |                                                                                                             |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | 0                                              | 0.3                                | μS                                  |                                                                                                             |
| IS30   | TSU:STA | Start Condition   | 100 kHz mode              | 4.7                                            | _                                  | μS                                  | Only relevant for Repeated                                                                                  |
|        |         | Setup Time        | 400 kHz mode              | 0.6                                            | _                                  | μS                                  | Start condition                                                                                             |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | 0.25                                           | _                                  | μS                                  |                                                                                                             |
| IS31   | THD:STA | Start Condition   | 100 kHz mode              | 4.0                                            | —                                  | μS                                  | After this period, the first                                                                                |
|        |         | Hold Time         | 400 kHz mode              | 0.6                                            | —                                  | μS                                  | clock pulse is generated                                                                                    |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | 0.25                                           | _                                  | μS                                  |                                                                                                             |
| IS33   | Tsu:sto | Stop Condition    | 100 kHz mode              | 4.7                                            | —                                  | μS                                  |                                                                                                             |
|        |         | Setup Time        | 400 kHz mode              | 0.6                                            | _                                  | μS                                  |                                                                                                             |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | 0.6                                            | —                                  | μS                                  |                                                                                                             |
| IS34   | THD:STO | Stop Condition    | 100 kHz mode              | 4                                              | —                                  | μS                                  |                                                                                                             |
|        |         | Hold Time         | 400 kHz mode              | 0.6                                            | —                                  | μS                                  |                                                                                                             |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | 0.25                                           |                                    | μS                                  |                                                                                                             |
| IS40   | TAA:SCL | Output Valid      | 100 kHz mode              | 0                                              | 3500                               | ns                                  |                                                                                                             |
|        |         | From Clock        | 400 kHz mode              | 0                                              | 1000                               | ns                                  |                                                                                                             |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | 0                                              | 350                                | ns                                  |                                                                                                             |
| IS45   | TBF:SDA | Bus Free Time     | 100 kHz mode              | 4.7                                            |                                    | μS                                  | Time the bus must be free                                                                                   |
|        |         |                   | 400 kHz mode              | 1.3                                            | —                                  | μS                                  | before a new transmission                                                                                   |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | 0.5                                            | —                                  | μS                                  | can start                                                                                                   |
| IS50   | Св      | Bus Capacitive Lo | ading                     | —                                              | 400                                | pF                                  |                                                                                                             |
| IS51   | TPGD    | Pulse Gobbler De  | ay                        | 65                                             | 390                                | ns                                  | See Note 2                                                                                                  |

### TABLE 32-50: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

**Note 1:** Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

**2:** The typical value for this parameter is 130 ns.

**3:** These parameters are characterized, but not tested in manufacturing.

NOTES:

#### 100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B