

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	83
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512mu810-e-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. Their pinout diagrams appear on the following pages.

TABLE 1: dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 CONTROLLER FAMILIES

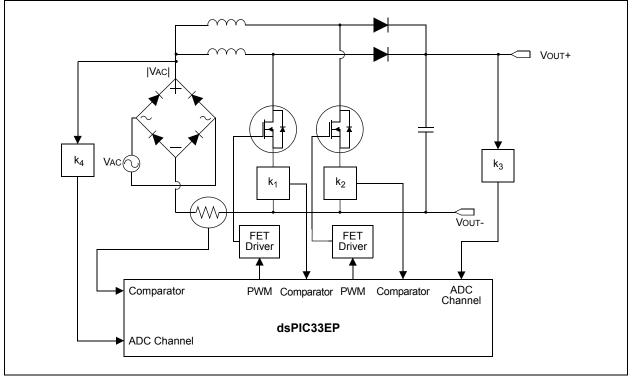
								Re	map	pable	Peri	ipher	als										
Device	suid	Packages	Program Flash Memory (Kbyte) ⁽¹⁾	RAM (Kbyte) ⁽²⁾	16-Bit Timer ^(3,4)	Input Capture	Output Compare (with PWM)	Motor Control PWM (Channels) ⁽⁵⁾	GEI	UART with IrDA $^{\otimes}$	IdS	ECAN™	External Interrupts ⁽⁶⁾	DMA Controller (Channels)	DCI	Analog Comparators/ Inputs Per Comparator ⁽⁷⁾	RTCC	I²Стм	CRC Generator	10-Bit/12-Bit ADC ⁽⁸⁾	BSU	Parallel Master Port	I/O Pins
dsPIC33EP256MU806	64	QFN, TQFP	280	28	9	16	16	8	2	4	4	2	5	15	1	3/4	1	2	1	2 ADC, 24 ch	1	Y	51
dsPIC33EP256MU810	100 121	TQFP TFBGA	280	28	9	16	16	12	2	4	4	2	5	15	1	3/4	1	2	1	2 ADC, 32 ch	1	Y	83
dsPIC33EP256MU814	144	TQFP, LQFP	280	28	9	16	16	14	2	4	4	2	5	15	1	3/4	1	2	1	2 ADC, 32 ch	1	Y	122
dsPIC33EP512GP806	64	QFN, TQFP	536	52	9	16	16	_	_	4	4	2	5	15	1	3/4	1	2	1	2 ADC, 24 ch	_	Y	53
dsPIC33EP512MC806	64	QFN, TQFP	536	52	9	16	16	8	2	4	4	2	5	15	1	3/4	1	2	1	2 ADC, 24 ch	_	Y	53
dsPIC33EP512MU810	100 121	TQFP TFBGA	536	52	9	16	16	12	2	4	4	2	5	15	1	3/4	1	2	1	2 ADC, 32 ch	1	Y	83
dsPIC33EP512MU814	144	TQFP, LQFP	536	52	9	16	16	14	2	4	4	2	5	15	1	3/4	1	2	1	2 ADC, 32 ch	1	Y	122
PIC24EP256GU810	100 121	TQFP TFBGA	280	28	9	16	16	0	0	4	4	2	5	15	1	3/4	1	2	1	2 ADC, 32 ch	1	Y	83
PIC24EP256GU814	144	TQFP, LQFP	280	28	9	16	16	0	0	4	4	2	5	15	1	3/4	1	2	1	2 ADC, 32 ch	1	Y	122
PIC24EP512GP806	64	QFN, TQFP	586	52	9	16	16	_	_	4	4	2	5	15	1	3/4	1	2	1	2 ADC, 24 ch	_	Y	53
PIC24EP512GU810	100 121	TQFP TFBGA	536	52	9	16	16	0	0	4	4	2	5	15	1	3/4	1	2	1	2 ADC, 32 ch	1	Y	83
PIC24EP512GU814	144	TQFP,L QFP	536	52	9	16	16	0	0	4	4	2	5	15	1	3/4	1	2	1	2 ADC, 32 ch	1	Y	122

Note 1: Flash size is inclusive of 24 Kbytes of auxiliary Flash. Auxiliary Flash supports simultaneous code execution and self-erase/programming. Refer to Section 5. "Flash Programming" (DS70609) in the "dsPIC33E/PIC24E Family Reference Manual".

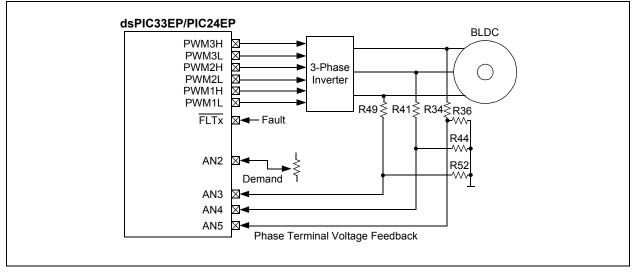
2: RAM size is inclusive of 4 Kbytes of DMA RAM (DPSRAM) for all devices.

3: Up to eight of these timers can be combined into four 32-bit timers.

4: Eight out of nine timers are remappable.


5: PWM Faults and Sync signals are remappable.

6: Four out of five interrupts are remappable.


7: Comparator output is remappable.

8: The ADC2 module supports 10-bit mode only.

	• · .	••••••	.,	-, 0/										-	_		-	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	_	UEN<	<1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	—	_	_				UART	k Transmit F	Register				XXXX
U1RXREG	0226	_	_	_		—	_	—				UART	xReceive R	egister				0000
U1BRG	0228							Baud	Rate Gen	erator Pres	scaler							0000
U2MODE	0230	UARTEN		USIDL	IREN	RTSMD	—	UEN<	<1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	—				—	—	UARTx Transmit Register							XXXX			
U2RXREG	0236	_				—	_	_	UARTx Receive Register						0000			
U2BRG	0238							Baud	Rate Gen	erator Pres	scaler							0000
U3MODE	0250	UARTEN	_	USIDL	IREN	RTSMD	—	UEN<	<1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U3STA	0252	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U3TXREG	0254	—	_	_	_	—	_	—				UART	x Transmit F	Register				xxxx
U3RXREG	0256	—	—	—	—	—	_					UART	x Receive R	legister				0000
U3BRG	0258							Baud	Rate Gen	erator Pres	scaler	-	-				-	0000
U4MODE	02B0	UARTEN	_	USIDL	IREN	RTSMD	_	UEN<	<1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U4STA	02B2	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U4TXREG	02B4	_	_	_	_	_	_	_				UART	k Transmit F	Register				xxxx
U4RXREG	02B6	_	_	—	_	-	_	—				UART	x Receive R	legister				0000
U4BRG	02B8							Baud	Rate Gen	erator Pres	scaler							0000

TABLE 4-23: UART1, UART2, UART3 and UART4 REGISTER MAP

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: ADC1 and ADC2 REGISTER MAP (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC2BUF9	0352								ADCx Data E	Buffer 9								XXXX
ADC2BUFA	0354		ADCx Data Buffer 10 xx							XXXX								
ADC2BUFB	0356		ADCx Data Buffer 11 xx							XXXX								
ADC2BUFC	0358		ADCx Data Buffer 12 xx							XXXX								
ADC2BUFD	035A			ADCx Data Buffer 13 x							XXXX							
ADC2BUFE	035C								ADCx Data B	uffer 14								XXXX
ADC2BUFF	035E								ADCx Data B	uffer 15								XXXX
AD2CON1	0360	ADON	_	ADSIDL	ADDMABM	—		FOR	M<1:0>	5	SSRC<2:0>	•	SSRCG	SIMSAM	ASAM	SAMP	DONE	0000
AD2CON2	0362	Ň	VCFG<2:0	>	—	—	CSCNA	CHP	S<1:0>	BUFS			SMP	l<3:0>		BUFM	ALTS	0000
AD2CON3	0364	ADRC					SAMC<4:0	>					ADCS	S<7:0>				0000
AD2CHS123	0366	—		_	_	_	CH123N	NB<1:0>	CH123SB		_	_	_	_	CH123N	IA<1:0>	CH123SA	0000
AD2CHS0	0368	CH0NB		_			CH0SB<4:0> CH0N				_	_		(CH0SA<4:0	>		0000
AD2CSSL	0270	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD2CON4	0272	—	_	ADDMAEN DMABL<2:0>							0000							

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are not available on dsPIC33EP256MU806 devices.

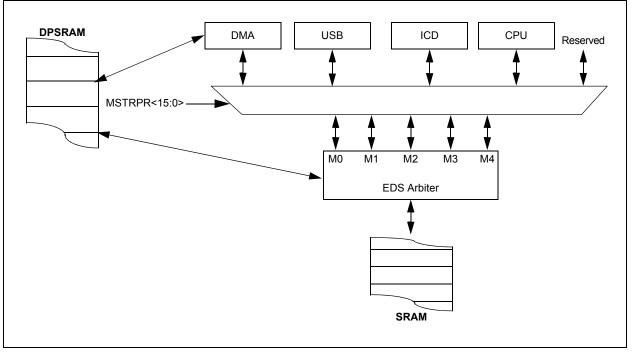
4.4.3 EDS ARBITRATION AND BUS MASTER PRIORITY

EDS accesses from bus masters in the system are arbitrated.

The arbiter for data memory (including EDS) arbitrates between the CPU, the DMA, the USB module and the ICD module. In the event of coincidental access to a bus by the bus masters, the arbiter determines which bus master access has the highest priority. The other bus masters are suspended and processed after the access of the bus by the bus master with the highest priority.

By default, the CPU is Bus Master 0 (M0) with the highest priority and the ICD is Bus Master 4 (M4) with the lowest priority. The remaining bus masters (USB and DMA Controllers) are allocated to M2 and M3,

respectively (M1 is reserved and cannot be used). The user application may raise or lower the priority of the masters to be above that of the CPU by setting the appropriate bits in the EDS Bus Master Priority Control (MSTRPR) register. All bus masters with raised priorities will maintain the same priority relationship relative to each other (i.e., M1 being highest and M3 being lowest, with M2 in between). Also, all the bus masters with priorities below that of the CPU maintain the same priority relationship relative to each other. The priority schemes for bus masters with different MSTRPR values are tabulated in Table 4-74.


This bus master priority control allows the user application to manipulate the real-time response of the system, either statically during initialization, or dynamically in response to real-time events.

Priority	MSTRPR<15:0> Bit Setting ⁽¹⁾									
Priority	0x0000	0x0008	0x0020	0x0028						
M0 (highest)	CPU	USB	DMA	USB						
M1	Reserved	CPU	CPU	DMA						
M2	USB	Reserved	Reserved	CPU						
М3	DMA	DMA	USB	Reserved						
M4 (lowest)	ICD	ICD	ICD	ICD						

TABLE 4-74: EDS BUS ARBITER PRIORITY

Note 1: All other values of MSTRPR<15:0> are reserved.

FIGURE 4-8: EDS ARBITER ARCHITECTURE

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70609) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

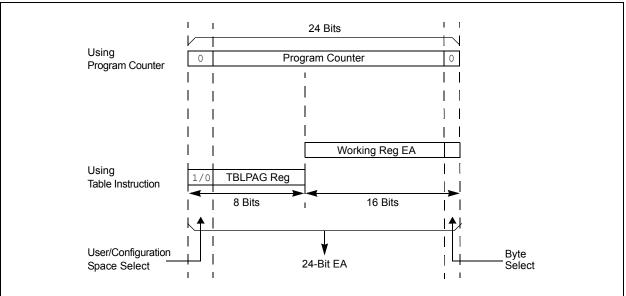
The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33EPXXX(GP/MC/MU)806/810/ 814 and PIC24EPXXX(GP/GU)810/814 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data either in blocks or 'rows' of 128 instructions (384 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 1024 instructions (3072 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

TABLE 7-1:	INTERRUPT VECTOR DETAILS (CONTINUED)

Interrupt Source	Vector		IVT	Interrupt Bit Location				
Interrupt Source	#	IRQ #	Address	Flag	Enable	Priority		
USB1 – USB OTG Interrupt ⁽²⁾	94	86	0x0000C0	IFS5<6>	IEC5<6>	IPC21<10:8>		
U4E – UART4 Error Interrupt	95	87	0x0000C2	IFS5<7>	IEC5<7>	IPC21<14:12		
U4RX – UART4 Receiver	96	88	0x0000C4	IFS5<8>	IEC5<8>	IPC22<2:0>		
U4TX – UART4 Transmitter	97	89	0x0000C6	IFS5<9>	IEC5<9>	IPC22<6:4>		
SPI3E – SPI3 Error	98	90	0x0000C8	IFS5<10>	IEC5<10>	IPC22<10:8>		
SPI3 – SPI3 Transfer Done	99	91	0x0000CA	IFS5<11>	IEC5<11>	IPC22<14:12		
OC9 – Output Compare 9	100	92	0x0000CC	IFS5<12>	IEC5<12>	IPC23<2:0>		
IC9 – Input Capture 9	101	93	0x0000CE	IFS5<13>	IEC5<13>	IPC23<6:4>		
PWM1 – PWM Generator 1 ⁽¹⁾	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>		
PWM2 – PWM Generator 2 ⁽¹⁾	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12		
PWM3 – PWM Generator 3 ⁽¹⁾	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>		
PWM4 – PWM Generator 4 ⁽¹⁾	105	97	0x0000D6	IFS6<1>	IEC6<1>	IPC24<6:4>		
PWM5 – PWM Generator 5 ⁽¹⁾	106	98	0x0000D8	IFS6<2>	IEC6<2>	IPC24<10:8>		
PWM6 – PWM Generator 6 ⁽¹⁾	107	99	0x0000DA	IFS6<3>	IEC6<3>	IPC24<14:12		
PWM7 – PWM Generator 7 ⁽¹⁾	108	100	0x0000DC	IFS6<4>	IEC6<4>	IPC25<2:0>		
Reserved	109-125	101-117	0x0000DE-0x0000FC	_	_	_		
DMA8 – DMA Channel 8	126	118	0x000100	IFS7<6>	IEC7<6>	IPC29<10:8>		
DMA9 – DMA Channel 9	127	119	0x000102	IFS7<7>	IEC7<7>	IPC29<14:12		
DMA10 – DMA Channel 10	128	120	0x000104	IFS7<8>	IEC7<8>	IPC30<2:0>		
DMA11 – DMA Channel 11	129	121	0x000106	IFS7<9>	IEC7<9>	IPC30<6:4>		
SPI4E – SPI4 Error	130	122	0x000108	IFS7<10>	IEC7<10>	IPC30<10:8>		
SPI4 – SPI4 Transfer Done	131	123	0x00010A	IFS7<11>	IEC7<11>	IPC30<14:12		
OC10 – Output Compare 10	132	124	0x00010C	IFS7<12>	IEC7<12>	IPC31<2:0>		
IC10 – Input Capture 10	133	125	0x00010E	IFS7<13>	IEC7<13>	IPC31<6:4>		
OC11 – Output Compare11	134	126	0x000110	IFS7<14>	IEC7<14>	IPC31<10:8>		
IC11 – Input Capture 11	135	127	0x000112	IFS7<15>	IEC7<15>	IPC31<14:12		
OC12 – Output Compare 12	136	128	0x000114	IFS8<0>	IEC8<0>	IPC32<2:0>		
IC12 – Input Capture 12	137	129	0x000116	IFS8<1>	IEC8<1>	IPC32<6:4>		
DMA12 – DMA Channel 12	138	130	0x000118	IFS8<2>	IEC8<2>	IPC32<10:8>		
DMA13– DMA Channel 13	139	131	0x00011A	IFS8<3>	IEC8<3>	IPC32<14:12		
DMA14 – DMA Channel 14	140	132	0x00011C	IFS8<4>	IEC8<4>	IPC33<2:0>		
Reserved	141	133	0x00011E	—	_	—		
OC13 – Output Compare 13	142	134	0x000120	IFS8<6>	IEC8<6>	IPC33<10:8>		
IC13 – Input Capture 13	143	135	0x000122	IFS8<7>	IEC8<7>	IPC33<14:12		
OC14 – Output Compare14	144	136	0x000124	IFS8<8>	IEC8<8>	IPC34<2:0>		
IC14 – Input Capture 14	145	137	0x000126	IFS8<9>	IEC8<9>	IPC34<6:4>		
OC15 – Output Compare 15	146	138	0x000128	IFS8<10>	IEC8<10>	IPC34<10:8>		
IC15 – Input Capture 15	147	139	0x00012A	IFS8<11>	IEC8<11>	IPC34<14:12		
OC16 – Output Compare 16	148	140	0x00012C	IFS8<12>	IEC8<12>	IPC35<2:0>		
IC16 – Input Capture 16	149	141	0x00012E	IFS8<13>	IEC8<13>	IPC35<6:4>		
ICD – ICD Application	150	142	0x000130	IFS8<14>	IEC8<14>	IPC35<10:8>		
IOD - IOD Application								

Note 1: This interrupt source is available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.

2: This interrupt source is available on dsPIC33EPXXXMU8XX and PIC24EPXXXGU8XX devices only.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—	—				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
—	UAE	DAE	DOOVR	—	—	—	—				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'					
-n = Value at F	POR	'1' = Bit is set	:	'0' = Bit is cleared x = Bit is unknown							
bit 15-7	Unimplemen	Unimplemented: Read as '0'									
bit 6	UAE: USB Address Error Soft Trap Status bit										
	 1 = USB address error (soft) trap has occurred 0 = USB address error (soft) trap has not occurred 										
bit E											
bit 5		DAE: DMA Address Error Soft Trap Status bit									

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

bit 0	
	 1 = DMA address error soft trap has occurred 0 = DMA address error soft trap has not occurred
bit 4	DOOVR: Do Stack Overflow Soft Trap Status bit
	 1 = Do stack overflow soft trap has occurred 0 = Do stack overflow soft trap has not occurred
1.11.0.0	

bit 3-0 Unimplemented: Read as '0'

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	SGHT
bit 7							bit 0
Legend:							

Logonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0 SGHT: Software Generated Hard Trap Status bit

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

REGISTER 8-7: DMAXPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD)<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAXCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			CNT<	13:8> ⁽²⁾		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT<	7:0> ⁽²⁾			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 CNT<13:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: The number of DMA transfers = CNT<13:0> + 1.

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V on a 5V tolerant pin) by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification for that pin.

See the **"Pin Diagrams"** section for the available pins and their functionality.

11.2 Configuring Analog and Digital Port Pins

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default. Refer to the Pinout I/O Descriptions (Table 1-1 in **Section 1.0 "Device Overview"**) for the complete list of analog pins.

If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or Comparator module.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the pins defined as Analog in Table 1-1 in **Section 1.0 "Device Overview"**) can cause the input buffer to consume current that exceeds the device specifications.

11.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP, as shown in Example 11-1.

11.3 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State.

Three control registers are associated with the CN functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note: Pull-ups and pull-downs on change notification pins should always be disabled when the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV	OxFF00, WO	; Configure PORTB<15:8>
		; as inputs
MOV	WO, TRISB	; and PORTB<7:0>
		; as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				DTCMP1R<6:0)>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				SYNCI2R<6:0	>		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
		nput tied to RP1 nput tied to CMI nput tied to Vss	P1				
bit 7	Unimpleme	nted: Read as ')'				
bit 6-0	(see Table 1	: 0>: Assign PWI I-2 for input pin nput tied to RP1	selection nun		the Correspo	nding RPn/RPIr	Pin bits
	0000001 =	, nput tied to CMI nput tied to Vss	⊃1				

REGISTER 11-38: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38

13.2 Timerx/y Control Registers

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
TON		TSIDL	_		—	_	_					
pit 15							bit					
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0					
0-0	TGATE	I	S<1:0>	T32	0-0	TCS ⁽¹⁾	0-0					
 bit 7	IGAIE	ICKE	5~1.0~	132	_	10307						
							bit					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'						
n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own					
bit 15	TON: Timerx	On hit										
511 15	When T32 = 2											
	$\frac{\text{Vnen } 132 = 1:}{1 = \text{Starts } 32 - \text{bit Timerx/y}}$											
		0 = Stops 32-bit Timerx/y										
	$\frac{\text{When T32 = 0:}}{1 = \text{Starts 16-bit Timerx}}$											
	1 = Starts 16- 0 = Stops 16-											
oit 14	-	Unimplemented: Read as '0'										
bit 13	TSIDL: Timer	x Stop in Idle I	Node bit									
	1 = Discontinues module operation when device enters Idle mode											
		s module opera		ode								
bit 12-7	-	ted: Read as '										
bit 6		erx Gated Time	Accumulatio	n Enable bit								
	<u>When TCS = 1:</u> This bit is ignored.											
	When $TCS = 0$:											
	1 = Gated time accumulation is enabled											
		e accumulatio										
bit 5-4		: Timerx Input	Clock Presca	le Select bits								
	11 = 1:256											
	10 = 1:64 01 = 1:8											
	00 = 1:1											
bit 3	T32: 32-Bit Ti	mer Mode Sel	ect bit									
	1 = Timerx and Timery form a single 32-bit timer											
	0 = Timerx ar	id Timery act a	is two 16-bit t	mers								
bit 2	•	ted: Read as '										
bit 1		Clock Source S										
	1 = External o 0 = Internal cl	lock from TxC	K pin (on the	rising edge)								

REGISTER 13-1: TxCON: (T2CON, T4CON, T6CON OR T8CON) CONTROL REGISTER

Note 1: The TxCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

17.1 QEI Resources

Many useful resources related to QEI are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en554310

17.1.1 KEY RESOURCES

- Section 15. "Quadrature Encoder Interface (QEI)" (DS70601) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- Development Tools

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ALRMEN	CHIME		AMA	SK<3:0>		ALRMP	FR<1:0>			
bit 15	•						bit 8			
		D/M/ 0			D/M/ 0					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 PT<7:0>	R/W-0	R/W-0	R/W-0			
bit 7				1 \$1.05			bit (
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown			
bit 15		larm Enable bit								
	1 = Alarm Is CHIME	s enabled (clear	ed automatic	ally after an ala	irm event when	ever ARP1<7:()> = 0x00 and			
	0 = Alarm is	,								
bit 14	CHIME: Chi	me Enable bit								
	1 = Chime i	s enabled; ARP	T<7:0> bits a	re allowed to ro	ll over from 0x0	0 to 0xFF				
	0 = Chime i	s disabled; ARP	T<7:0> bits s	stop once they r	each 0x00					
bit 13-10	AMASK<3:0>: Alarm Mask Configuration bits									
	0000 = Every half second									
	0001 = Eve	•								
	0010 = Eve 0011 = Eve	ry 10 seconds								
		ry 10 minutes								
	0101 = Eve									
	0110 = Onc	•								
	0111 = Onc									
	1000 = Onc		when config	urad for Eabrua	ny 20th anao a					
		e a year (except erved – do not u			iry 29th, once e	very 4 years)				
		erved – do not u								
bit 9-8	ALRMPTR<	:1:0>: Alarm Val	ue Register \	Vindow Pointer	bits					
		e corresponding 1:0> value decre								
bit 7-0		: Alarm Repeat		-						
		- Alarm will repe								
	•									
	•									
	•									
	00000000	= Alarm will not r	epeat							
	The counter 0xFF unless	decrements on	any alarm ev	ent. The counte	er is prevented f	rom rolling ove	r from 0x00 t			

REGISTER 26-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

32.1 DC Characteristics

TABLE 32-1: OPERATING MIPS VS. VOLTAGE

	Voo Bongo	Tomp Bongo	Maximum MIPS
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33EPXXX(GP/MC/MU)806/810/ 814 and PIC24EPXXX(GP/GU)810/814
_	2.95V-3.6V ⁽¹⁾	-40°C to +85°C	70
—	2.95V-3.6V ⁽¹⁾	-40°C to +125°C	60

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 32-11 for the minimum and maximum BOR values.

TABLE 32-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+140	°C
Operating Ambient Temperature Range	TA	-40		+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD		Pint + Pi/(D	W
I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ – ΤΑ)/θ.	IA	W

TABLE 32-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 64-pin QFN (9x9 mm)	θJA	28		°C/W	1
Package Thermal Resistance, 64-pin TQFP (10x10 mm)	θJA	47	_	°C/W	1
Package Thermal Resistance, 100-pin TQFP (12x12 mm)	θJA	43	—	°C/W	1
Package Thermal Resistance, 100-pin TQFP (14x14 mm)	θJA	43	_	°C/W	1
Package Thermal Resistance, 121-pin TFBGA (10x10 mm)	θJA	40	_	°C/W	1
Package Thermal Resistance, 144-pin LQFP (20x20 mm)	θJA	33	—	°C/W	1
Package Thermal Resistance, 144-pin TQFP (16x16 mm)	θJA	33	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 32-17:	PLL CI	OCK TIMING	SPECIFICATIONS
---------------------	--------	------------	----------------

АС СНА	RACTERI	STICS		erating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param.	Symbol	Characteris	tic	Conditions							
OS50	Fplli	PLL Voltage Controll Oscillator (VCO) Inpu Frequency Range		0.8		8.0	MHz	ECPLL, XTPLL modes			
OS51	Fsys	On-Chip VCO Syster Frequency			_	340	MHz				
OS52	TLOCK	PLL Start-up Time (L	Time (Lock Time)		1.5	3.1	mS				
OS53	DCLK	CLKO Stability (Jitter	·) ⁽²⁾	-5	0.5	5	%				

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Time Base or Communication Clock}}}$$

For example, if FOSC = 120 MHz and the SPI bit rate = 10 MHz, the effective jitter is as follows:

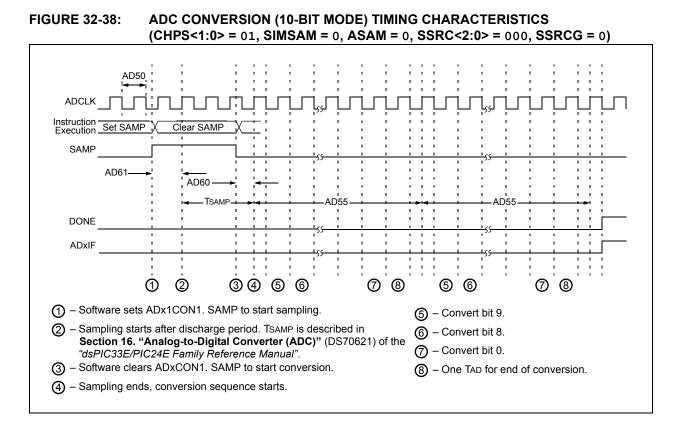
Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 32-18: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS (dsPIC33EPXXXMU8XX AND PIC24EPXXXGU8XX DEVICES ONLY)

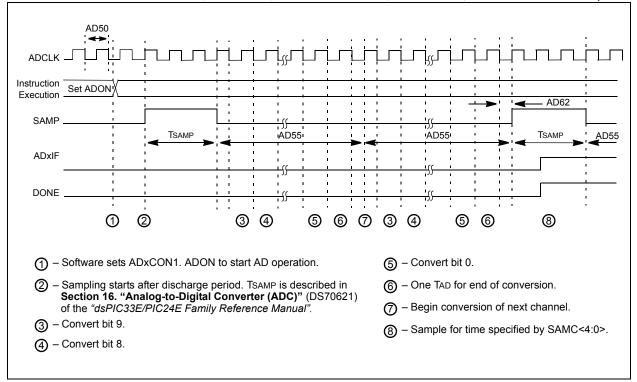
AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param.	Symbol	Characteristic		Min.	Typ. ⁽¹⁾	Max.	Units	Conditions	
OS54	AFplli	PLL Voltage Controll Oscillator (VCO) Inpu Frequency Range		3	_	5.5	MHz	ECPLL, XTPLL modes	
OS55	AFsys	On-Chip VCO Syster Frequency	n	60	—	120	MHz		
OS56	ATLOCK	PLL Start-up Time (Lock Time)		0.9	1.5	3.1	mS		
OS57	ADCLK	CLKO Stability (Jitter	.)	-2	0.25	2	%		

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 32-40:SPI1, SPI3 AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS


			$\label{eq:standard operating Conditions: 3.0V to 3.6V (unless otherwise stated) \\ Operating temperature & -40^{\circ}C \leq TA \leq +85^{\circ}C \text{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \text{ for Extended} \\ \end{aligned}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	TscP	Maximum SCKx Input Frequency	—		11	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—	—	_	ns	See Parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	—	—	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx \downarrow Input	120	—	_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	—		ns	See Note 4	

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

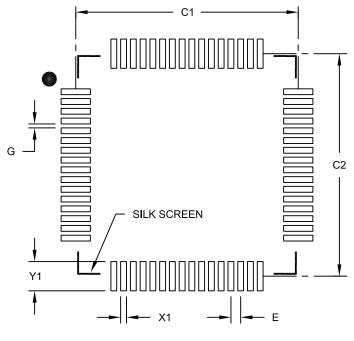


FIGURE 32-39: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SSRCG = 0, SAMC<4:0> = 00010)

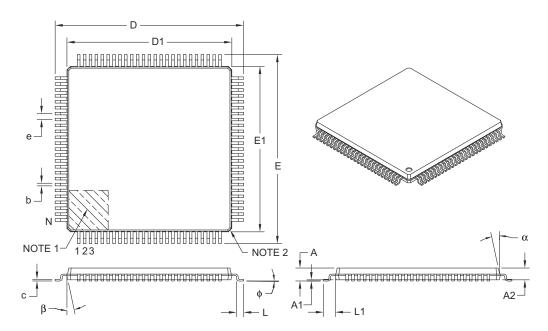
64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			MILLIMETERS			
Dimensior	Dimension Limits		NOM	MAX			
Contact Pitch	E		0.50 BSC				
Contact Pad Spacing	C1		11.40				
Contact Pad Spacing	C2		11.40				
Contact Pad Width (X64)	X1			0.30			
Contact Pad Length (X64)	Y1			1.50			
Distance Between Pads	G	0.20					

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensi	MIN	NOM	MAX			
Number of Leads	Ν	100				
Lead Pitch	е	0.50 BSC				
Overall Height	А	-	_	1.20		
Molded Package Thickness	A2	0.95	1.00	1.05		
Standoff	A1	0.05	-	0.15		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	¢	0°	3.5°	7°		
Overall Width	Е	16.00 BSC				
Overall Length	D	16.00 BSC				
Molded Package Width	E1	14.00 BSC				
Molded Package Length	D1	14.00 BSC				
Lead Thickness	С	0.09	-	0.20		
Lead Width	b	0.17	0.22	0.27		
Mold Draft Angle Top	α	11°	12°	13°		
Mold Draft Angle Bottom	β	11°	12°	13°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B