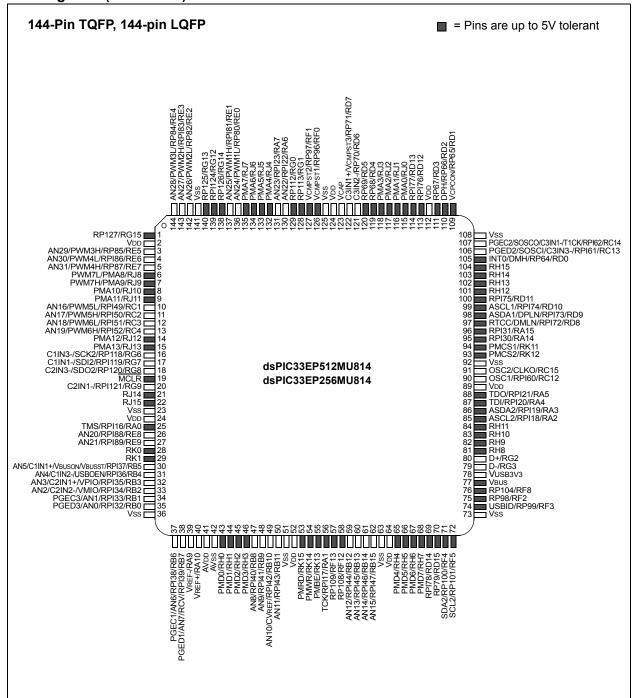


Welcome to **E-XFL.COM**


What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
peed	70 MIPs
connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
lumber of I/O	83
rogram Memory Size	512KB (170K x 24)
rogram Memory Type	FLASH
EPROM Size	-
AM Size	24K x 16
oltage - Supply (Vcc/Vdd)	3V ~ 3.6V
ata Converters	A/D 32x10b/12b
scillator Type	Internal
perating Temperature	-40°C ~ 85°C (TA)
lounting Type	Surface Mount
ackage / Case	100-TQFP
upplier Device Package	100-TQFP (14x14)
urchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512mu810-i-pf

Pin Diagrams (Continued)

- **Note 1:** The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See **Section 11.4 "Peripheral Pin Select"** for available peripherals and for information on limitations.
 - 2: Every I/O port pin (RAx-RKx) can be used as change notification (CNAx-CNKx). See **Section 11.0** "I/O Ports" for more information.
 - **3:** The availability of I²C interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is made using the device Configuration bits, ALTI2C1 and ALTI2C2 (FPOR<5:4>). See **Section 29.0** "**Special Features**" for more information.

sPIC33EPXXX(G	P/MC/MU)806/	/810/814 and	PIC24EPXX	K(GP/GU)810/	814
OTES:					

3.5 Programmer's Model

The programmer's model is shown in Figure 3-2. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, all devices in this family contain control registers for interrupts, while the dsPIC33EPXXX(GP/MC/MU)806/810/814 devices contain control registers for Modulo and Bit-reversed Addressing. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory mapped, as shown in Table 4-1.

TABLE 3-1: PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Register(s) Name	Description
W0 through W15	Working Register Array
ACCA, ACCB	40-Bit DSP Accumulators
PC	23-Bit Program Counter
SR	ALU and DSP Engine Status register
SPLIM	Stack Pointer Limit Value register
TBLPAG	Table Memory Page Address register
DSRPAG	Extended Data Space (EDS) Read Page register
DSWPAG	Extended Data Space (EDS) Write Page register
RCOUNT	REPEAT Loop Count register
DCOUNT ⁽¹⁾	DO Loop Count register
DOSTARTH ^(1,2) , DOSTARTL ^(1,2)	DO Loop Start Address register (High and Low)
DOENDH ⁽¹⁾ , DOENDL ⁽¹⁾	DO Loop End Address register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

Note 1: This register is available on dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.

2: The DOSTARTH and DOSTARTL registers are read-only.

TARI F 4-18.	PWM GENERATOR 6 REGISTER MAP FOR dsPIC33EPXXX(MC/MU)810/814 DEVICES ON	IV
IADLL TIO.	I WIN CENERALON O NECICIEN MAI I ON USI 1033EI AAA(MO/MO/MO/TDEVICES ON	

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON6	0CC0	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	1:0>	DTCP	1	MTBS	CAM	XPRES	IUE	0000
IOCON6	0CC2	PENH	PENL	POLH	POLL	PMOD	<1:0>	OVRENH	OVRENL	OVRDA [*]	T<1:0>	FLTD	\T<1:0>	CLDA	AT<1:0>	SWAP	OSYNC	0000
FCLCON6	0CC4	IFLTMOD		(CLSRC<4:0)>		CLPOL	CLMOD		FLT	SRC<4:0	>		FLTPOL	FLTMO	D<1:0>	0000
PDC6	0CC6			PDC6<15:0>								0000						
PHASE6	0CC8				PHASE6<15:0>							0000						
DTR6	0CCA	_	_		DTR6<13:0>							0000						
ALTDTR6	0CCC	_	_		ALTDTR6<13:0>								0000					
SDC6	0CCE								SDC6<15:0	>								0000
SPHASE6	0CD0							S	SPHASE6<15	:0>								0000
TRIG6	0CD2							٦	FRGCMP<15	:0>								0000
TRGCON6	0CD4		TRGD	IV<3:0>		_	_	_	_	-	_			TR	GSTRT<5:0)>		0000
PWMCAP6	0CD8							Р	WMCAP6<15	5:0>								0000
LEBCON6	0CDA	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	-	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY6	0CDC	_	_	LEB<11:0>							0000							
AUXCON6	0CDE	_	_	_	_		BLANKS	EL<3:0>		-	_		CHOPS	EL<3:0>		CHOPHEN	CHOPLEN	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: PWM GENERATOR 7 REGISTER MAP FOR dsPIC33EPXXX(MC/MU)814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON7	0CE0	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	1:0>	DTCP	-	MTBS	CAM	XPRES	IUE	0000
IOCON7	0CE2	PENH	PENL	POLH	POLL	PMOD	<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	\T<1:0>	CLDA	AT<1:0>	SWAP	OSYNC	0000
FCLCON7	0CE4	IFLTMOD		(CLSRC<4:0)>		CLPOL	CLMOD		FLT	SRC<4:0	>		FLTPOL	FLTMO	D<1:0>	0000
PDC7	0CE6		PDC7<15:0>									0000						
PHASE7	0CE8		PHASE7<15:0>								0000							
DTR7	0CEA	_	_		DTR7<13:0>							0000						
ALTDTR7	0CEC	_	_		ALTDTR7<13:0>							0000						
SDC7	0CEE								SDC7<15:0	>								0000
SPHASE7	0CF0							5	SPHASE7<15	:0>								0000
TRIG7	0CF2							7	TRGCMP<15	:0>								0000
TRGCON7	0CF4		TRGD	IV<3:0>		_	_	_	_	_	_			TR	GSTRT<5:()>		0000
PWMCAP7	0CF8							Р	WMCAP7<15	5:0>								0000
LEBCON7	0CFA	PHR	PHF	PLR	PLF	FLTLEBEN CLLEBEN BCH BCL BPHH BPHL BPLH BPL							BPLL	0000				
LEBDLY7	0CFC	_	LEB<11:0>								0000							
AUXCON7	0CFE	_	_	_	_		BLANKS	SEL<3:0>		_	_		CHOPS	SEL<3:0>		CHOPHEN	CHOPLEN	0000

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.3 EDS ARBITRATION AND BUS MASTER PRIORITY

EDS accesses from bus masters in the system are arbitrated.

The arbiter for data memory (including EDS) arbitrates between the CPU, the DMA, the USB module and the ICD module. In the event of coincidental access to a bus by the bus masters, the arbiter determines which bus master access has the highest priority. The other bus masters are suspended and processed after the access of the bus by the bus master with the highest priority.

By default, the CPU is Bus Master 0 (M0) with the highest priority and the ICD is Bus Master 4 (M4) with the lowest priority. The remaining bus masters (USB and DMA Controllers) are allocated to M2 and M3,

respectively (M1 is reserved and cannot be used). The user application may raise or lower the priority of the masters to be above that of the CPU by setting the appropriate bits in the EDS Bus Master Priority Control (MSTRPR) register. All bus masters with raised priorities will maintain the same priority relationship relative to each other (i.e., M1 being highest and M3 being lowest, with M2 in between). Also, all the bus masters with priorities below that of the CPU maintain the same priority relationship relative to each other. The priority schemes for bus masters with different MSTRPR values are tabulated in Table 4-74.

This bus master priority control allows the user application to manipulate the real-time response of the system, either statically during initialization, or dynamically in response to real-time events.

TABLE 4-74: EDS BUS ARBITER PRIORITY

Duiovity	MSTRPR<15:0> Bit Setting ⁽¹⁾								
Priority	0x0000	0x0008	0x0020	0x0028					
M0 (highest)	CPU	USB	DMA	USB					
M1	Reserved	CPU	CPU	DMA					
M2	USB	Reserved	Reserved	CPU					
M3	DMA	DMA	USB	Reserved					
M4 (lowest)	ICD	ICD	ICD	ICD					

Note 1: All other values of MSTRPR<15:0> are reserved.

FIGURE 4-8: **EDS ARBITER ARCHITECTURE DPSRAM** USB ICD CPU **DMA** Reserved MSTRPR<15:0 M0 M1 M2 М3 M4 **EDS Arbiter SRAM**

© 2009-2012 Microchip Technology Inc.

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	_	_	_	_	_	PLLDIV<8>
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLDI	V<7:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-9 **Unimplemented:** Read as '0'

bit 8-0 PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as 'M', PLL multiplier)

111111111 **= 513**

•

•

000110000 = **50** (default)

•

•

•

000000010 = 4

000000001 = 3

000000000 = 2

Note 1: This register is reset only on a Power-on Reset (POR).

REGISTER 10-5: PMD5: PERIPHERAL MODULE DISABLE CONTROL REGISTER 5

R/W-0	R/W-0						
IC16MD	IC15MD	IC14MD	IC13MD	IC12MD	IC11MD	IC10MD	IC9MD
bit 15							bit 8

R/W-0	R/W-0						
OC16MD	OC15MD	OC14MD	OC13MD	OC12MD	OC11MD	OC10MD	OC9MD
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	IC16MD: IC16 Module Disable bit
	1 = IC16 module is disabled
	0 = IC16 module is enabled
bit 14	IC15MD: IC15 Module Disable bit
	1 = IC15 module is disabled
	0 = IC15 module is enabled
bit 13	IC14MD: IC14 Module Disable bit
	1 = IC14 module is disabled
	0 = IC14 module is enabled
bit 12	IC13MD: IC13 Module Disable bit
	1 = IC13 module is disabled
	0 = IC13 module is enabled
bit 11	IC12MD: IC12 Module Disable bit
	1 = IC12 module is disabled
	0 = IC12 module is enabled
bit 10	IC11MD: IC11 Module Disable bit
	1 = IC11 module is disabled
	0 = IC11 module is enabled
bit 9	IC10MD: IC10 Module Disable bit
bit 9	IC10MD: IC10 Module Disable bit 1 = IC10 module is disabled
bit 9	
bit 9	1 = IC10 module is disabled
	1 = IC10 module is disabled 0 = IC10 module is enabled
	1 = IC10 module is disabled 0 = IC10 module is enabled IC9MD: IC9 Module Disable bit
	1 = IC10 module is disabled 0 = IC10 module is enabled IC9MD: IC9 Module Disable bit 1 = IC9 module is disabled
bit 8	1 = IC10 module is disabled 0 = IC10 module is enabled IC9MD: IC9 Module Disable bit 1 = IC9 module is disabled 0 = IC9 module is enabled
bit 8	1 = IC10 module is disabled 0 = IC10 module is enabled IC9MD: IC9 Module Disable bit 1 = IC9 module is disabled 0 = IC9 module is enabled OC16MD: OC16 Module Disable bit
bit 8	1 = IC10 module is disabled 0 = IC10 module is enabled IC9MD: IC9 Module Disable bit 1 = IC9 module is disabled 0 = IC9 module is enabled OC16MD: OC16 Module Disable bit 1 = OC16 module is disabled
bit 8	1 = IC10 module is disabled 0 = IC10 module is enabled IC9MD: IC9 Module Disable bit 1 = IC9 module is disabled 0 = IC9 module is enabled OC16MD: OC16 Module Disable bit 1 = OC16 module is disabled 0 = OC16 module is enabled
bit 8	1 = IC10 module is disabled 0 = IC10 module is enabled IC9MD: IC9 Module Disable bit 1 = IC9 module is disabled 0 = IC9 module is enabled OC16MD: OC16 Module Disable bit 1 = OC16 module is disabled 0 = OC16 module is enabled OC15MD: OC15 Module Disable bit
bit 8	1 = IC10 module is disabled 0 = IC10 module is enabled IC9MD: IC9 Module Disable bit 1 = IC9 module is disabled 0 = IC9 module is enabled OC16MD: OC16 Module Disable bit 1 = OC16 module is disabled 0 = OC16 module is enabled OC15MD: OC15 Module Disable bit 1 = OC15 module is disabled
bit 8 bit 7 bit 6	1 = IC10 module is disabled 0 = IC10 module is enabled IC9MD: IC9 Module Disable bit 1 = IC9 module is disabled 0 = IC9 module is enabled OC16MD: OC16 Module Disable bit 1 = OC16 module is disabled 0 = OC16 module is enabled OC15MD: OC15 Module Disable bit 1 = OC15 module is disabled 0 = OC15 module is enabled
bit 8 bit 7 bit 6	1 = IC10 module is disabled 0 = IC10 module is enabled IC9MD: IC9 Module Disable bit 1 = IC9 module is disabled 0 = IC9 module is enabled OC16MD: OC16 Module Disable bit 1 = OC16 module is disabled 0 = OC16 module is enabled OC15MD: OC15 Module Disable bit 1 = OC15 module is disabled 0 = OC15 module is enabled 0 = OC15 module is enabled OC14MD: OC14 Module Disable bit
bit 8 bit 7 bit 6	1 = IC10 module is disabled 0 = IC10 module is enabled IC9MD: IC9 Module Disable bit 1 = IC9 module is disabled 0 = IC9 module is enabled OC16MD: OC16 Module Disable bit 1 = OC16 module is disabled 0 = OC16 module is enabled OC15MD: OC15 Module Disable bit 1 = OC15 module is disabled 0 = OC15 module is enabled OC14MD: OC14 Module Disable bit 1 = OC14 module is disabled
bit 8 bit 7 bit 6 bit 5	1 = IC10 module is disabled 0 = IC10 module is enabled IC9MD: IC9 Module Disable bit 1 = IC9 module is disabled 0 = IC9 module is enabled OC16MD: OC16 Module Disable bit 1 = OC16 module is disabled 0 = OC16 module is enabled OC15MD: OC15 Module Disable bit 1 = OC15 module is disabled 0 = OC15 module is enabled OC14MD: OC14 Module Disable bit 1 = OC14 module is disabled 0 = OC14 module is enabled
bit 8 bit 7 bit 6 bit 5	1 = IC10 module is disabled 0 = IC10 module is enabled IC9MD: IC9 Module Disable bit 1 = IC9 module is disabled 0 = IC9 module is enabled OC16MD: OC16 Module Disable bit 1 = OC16 module is disabled 0 = OC16 module is enabled OC15MD: OC15 Module Disable bit 1 = OC15 module is disabled 0 = OC15 module is enabled OC14MD: OC14 Module Disable bit 1 = OC14 module is disabled 0 = OC14 module is enabled OC13MD: OC13 Module Disable bit

REGISTER 11-18: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17 (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	HOME2R<6:0> ⁽¹⁾							
bit 15							bit 8	

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				INDX2R<6:0>	(1)		
bit 7							bit 0

Legend:W = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-8 **HOME2R<6:0>:** Assign QEI2 HOME2 (HOME2) to the Corresponding RPn/RPIn Pin bits⁽¹⁾

(see Table 11-2 for input pin selection numbers)

1111111 = Input tied to RP127

.

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

bit 7 **Unimplemented:** Read as '0'

bit 6-0 INDX2R<6:0>: Assign QEI2 INDEX2 (INDX2) to the Corresponding RPn/RPIn Pin bits⁽¹⁾

(see Table 11-2 for input pin selection numbers)

1111111 = Input tied to RP127

.

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

Note 1: These bits are available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.

REGISTER 11-24: RPINR24: PERIPHERAL PIN SELECT INPUT REGISTER 24

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				CSCKR<6:0>	>		
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				CSDIR<6:0>	•		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-8 CSCKR<6:0>: Assign DCI Clock Input (CSCK) to the Corresponding RPn/RPIn Pin bits

(see Table 11-2 for input pin selection numbers)

11111111 = Input tied to RP127

.

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

bit 7 **Unimplemented:** Read as '0'

bit 6-0 CSDIR<6:0>: Assign DCI Data Input (CSDI) to the Corresponding RPn/RPIn Pin bits

(see Table 11-2 for input pin selection numbers)

1111111 = Input tied to RP127

.

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

15.2 Output Compare Control Registers

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	OCSIDL		OCTSEL<2:0>	ENFLTC	ENFLTB	
bit 15							bit 8

R/W-0	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0
ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>	
bit 7							bit 0

Legend:	HCS = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown				

bit 15-14 **Unimplemented:** Read as '0'

bit 13 OCSIDL: Stop Output Compare x in Idle Mode Control bit

1 = Output Compare x Halts in CPU Idle mode

0 = Output Compare x continues to operate in CPU Idle mode

bit 12-10 OCTSEL<2:0>: Output Compare x Clock Select bits

111 = Peripheral clock (FP)

110 = Reserved

101 = Reserved

100 = Clock source of T1CLK is the clock source of OCx (only the synchronous clock is supported)

011 = Clock source of T5CLK is the clock source of OCx

010 = Clock source of T4CLK is the clock source of OCx

001 = Clock source of T3CLK is the clock source of OCx

000 = Clock source of T2CLK is the clock source of OCx

bit 9 ENFLTC: Fault C Input Enable bit

1 = Output Compare Fault C input (OCFC) is enabled

0 = Output Compare Fault C input (OCFC) is disabled

bit 8 ENFLTB: Fault B Input Enable bit

1 = Output Compare Fault B input (OCFB) is enabled

0 = Output Compare Fault B input (OCFB) is disabled

bit 7 ENFLTA: Fault A Input Enable bit

1 = Output Compare Fault A input (OCFA) is enabled

0 = Output Compare Fault A input (OCFA) is disabled

bit 6 OCFLTC: PWM Fault C Condition Status bit

1 = PWM Fault C condition on OCFC pin has occurred

0 = No PWM Fault C condition on OCFC pin has occurred

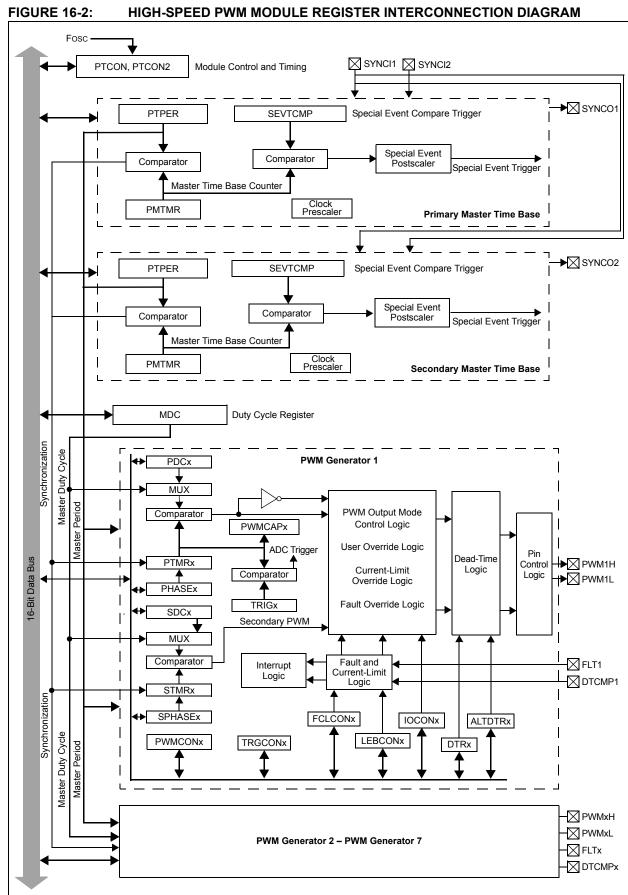
bit 5 OCFLTB: PWM Fault B Condition Status bit

1 = PWM Fault B condition on OCFB pin has occurred

0 = No PWM Fault B condition on OCFB pin has occurred

bit 4 OCFLTA: PWM Fault A Condition Status bit

1 = PWM Fault A condition on OCFA pin has occurred


0 = No PWM Fault A condition on OCFA pin has occurred

bit 3 TRIGMODE: Trigger Status Mode Select bit

1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software

0 = TRIGSTAT is cleared only by software

Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

REGISTER 16-10: MDC: PWM MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
MDC<15:8>									
bit 15				bit 8					

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
MDC<7:0>										
bit 7										

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 MDC<15:0>: Master PWM Duty Cycle Value bits

REGISTER 16-16: DTRx: PWMx DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			DTRx	<13:8>		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
DTRx<7:0>								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 16-17: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			ALTDTI	Rx<13:8>		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ALTDTF	Rx<7:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 16-19: IOCONx: PWMx I/O CONTROL REGISTER (CONTINUED)

bit 3-2 CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits

IFLTMOD (FCLCONx<15>) = 0: Normal Fault mode:

If current limit is active, PWMxH is driven to the state specified by CLDAT<1>. If current limit is active, PWMxL is driven to the state specified by CLDAT<0>.

IFLTMOD (FCLCONx<15>) = 1: Independent Fault mode:

The CLDAT<1:0> bits are ignored.

bit 1 **SWAP:** Swap PWMxH and PWMxL Pins bit

1 = PWMxH output signal is connected to PWMxL pins; PWMxL output signal is connected to PWMxH pins

0 = PWMxH and PWMxL pins are mapped to their respective pins

bit 0 **OSYNC:** Output Override Synchronization bit

1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base

0 = Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary

Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).

REGISTER 21-10: CxCFG2: ECANx BAUD RATE CONFIGURATION REGISTER 2

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
_	WAKFIL	_	_	_	:	SEG2PH<2:0>	
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SEG2PHTS	SAM	SEG1PH<2:0>			PRSEG<2:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14 WAKFIL: Select CAN Bus Line Filter for Wake-up bit

1 = Uses CAN bus line filter for wake-up

0 = CAN bus line filter is not used for wake-up

bit 13-11 **Unimplemented:** Read as '0'

bit 10-8 **SEG2PH<2:0>:** Phase Segment 2 bits

111 = Length is 8 x TQ

•

•

000 = Length is $1 \times TQ$

bit 7 SEG2PHTS: Phase Segment 2 Time Select bit

1 = Freely programmable

0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater

bit 6 SAM: Sample of the CAN Bus Line bit

1 = Bus line is sampled three times at the sample point

0 = Bus line is sampled once at the sample point

bit 5-3 **SEG1PH<2:0>:** Phase Segment 1 bits

111 = Length is 8 x TQ

•

•

•

 $000 = \text{Length is } 1 \times \text{TQ}$

bit 2-0 **PRSEG<2:0>:** Propagation Time Segment bits

111 = Length is 8 x TQ

•

•

•

000 = Length is 1 x TQ

Note:

22.0 USB ON-THE-GO (OTG) MODULE (dsPIC33EPXXXMU8XX AND PIC24EPGU8XX DEVICES ONLY)

Note 1: This data sheet is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 25. "USB On-The-Go (OTG)" (DS70571) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

22.1 Overview

The Universal Serial Bus (USB) On-The-Go (OTG) module includes the following features:

- · USB Full-Speed Support for Host and Device
- Low-Speed Host Support
- USB On-The-Go Support
- · Integrated Signaling Resistors
- Integrated Analog Comparators for VBUS Monitoring
- · Integrated USB Transceiver
- · Hardware Performs Transaction Handshaking
- · Endpoint Buffering Anywhere in System RAM
- Integrated DMA Controller to Access System RAM
- Support for all four transfer types:
 - Control
 - Interrupt
 - Bulk Data
 - Isochronous
- Queueing of up to Four Endpoint Transfers without Servicing
- · USB 5V Charge Pump Controller

The USB module contains the analog and digital components to provide a USB 2.0 full-speed and low-speed embedded host, full-speed device or OTG implementation with a minimum of external components.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), pull-up and pull-down resistors, and the register interface. Figure 22-1 illustrates the block diagram of the USB OTG module.

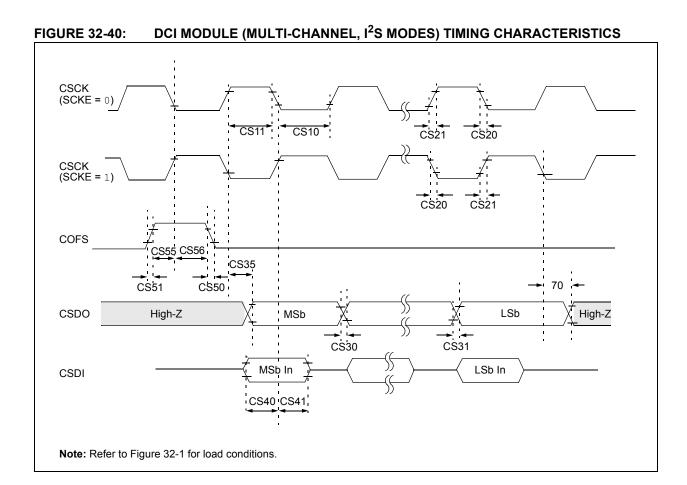
The device auxiliary clock generator provides the 48 MHz clock required for USB communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the protocol for data transfers. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module.

The implementation and use of the USB specifications and other third party specifications or technology may require a license from various entities, including, but not limited to USB Implementers Forum, Inc. (also referred to as USB-IF). It is your responsibility to obtain more information regarding any applicable licensing obligations.

22.2 Clearing USB OTG Interrupts

Unlike device level interrupts, the USB OTG interrupt status flags are not freely writable in software. All USB OTG flag bits are implemented as hardware set-only bits. Additionally, these bits can only be cleared in software by writing a '1' to their locations (i.e., performing a BSET instruction). Writing a '0' to a flag bit (i.e., a BCLR instruction) has no effect.

Note: Throughout this section, a bit that can only be cleared by writing a '1' to its location is referred to as "Write '1' to clear bit". In register descriptions, this function is indicated by the descriptor, "K".


TABLE 30-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso, Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws, Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None
		MOVPAG	#lit9,DSWPAG	Move 9-bit literal to DSWPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None
		MOVPAGW	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAGW	Ws, DSWPAG	Move Ws<8:0> to DSWPAG	1	1	None
		MOVPAGW	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
48	MOVSAC	MOVSAC	Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Prefetch and store accumulator	1	1	None
49 MI	MPY	MPY	Wm*Wn, Acc, Wx, Wxd, Wy, Wyd ⁽¹⁾	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd ⁽¹⁾	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
50	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd(1)	-(Multiply Wm by Wn) to Accumulator	1	1	None
51	MSC	MSC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd, AWB(1)	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
52	MUL	MUL.SS	Wb, Ws, Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb, Ws, Acc(1)	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb, Ws, Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb, Ws, Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb, #lit5, Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb, Ws, Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb, Ws, Acc ⁽¹⁾	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb, Ws, Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb, Ws, Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb, Ws, Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb, Ws, Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb, Ws, Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb, Ws, Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

Note 1:

This instruction is available in dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.

Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

© 2009-2012 Microchip Technology Inc.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- · Field Application Engineer (FAE)
- · Technical Support
- · Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent
From:	·	
FIOIII.	-	
	Company	
	Address City / State / ZIP / Country	
مانده ۸		FAX: (
	cation (optional):	
	d you like a reply?YN	
Devic	e: dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814	Literature Number: DS70616G
Quest	tions:	
1. W	/hat are the best features of this document?	
_		
2. H	ow does this document meet your hardware and softwa	are development needs?
_		
2 -		lave of make who o
3. D	o you find the organization of this document easy to fol	low? II not, wny?
_		
4. W	/hat additions to the document do you think would enha	nce the structure and subject?
	,	,
_		
5. W	/hat deletions from the document could be made withou	at affecting the overall usefulness?
_		
_		
6. Is	there any incorrect or misleading information (what an	d where)?
_		
7. H	ow would you improve this document?	
_		