

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	83
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512mu810t-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
N0	0000					•	•		W0 (WR	EG)				•			•	0000
W1	0002								W1									0000
W2	0004								W2									0000
W3	0006								W3									0000
W4	8000								W4									0000
W5	000A								W5									0000
W6	000C								W6									0000
W7	000E								W7									0000
W8	0010								W8									0000
W9	0012								W9									0000
W10	0014								W10									0000
W11	0016								W11									0000
W12	0018								W12									0000
W13	001A								W13									0000
W14	001C								W14									0000
W15	001E								W15									1000
SPLIM	0020								SPLIN	Λ								0000
ACCAL	0022								ACCA	L								0000
ACCAH	0024								ACCA	Н								0000
ACCAU	0026			Sig	n-Extensio	n of ACCA<	39>						AC	CAU				0000
ACCBL	0028								ACCB	L								0000
ACCBH	002A								ACCB	Н								0000
ACCBU	002C			Sig	n-Extensio	n of ACCB<	39>						AC	CBU				0000
PCL	002E								PCL								—	0000
PCH	0030	_	_	_	_	_	_	_	—	_				PCH				0000
DSRPAG	0032	_	_	_	_	—	_					DSRP	AG					0001
DSWPAG	0034	_	_	_	_	—	_	—				[DSWPAG					0001
RCOUNT	0036								RCOUN	ΝT								0000
DCOUNT	0038								DCOUN	NT								0000
DOSTARTL	003A							D	OSTARTL								—	0000
DOSTARTH	003C	—	_	—	—	—	—	—	—	—	—			DOST	ARTH			0000
DOENDL	003E								DOENDL			•					—	0000
DOENDH	0040	_	_	_	_	_	_	_	_	_	_			DOE	NDH			0000

TABLE 4-1: CPU CORE REGISTER MAP FOR dsPIC33EPXXX(GP/MC/MU)806/810/814 DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	NVMIF	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	T6IF	DMA4IF	PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	-	RTCIF	DMA5IF	DCIIF	DCIEIF	QEI1IF	PSEMIF	C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4	0808		_	_	_	QEI2IF	—	PSESMIF	_	C2TXIF	C1TXIF	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	_	0000
IFS5	080A	PWM2IF	PWM1IF	IC9IF	OC9IF	SPI3IF	SPI3EIF	U4TXIF	U4RXIF	U4EIF	_	_	_	U3TXIF	U3RXIF	U3EIF	_	0000
IFS6	080C	-	_	_	_	_	—	_	_		_	_	-	_	_	PWM4IF	PWM3IF	0000
IFS7	080E	IC11IF	OC11IF	IC10IF	OC10IF	SPI4IF	SPI4EIF	DMA11IF	DMA10IF	DMA9IF	DMA8IF	_	_	_	—	_	_	0000
IFS8	0810	_	ICDIF	IC16IF	OC16IF	IC15IF	OC15IF	IC14IF	OC14IF	IC13IF	OC13IF	—	DMA14IF	DMA13IF	DMA12IF	IC12IF	OC12IF	0000
IEC0	0820	NVMIE	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	T6IE	DMA4IE	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	_	RTCIE	DMA5IE	DCIIE	DCIEIE	QEI1IE	PSEMIE	C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	0828		_	_	_	QEI2IE	—	PSESMIE	_	C2TXIE	C1TXIE	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	—	0000
IEC5	082A	PWM2IE	PWM1IE	IC9IE	OC9IE	SPI3IE	SPI3EIE	U4TXIE	U4RXIE	U4EIE	_	_	_	U3TXIE	U3RXIE	U3EIE	_	0000
IEC6	082C	_	_	_	_	_	—	_	_		_	_	-	_	_	PWM4IE	PWM3IE	0000
IEC7	082E	IC11IE	OC11IE	IC10IE	OC10IE	SPI4IE	SPI4EIE	DMA11IE	DMA10IE	DMA9IE	DMA8IE	_	-	_	_	_	_	0000
IEC8	0830	_	ICDIE	IC16IE	OC16IE	IC15IE	OC15IE	IC14IE	OC14IE	IC13IE	OC13IE	—	DMA14IE	DMA13IE	DMA12IE	IC12IE	OC12IE	0000
IPC0	0840			T1IP<2:0>		_		OC1IP<2:0>	>			IC1IP<2:0>		_		INT0IP<2:0>	•	4444
IPC1	0842			T2IP<2:0>		_		OC2IP<2:0>	>			IC2IP<2:0>		_	[DMA0IP<2:0>	>	4444
IPC2	0844			U1RXIP<2:0)>	_		SPI1IP<2:0	>			SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846	_		NVMIP<2:0	>	—		DMA1IP<2:0	>			AD1IP<2:0>		-		J1TXIP<2:0>	•	4444
IPC4	0848	_		CNIP<2:0>	•	_		CMIP<2:0>		-		MI2C1IP<2:0	>	-	5	SI2C1IP<2:0>	>	4444
IPC5	084A	_		IC8IP<2:0>	`	_		IC7IP<2:0>		-		AD2IP<2:0>		-		INT1IP<2:0>		4444
IPC6	084C	_		T4IP<2:0>		_		OC4IP<2:0>	`	-		OC3IP<2:0>		-	[) MA2IP<2:0>	>	4444
IPC7	084E	_		U2TXIP<2:0)>	_		U2RXIP<2:0	>	-		INT2IP<2:0>		-		T5IP<2:0>		4444
IPC8	0850	_		C1IP<2:0>		_		C1RXIP<2:0	>	-		SPI2IP<2:0>		-	5	SPI2EIP<2:0>	>	4444
IPC9	0852	_		IC5IP<2:0>	`	_		IC4IP<2:0>		-		IC3IP<2:0>		-	[DMA3IP<2:0>	>	4444
IPC10	0854	_		OC7IP<2:0	>	—		OC6IP<2:0>	`	_		OC5IP<2:0>		_		IC6IP<2:0>		4444
IPC11	0856	_		T6IP<2:0>		_		DMA4IP<2:0	>	-		PMPIP<2:0>		-		OC8IP<2:0>		4444
IPC12	0858	_		T8IP<2:0>		_	MI2C2IP<2:0>		_		SI2C2IP<2:0	>	_		T7IP<2:0>		4444	
IPC13	085A			C2RXIP<2:0)>	_		INT4IP<2:0>	>	_		INT3IP<2:0>		_	T9IP<2:0>			4444
IPC14	085C	_		DCIEIP<2:0	>	_	QEI1IP<2:0>		_		PSEMIP<2:0	>	_	C2IP<2:0>			4444	
IPC15	085E	_		_	_	_	RTCIP<2:0>			DMA5IP<2:0>			DCIIP<2:0>			0444		

DECISTED MAD FOD IL DIGGEDWWWWGGGG DEVICES ONLY

_ -

. .

INTERDURT

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: I2C1 and I2C2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	_	—	-	—	—	—	—				I2Cx Rece	ve Register				0000
I2C1TRN	0202	_	_	—	_	_	—	—	—				I2Cx Trans	mit Register				OOFF
I2C1BRG	0204	_	_	_	_	_	_	_				Bai	ud Rate Gen	erator				0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_					I2Cx Add	ess Register					0000
I2C1MSK	020C	_	_	_	_	_	_					I2Cx Ad	dress Mask					0000
I2C2RCV	0210	_	_	_	_	_	_	_	_				I2Cx Rece	ve Register				0000
I2C2TRN	0212	_	_	_	_	_	_	_	_				I2Cx Trans	mit Register				OOFF
I2C2BRG	0214	_	_	_	_	_	_	_				Bai	ud Rate Gen	erator				0000
I2C2CON	0216	I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	—	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C2ADD	021A	_	_	—	_	_	—					I2Cx Add	ess Register					0000
I2C2MSK	021C	_		—	_	_						I2Cx Ad	dress Mask					0000

Legend:

- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD	0000
PMD2	0762	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	T9MD	T8MD	T7MD	T6MD	—	CMPMD	RTCCMD	PMPMD	CRCMD	—	QEI2MD		U3MD		I2C2MD	AD2MD	0000
PMD4	0766	—		_	—	_	—	—			_	U4MD		REFOMD			USB1MD	0000
PMD5	0768	IC16MD	IC15MD	IC14MD	IC13MD	IC12MD	IC11MD	IC10MD	IC9MD	OC16MD	OC15MD	OC14MD	OC13MD	OC12MD	OC11MD	OC10MD	OC9MD	0000
PMD6	076A	—	PWM7MD	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD		_	-		—		SPI4MD	SPI3MD	0000
		—		_	—	_	—	—		DMA12MD	DMA8MD	DMA4MD	DMA0MD	—				0000
PMD7	076C	—		_	_	_	—	_		DMA13MD	DMA9MD	DMA5MD	DMA1MD	—				0000
FINDT	0700	—		_	_	_	—	_		DMA14MD	DMA10MD	DMA6MD	DMA2MD	—				0000
		_	_	_	_	_	—	_	_	-	DMA11MD	DMA7MD	DMA3MD	—	_	_		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-48: PMD REGISTER MAP FOR dsPIC33EPXXXMU810 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD	0000
PMD2	0762	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	T9MD	T8MD	T7MD	T6MD	_	CMPMD	RTCCMD	PMPMD	CRCMD	_	QEI2MD	_	U3MD	_	I2C2MD	AD2MD	0000
PMD4	0766	_	—	—	—	—	_	—		—	—	U4MD		REFOMD	_	_	USB1MD	0000
PMD5	0768	IC16MD	IC15MD	IC14MD	IC13MD	IC12MD	IC11MD	IC10MD	IC9MD	OC16MD	OC15MD	OC14MD	OC13MD	OC12MD	OC11MD	OC10MD	OC9MD	0000
PMD6	076A	_	—	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	—	—			_		SPI4MD	SPI3MD	0000
		-	_	_	_	_	_	_	_	DMA12MD	DMA8MD	DMA4MD	DMA0MD	_	_	_	_	0000
PMD7	076C	_	—	—	—	—	_	—		DMA13MD	DMA9MD	DMA5MD	DMA1MD	_	_	_		0000
	0/00	_	—	—	—	—	_	—		DMA14MD	DMA10MD	DMA6MD	DMA2MD	_	_	_		0000
		_	—	_	—	_	_	_	_	_	DMA11MD	DMA7MD	DMA3MD	_	_	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-75: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions (dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814) and the DSP accumulator class of instructions (dsPIC33EPXXXMU806/810/ 814 only) provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.5.4 MAC INSTRUCTIONS (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.5.5 OTHER INSTRUCTIONS

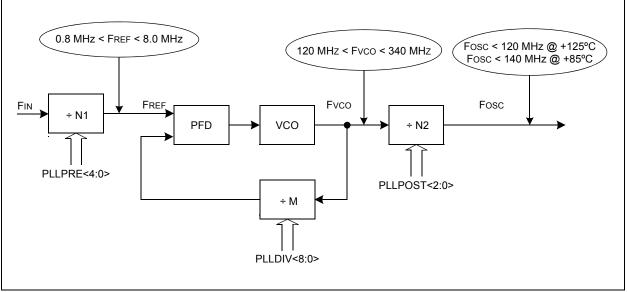
Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

9.1 CPU Clocking System

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 family of devices provides seven system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase-Locked Loop (PLL)
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Secondary (LP) Oscillator
- Low-Power RC (LPRC) Oscillator
- FRC Oscillator with postscaler

Instruction execution speed or device operating frequency, FCY, is given by Equation 9-1.


EQUATION 9-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

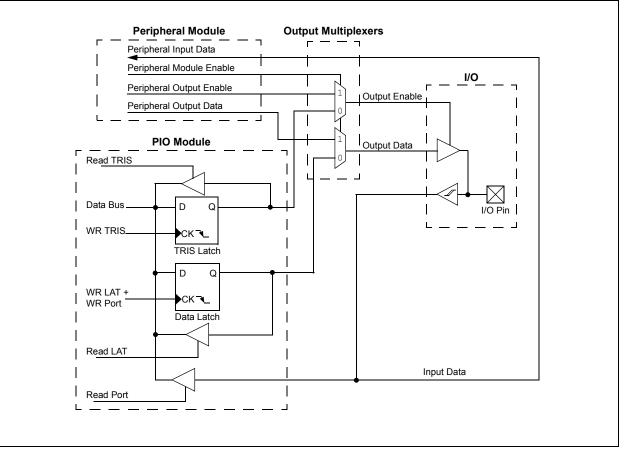
Figure 9-2 is a block diagram of the PLL module.

Equation 9-2 provides the relation between input frequency (FIN) and output frequency (FOSC).

Equation 9-3 provides the relation between input frequency (FIN) and VCO frequency (FVCO).

EQUATION 9-2: Fosc CALCULATION

$$FOSC = FIN \times \left(\frac{M}{N1 \times N2}\right) = FIN \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2) \times 2(PLLPOST + 1)}\right)$$


Where,

N1 = PLLPRE + 2 $N2 = 2 \times (PLLPOST + 1)$ M = PLLDIV + 2

EQUATION 9-3: Fvco CALCULATION

$$FVCO = FIN \times \left(\frac{M}{N1}\right) = FIN \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2)}\right)$$

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				T5CKR<6:0>	•		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				T4CKR<6:0>	•		
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
	0000001 =	Input tied to RP Input tied to CM Input tied to Vss	P1				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-0	(see Table 1 11111111 =	: Assign Timer 1-2 for input pin Input tied to RP Input tied to CM	selection nun 127		he Correspond	ding RPn/RPIn F	Pin bits

REGISTER 11-5: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				U1CTSR<6:02	>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	10.00-0	10.00-0	10.00-0	U1RXR<6:0>		1000-0	1000-0
bit 7				01101110.0			bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	1111111 = lr	-2 for input pin nput tied to RP nput tied to CM nput tied to Vss	127 P1				
bit 7	Unimplemen	nted: Read as '	0'				
bit 6-0		 Assign UART 2 for input pin 			rresponding R	Pn/RPIn Pin bits	3

REGISTER 11-19: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

R-0	R-0 TERRO	R-0 CNT<7:0>	R-0	R-0	R-0
	TERRO	CNT<7:0>			
					bit 8
R-0	R-0	R-0	R-0	R-0	R-0
	RERRO	CNT<7:0>			
					bit 0
' = Writable bit		U = Unimpleme	nted bit, re	ad as '0'	
' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unknown	
	/ = Writable bit	RERRO	RERRCNT<7:0>	RERRCNT<7:0>	<pre>RERRCNT<7:0></pre>

REGISTER 21-8:	CXEC: ECANX TRANSMIT/RECEIVE ERROR COUNT REGISTER

bit 15-8	TERRCNT<7:0>: Transmit Error Count bits
bit 7-0	RERRCNT<7:0>: Receive Error Count bits

REGISTER 21-9: CxCFG1: ECANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 15 bit 8								

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SJW	<1:0>	BRP<5:0>					
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8	Unimplemented: Read as '0'							
bit 7-6	SJW<1:0>: Synchronization Jump Width bits							
	11 = Length is 4 x TQ 10 = Length is 3 x TQ 01 = Length is 2 x TQ 00 = Length is 1 x TQ							
bit 5-0	BRP<5:0>: Baud Rate Prescaler bits							
	11 1111 = TQ = 2 x 64 x 1/FCAN							
	•							
	•							
	•							
	00 0010 = TQ = 2 x 3 x 1/FCAN 00 0001 = TQ = 2 x 2 x 1/FCAN 00 0000 = TQ = 2 x 1 x 1/FCAN							

REGISTER 22-3:	UxPWRC: USB POWER CONTROL REGISTER
----------------	------------------------------------

<u> </u>	U-0							
bit 15 bit 8		—	—	—	—	_	—	—

HS, HC	U-0	U-0	R/W	U-0	U-0	R/W-0, HC	R/W-0	
UACTPND	—	—	USLPGRD	_	-	USUSPND	USBPWR ⁽¹⁾	
bit 7 bit 0								

Legend:	egend: HS = Hardware Settable bit		it	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8	Unimplemented: Read as '0'
bit 7	UACTPND: USB Activity Pending bit
	 1 = Module should not be suspended at the moment (requires the USLPGRD bit to be set) 0 = Module may be suspended or powered down
bit 6-5	Unimplemented: Read as '0'
bit 4	USLPGRD: USB Sleep Guard bit
	 1 = Indicates to the USB module that it is about to be suspended or powered down 0 = No suspend
bit 3-2	Unimplemented: Read as '0'
bit 1	USUSPND: USB Suspend Mode Enable bit
	 1 = USB OTG module is in Suspend mode 0 = Normal USB OTG operation
bit 0	USBPWR: USB Operation Enable bit ⁽¹⁾
	1 = USB OTG module is enabled
	0 = USB OTG module is disabled

Note 1: Do not clear this bit unless the HOSTEN, USBEN and OTGEN bits (UxCON<3,0> and UxOTGCON<2>) are also cleared.

REGISTER 22-13: UxOTGIE: USB OTG INTERRUPT ENABLE REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—		—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	—	VBUSVDIE
bit 7							bit 0

Legend:				
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-8	Unimple	mented: Read as '0'		
bit 7	•	Interrupt Enable bit		
		rupt is enabled		
		rupt is disabled		
bit 6	T1MSEC	IE: 1 Millisecond Timer Interr	rupt Enable bit	
	1 = Inter	rupt is enabled		
	0 = Inter	rupt is disabled		
bit 5	LSTATE	E: Line State Stable Interrupt	t Enable bit	
		rupt is enabled		
	0 = Inter	rupt is disabled		
bit 4		Bus Activity Interrupt Enable	e bit	
		rupt is enabled		
		rupt is disabled		
bit 3		E: Session Valid Interrupt Ena	adie dit	
		rupt is enabled rupt is disabled		
bit 2		IE: B-Device Session End In	terrupt Enable bit	
		rupt is enabled		
		rupt is disabled		
bit 1	Unimple	mented: Read as '0'		
bit 0	•	IE: A-Device VBUS Valid Inte	rrupt Enable bit	
		rupt is enabled		
		rupt is disabled		

REGISTER 23-1: ADxCON1: ADCx CONTROL REGISTER 1 (CONTINUED)

bit 7-5	SSRC<2:0>: Sample Clock Source Select bits
	If SSRCG = 1:
	 111 = Reserved 110 = PWM Generator 7 primary trigger compare ends sampling and starts conversion⁽²⁾ 101 = PWM Generator 6 primary trigger compare ends sampling and starts conversion⁽²⁾ 100 = PWM Generator 5 primary trigger compare ends sampling and starts conversion⁽²⁾ 011 = PWM Generator 4 primary trigger compare ends sampling and starts conversion⁽²⁾ 010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion⁽²⁾ 010 = PWM Generator 2 primary trigger compare ends sampling and starts conversion⁽²⁾ 001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion⁽²⁾ 000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion⁽²⁾ 000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion⁽²⁾ 011 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = PWM secondary Special Event Trigger ends sampling and starts conversion⁽²⁾ 100 = Timer5 compare ends sampling and starts conversion 011 = PWM primary Special Event Trigger ends sampling and starts conversion⁽²⁾ 010 = Timer3 compare ends sampling and starts conversion 011 = PWM primary Special Event Trigger ends sampling and starts conversion⁽²⁾ 010 = Timer3 compare ends sampling and starts conversion 011 = PWM primary Special Event Trigger ends sampling and starts conversion⁽²⁾ 010 = Timer3 compare ends sampling and starts conversion 011 = PWM primary Special Event Trigger ends sampling and starts conversion⁽²⁾ 010 = Timer3 compare ends sampling and starts conversion
	000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
bit 4	SSRCG: Sample Clock Source Group bit
	(See bits<7-5> for details.)
bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)
	 When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0' 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence
bit 2	ASAM: ADC Sample Auto-Start bit ⁽³⁾
	 1 = Sampling begins immediately after the last conversion; SAMP bit is auto-set 0 = Sampling begins when the SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit
	 1 = ADC S&H amplifiers are sampling 0 = ADC S&H amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software can write '0' to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC Conversion Status bit ⁽³⁾
	 1 = ADC conversion cycle is completed. 0 = ADC conversion has not started or is in progress Automatically set by hardware when ADC conversion is complete. Software can write '0' to clear the DONE status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at the start of a new conversion.
Noto 1	This bit is only available in the ADC1 medule. In the ADC2 medule, this bit is unimplemented and is read

Note 1: This bit is only available in the ADC1 module. In the ADC2 module, this bit is unimplemented and is read as '0'.

- 2: This setting is available in dsPIC33EPXXX(MC/MU)806/810/814 devices only.
- 3: Do not clear the DONE bit in software if ADC Sample Auto-Start is enabled (ASAM = 1).

ADDDEGG DEGIGTED

MAAOTE

-

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CS2	CS1			ADDR	<13:8>			
bit 15	·	·					bit	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			ADD	R<7:0>				
bit 7							bit (
Legend:								
R = Readat	ole bit	W = Writable	oit	U = Unimplem	nented bit, rea	id as '0'		
-n = Value a	at Reset	'1' = Bit is set	•			x = Bit is unknown		
bit 15	CS2: Chip S	Select 2 bit						
	If PMCON<	7:6> = 10 or 01:						
		lect 2 is active						
	-	lect 2 is inactive						
		7.6 > = 11 or 00						
	If PMCON<7							
	Bit functions	as ADDR<15>.						
bit 14	Bit functions CS1: Chip S	as ADDR<15>. Select 1 bit						
bit 14	Bit functions CS1: Chip S If PMCON<	as ADDR<15>. Select 1 bit 7:6> = 10:						
bit 14	Bit functions CS1: Chip S If PMCON< 1 = Chip Se	as ADDR<15>. Select 1 bit 7:6> = 10: lect 1 is active						
bit 14	Bit functions CS1: Chip S If PMCON< 1 = Chip Se 0 = Chip Se	Select 1 bit 7:6> = 10: lect 1 is active lect 1 is inactive						
bit 14	Bit functions CS1: Chip S If PMCON< 1 = Chip Se 0 = Chip Se If PMCON<	as ADDR<15>. Select 1 bit 7:6> = 10: lect 1 is active						

Note 1: In Enhanced Slave mode, PMADDR functions as PMDOUT1, one of the two Data Buffer registers.

TABLE 30-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)
-------------	---

Field	Description
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers \in {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

31.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

31.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

31.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

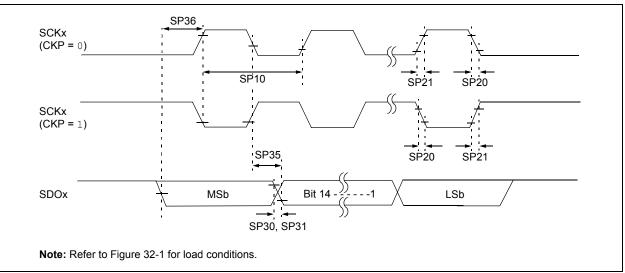
31.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

DC CHARACTERISTICS			Standar (unless Operatin	otherwi	ise stat	pnditions: 3.0V to 3.6V ed) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param.	SymbolCharacteristicMin.Typ.Max.Units				Units	Conditions			
DO10 Vo	Voi	Output Low Voltage I/O Pins: 4x Sink Driver Pins – All I/O Pins except OSC2 and SOSCO		_	0.4	V	$IOL \le 10 \text{ mA}, \text{ VDD} = 3.3 \text{V}$		
	VOL	Output Low Voltage I/O Pins: 8x Sink Driver Pins – OSC2 and SOSCO	_	_	0.4	V	Iol \leq 15 mA, Vdd = 3.3V		
DO20		Output High Voltage I/O Pins: 4x Sink Driver Pins – All I/O Pins except OSC2 and SOSCO	2.4	_	_	V	ІОН ≥ -10 mA, VDD = 3.3V		
	Vон	Output High Voltage I/O Pins: 8x Sink Driver Pins – OSC2 and SOSCO	2.4	_	_	V	ІОн ≥ -15 mA, VDD = 3.3V		
		Output High Voltage	1.5 ⁽¹⁾	_	—		IOH \ge -14 mA, VDD = 3.3V		
		4x Sink Driver Pins – All I/O Pins	2.0 ⁽¹⁾	—	—	V	ІОН ≥ -12 mA, VDD = 3.3V		
DO20A	Vout	except OSC2 and SOSCO	3.0 ⁽¹⁾	_	_		$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$		
DOZUA	VUHI	Output High Voltage	1.5 ⁽¹⁾		_		$IOH \ge -22 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$		
		8x Sink Driver Pins – OSC2 and	2.0 ⁽¹⁾		_	V	IOH ≥ -18 mA, VDD = 3.3V		
		SOSCO	3.0 ⁽¹⁾		_]	IOH ≥ -10 mA, VDD = 3.3V		

Note 1: Parameters are characterized, but not tested.


TABLE 32-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to $3.6V^{(2)}$ (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param.	Symbol	Character	istic	Min. ⁽¹⁾	Тур.	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low		2.7		2.9	V	Vdd

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have degraded performance. Device functionality is tested but not characterized.

FIGURE 32-24: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 32-42: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	TscP	Maximum SCKx Frequency		_	15	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	-	—		ns	See Parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	-	—		ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	-	—	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	-	—		ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	-	6	20	ns		
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns		

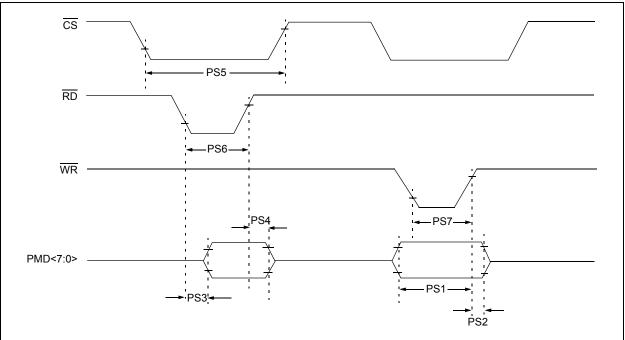
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

TABLE 32-45:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

АС СНА		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	TscP	Maximum SCKx Input Frequency			15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns	
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120	_		ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output, High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	_	_	ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after	—	_	50	ns	


Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
PS1	TdtV2wrH	Data In Valid Before WR or CS Inactive (setup time)	20	—	—	ns		
PS2	TwrH2dtl	\overline{WR} or \overline{CS} Inactive to Data In Invalid (hold time)	20	—	—	ns		
PS3	TrdL2dtV	RD and CS to Active Data Out	—	—	80	ns		
PS4	TrdH2dtl	RD or CS Inactive to Data Out Invalid	10	—	30	ns		
PS5	Tcs	CS Active Time	33.33	—		ns		
PS6	Twr	RD Active Time	33.33	_	_	ns		
PS7	Trd	WR Active Time	33.33	—	_	ns		

TABLE 32-65: PARALLEL SLAVE PORT TIMING SPECIFICATIONS

Note 1: These parameters are characterized, but not tested in manufacturing.