

Welcome to E-XFL.COM

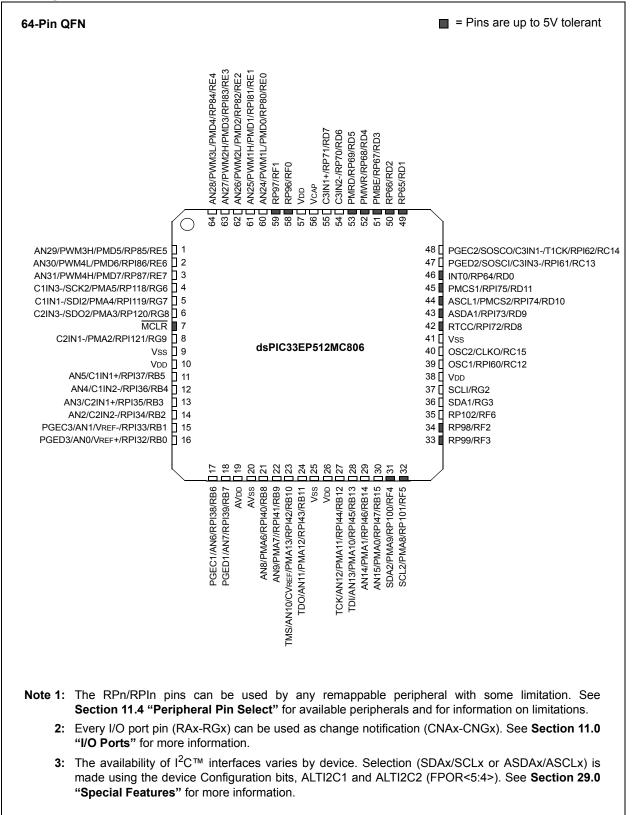
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI


Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	83
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep256gu810-e-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

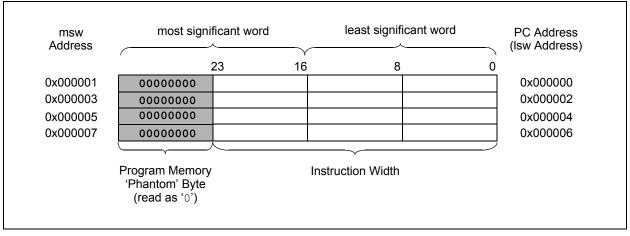
Pin Diagrams

DS70616G-page 4

Pin Diagrams (Continued)

121-	Pin TFBG	6A ⁽¹⁾			do DIC(33EP256	MI 1940) = Pins a	are up to	5V tolera
						33EP250					
	1	2	3	4	5	6	7	8	9	10	11
A	O RE4	O RE3	RG13	O RE0	RG0	RF1		NC	RD12	RD2	RD1
3	NC	RG15	O RE2	O RE1	O RA7	RF0	O VCAP	RD5	RD3	⊖ Vss	O RC14
c	O RE6		RG12	RG14	O RA6	NC	O RD7	RD4	NC	O RC13	R D11
D	O RC1	O RE7	O RE5	NC	NC	NC	O RD6	RD13	RD0	NC	RD10
E	O RC4	C RC3	O RG6	O RC2	NC	RG1	NC	RA15	RD8	RD9	RA14
F	MCLR	O RG8	O RG9	O RG7	⊖ Vss	NC	NC		O RC12	⊖ Vss	O RC15
3	C RE8	O RE9	RA0	NC	O Vdd	⊖ Vss	⊖ Vss	NC	RA5	RA3	RA4
н	O RB5	O RB4	NC	NC	NC	O Vdd	NC	V BUS	UUSB3V3	O RG2	RA2
J	O RB3	O RB2	O RB7	O AVDD	O RB11	RA1	O RB12	NC	NC	RF8	O RG3
ĸ	O RB1	O RB0	O RA10	C RB8	NC	RF12	O RB14	O VDD	RD15	RF3	RF2
-	C RB6	O RA9) AVss	O RB9	O RB10	RF13	O RB13	O RB15	RD14	RF4	RF5

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address 0x000000 of the primary Flash memory or at address 0x7FFFFC of the auxiliary Flash memory, with the actual address for the start of code at address 0x000002 of the primary Flash memory or at address 0x7FFFFE of the auxiliary Flash memory. Reset Target Vector Select bit (RSTPRI) in the FPOR Configuration register controls whether primary or auxiliary Flash Reset location is used.

A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table"**.

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DC1CON1	0900	_	—	OCSIDL	C	OCTSEL<2:0)>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV		_	—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:()>		0000
OC1RS	0904							Outp	out Compare	e 1 Seconda	ry Register							XXXX
OC1R	0906								Output Co	mpare 1 Reg	gister							XXXX
OC1TMR	0908								Timer Va	alue 1 Regis	ter							XXXX
OC2CON1	090A	_	—	OCSIDL	C	CTSEL<2:0)>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0)>		0000
OC2RS	090E							Out	out Compare	e 2 Seconda	ry Register							XXXX
OC2R	0910								Output Co	mpare 2 Reg	gister							XXXX
OC2TMR	0912								Timer Va	alue 2 Regis	ter							XXXX
OC3CON1	0914	_	—	OCSIDL	C	CTSEL<2:0)>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0)>		0000
OC3RS	0918							Out	out Compare	e 3 Seconda	ry Register							XXXX
OC3R	091A								Output Co	mpare 3 Reg	gister							XXXX
OC3TMR	091C								Timer Va	alue 3 Regis	ter							XXXX
OC4CON1	091E	—	_	OCSIDL	C	CTSEL<2:0)>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV		—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0)>		0000
OC4RS	0922							Outp	out Compare	e 4 Seconda	ry Register							XXXX
OC4R	0924								Output Co	mpare 4 Reg	gister							XXXX
OC4TMR	0926								Timer Va	alue 4 Regis	ter							XXXX
OC5CON1	0928	—	_	OCSIDL	C	CTSEL<2:0)>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC5CON2	092A	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0)>		0000
OC5RS	092C							Outp	out Compare	e 5 Seconda	ry Register							XXXX
OC5R	092D								Output Co	mpare 5 Re	gister							XXXX
OC5TMR	0930								Timer Va	alue 5 Regis	ter							XXXX
OC6CON1	0932	_	_	OCSIDL	C	OCTSEL<2:0)>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC6CON2	0934	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0)>		0000
OC6RS	0936							Out	out Compare	e 6 Seconda	ry Register							XXXX
OC6R	0938								Output Co	mpare 6 Re	gister							XXXX
OC6TMR	093A								Timer Va	alue 6 Regis	ter							XXXX
OC7CON1	093C	_		OCSIDL	C	CTSEL<2:0)>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC7CON2	093E	FLTMD	FLTOUT	FLTTRIEN	OCINV	—		—	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0)>		0000
OC7RS	0940							Out	out Compare	e 7 Seconda	ry Register							XXXX
OC7R	0942									mpare 7 Reg								XXXX
OC7TMR	0944								Timer Va	alue 7 Regis	ter							xxxx

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

TABLE 4-11: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 16 REGISTER MAP

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-41: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMU810 DEVICES ONLY (CONTINUED)

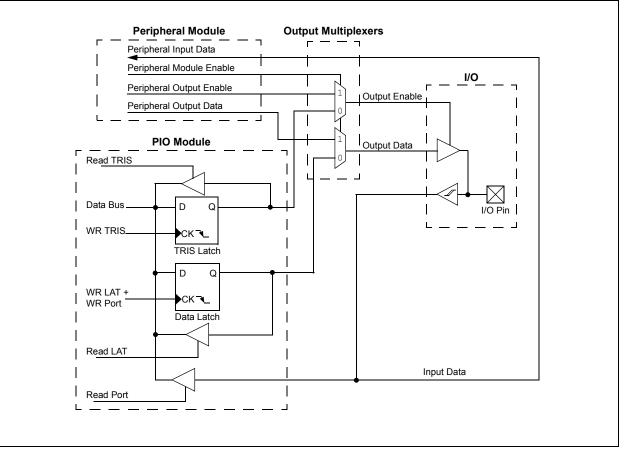
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR35	06E6	_				IC14R<6:0>	•			—				IC13R<6:0>				0000
RPINR36	06E8					IC16R<6:0>	•			_	IC15R<6:0>							0000
RPINR37	06EA	_		SYNCI1R<6:0>						_			(OCFCR<6:0	>			0000
RPINR38	06EC			DTCMP1R<6:0>						_			S	YNCI2R<6:()>			0000
RPINR39	06EE				D	TCMP3R<6:	0>			_			D	TCMP2R<6:	0>			0000
RPINR40	06F0				D	TCMP5R<6:	0>			_	DTCMP4R<6:0>						0000	
RPINR41	06F2		_							_			D	TCMP6R<6:	0>			0000
RPINR42	06F4	_				FLT6R<6:0>	>			_				FLT5R<6:0>	•			0000
RPINR43	06F6	_		_	_	_		_	_	_				FLT7R<6:0>	•			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_				INT1R<6:03	>			—	_	—	—	—		—	—	0000
RPINR1	06A2	—				INT3R<6:0	>	_	_	—				INT2R<6:0>	`			0000
RPINR2	06A4	—	—	—	—	_	_	_	_	—				INT4R<6:0>	`			0000
RPINR3	06A6	—				T3CKR<6:0	>			—				T2CKR<6:0	>			0000
RPINR4	06A8	—				T5CKR<6:0	>							T4CKR<6:0	>			0000
RPINR5	06AA	_				T7CKR<6:0	>			—				T6CKR<6:0	>			0000
RPINR6	06AC	—				T9CKR<6:0	>			—				T8CKR<6:0	>			0000
RPINR7	06AE	—				IC2R<6:0>				—				IC1R<6:0>				0000
RPINR8	06B0	—				IC4R<6:0>				—				IC3R<6:0>				0000
RPINR9	06B2	—				IC6R<6:0>				—				IC5R<6:0>				0000
RPINR10	06B4	—				IC8R<6:0>				—				IC7R<6:0>				0000
RPINR11	06B6	—				OCFBR<6:0	>			—				OCFAR<6:0	>			0000
RPINR12	06B8	—				FLT2R<6:0	>			—				FLT1R<6:0>	>			0000
RPINR13	06BA	_				FLT4R<6:0	>			—				FLT3R<6:0>	>			0000
RPINR14	06BC	_				QEB1R<6:0	>			—				QEA1R<6:0	>			0000
RPINR15	06BE	_			F	IOME1R<6:	0>			—				NDX1R<6:0	>			0000
RPINR16	06C0	—				QEB2R<6:0	>			—				QEA2R<6:0	>			0000
RPINR17	06C2	—			F	IOME2R<6:	0>			—				NDX2R<6:0	>			0000
RPINR18	06C4	—			ι	J1CTSR<6:()>			—				U1RXR<6:0	>			0000
RPINR19	06C6	—			ι	J2CTSR<6:()>			—				U2RXR<6:0	>			0000
RPINR20	06C8	—		-		SCK1R<6:0	>	-		—				SDI1R<6:0>	>			0000
RPINR21	06CA	—	—	—	_	—	—	—	_	—				SS1R<6:0>				0000
RPINR23	06CE	—	—	_	—	—	_	—	_	—				SS2R<6:0>				0000
RPINR24	06D0	—				CSCKR<6:0	>							CSDIR<6:0>	>			0000
RPINR25	06D2	—		—	_	—	—	—	-				C	OFSINR<6:	0>			0000
RPINR26	06D4	—				C2RXR<6:0	>			—				C1RXR<6:0	>			0000
RPINR27	06D6	—			ι	J3CTSR<6:()>			—				U3RXR<6:0	>			0000
RPINR28	06D8	—			ι	J4CTSR<6:()>			—				U4RXR<6:0	>			0000
RPINR29	06DA	—				SCK3R<6:0	>			—				SDI3R<6:0>	>			0000
RPINR30	06DC	—	—	—	—	—	—	—	—	—				SS3R<6:0>				0000
RPINR31	06DE	_				SCK4R<6:0	>			_				SDI4R<6:0>	>			0000
RPINR32	06E0	_	_	-	—	_	_	—	_	_				SS4R<6:0>				0000
RPINR33	06E2	_				IC10R<6:03	>			_				IC9R<6:0>				0000
RPINR34	06E4	_				IC12R<6:03	>			_				IC11R<6:0>	•			0000

TABLE 4-42: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXX(MC/MU)806 DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.


NOTES:

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—	_	—	—	-	PLLDIV<8>
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLD	IV<7:0>			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unl	nown
bit 15-9	Unimpleme	nted: Read as '	0'				
bit 8-0	PLLDIV<8:0	>: PLL Feedbad	ck Divisor bits	(also denoted	as 'M', PLL mu	ltiplier)	
	111111111	= 513					
	•						
	•						
	•						
	000110000	= 50 (default)					
	•						
	•						
	000000010	= 3					
	000000000	- 2					

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

Note 1: This register is reset only on a Power-on Reset (POR).

11.5 I/O Helpful Tips

- In some cases, certain pins, as defined in 1. Table 32-9 in Section 32.0 "Electrical Characteristics" under "Injection Current", have internal protection diodes to VDD and VSS; the term "Injection Current" is also referred to as "Clamp Current". On designated pins, with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings with respect to the VSS and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and VSS power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin, (i.e., ANx, see Table 1-1 in Section 1.0 "Device Overview"), are always analog pins by default after any Reset. Consequently, configuring a pin as an analog input pin, automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared analog pin (see Table 1-1 in Section 1.0 "Device Overview"), the user application needs to configure the Analog Pin Configuration registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.
- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in the data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left to right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1; this indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin. Dedicated peripheral functions are always higher priority than remappable functions. I/O pins are always the lowest priority.

- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD-0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of the data sheet. For example:

VOH = 2.4v @ IOH = -8 mA and VDD = 3.3V

The maximum output current sourced by any 8 mA I/O pin = 12 mA.

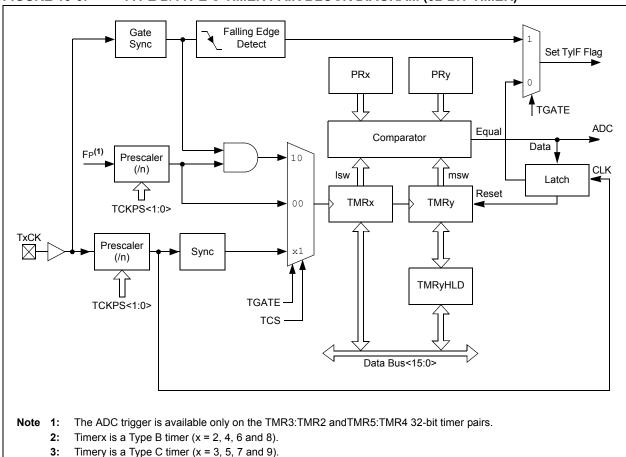
LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in **Section 32.0 "Electrical Characteristics"** for additional information.

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input, provided there is no external analog input, such as for a built-in self test.
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including any pin with a single output from either a dedicated or remappable "output".

REGISTER 11-22: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				SS1R<6:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown

bit 15-7 Unimplemented: Read as '0'


bit 6-0 SS1R<6:0>: Assign SPI1 Slave Select Input (SS1) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 1111111 = Input tied to RP127

> . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-23: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—		_	_	_	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				SS2R<6:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-7 Unimplemented: Read as '0'

FIGURE 13-3: TYPE B/TYPE C TIMER PAIR BLOCK DIAGRAM (32-BIT TIMER)

13.1 Timer Resources

Many useful resources related to timers are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en554310

13.1.1 KEY RESOURCES

- Section 11. "Timers" (DS70362) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- · Development Tools

13.2 Timerx/y Control Registers

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON		TSIDL	_		—	_	_
pit 15							bit
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
0-0	TGATE	I	S<1:0>	T32	0-0	TCS ⁽¹⁾	0-0
 bit 7	IGAIE	ICKE	5~1.0~	132	_	10307	
							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'	
n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15	TON: Timerx	On hit					
511 15	When T32 = 2						
	1 = Starts 32-						
	0 = Stops 32-						
	<u>When T32 = 0</u>						
	1 = Starts 16- 0 = Stops 16-						
oit 14	-	ted: Read as '	0'				
bit 13	TSIDL: Timer	x Stop in Idle I	Node bit				
				device enters lo	lle mode		
		s module opera		ode			
bit 12-7	-	ted: Read as '					
bit 6		erx Gated Time	Accumulatio	n Enable bit			
	When TCS = This bit is igno						
	When TCS =						
	1 = Gated tim	e accumulatio					
		e accumulatio					
bit 5-4		: Timerx Input	Clock Presca	le Select bits			
	11 = 1:256 10 = 1:64						
	10 = 1:64 01 = 1:8						
	00 = 1:1						
bit 3	T32: 32-Bit Ti	mer Mode Sel	ect bit				
	1 = Timerx an	d Timery form	a single 32-b	it timer			
	0 = Timerx ar	id Timery act a	is two 16-bit t	mers			
bit 2	•	ted: Read as '					
bit 1		Clock Source S					
	1 = External o 0 = Internal cl	lock from TxC	K pin (on the	rising edge)			

REGISTER 13-1: TxCON: (T2CON, T4CON, T6CON OR T8CON) CONTROL REGISTER

Note 1: The TxCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QCAPEN	FLTREN		QFDIV<2:0>		OUTFN	C<1:0>	SWPAB
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R-x	R-x	R-x	R-x
HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA
bit 7				1			bit (
Legend:							
R = Readable		W = Writable	e bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is se	et	'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15			er Input Capture				
		•			capture functior a capture event		
bit 14	FLTREN: QE	EAx/QEBx/IND	Xx/HOMEx Dig	jital Filter Enab	ole bit		
		digital filter is digital filter is	enabled disabled (bypa	ssed)			
bit 13-11	QFDIV<2:0>	·: QEAx/QEBx	/INDXx/HOME>	Digital Input F	Filter Clock Divi	de Select bits	
	101 = 1:32 c 100 = 1:16 c 011 = 1:8 clc 010 = 1:4 clc 001 = 1:2 clc 000 = 1:1 clc	clock divide ock divide ock divide ock divide					
bit 10-9	OUTFNC<1:	0>: QEI Modu	le Output Func	tion Mode Sele	ect bits		
	10 = The CT	NCMPx pin go NCMPx pin go	bes high when (bes high when l bes high when l	$POSxCNT \le QI$		GEC	
bit 8	1 = QEAx an	ap QEA and C d QEBx are s d QEBx are n	wapped prior to	quadrature de	ecoder logic		
bit 7			olarity Select b	it			
	1 = Input is in 0 = Input is r	nverted	,				
bit 6	-		larity Select bit				
	1 = Input is in 0 = Input is r						
bit 5		EBx Input Pol	arity Select bit				
bit 5	1 = Input is 0 = Input is	inverted	arity Select bit				
bit 5 bit 4	1 = Input is 0 = Input is	inverted not inverted	arity Select bit				
	1 = Input is 0 = Input is	inverted not inverted EAx Input Pol inverted	-				

REGISTER 17-2: QEIxIOC: QEIx I/O CONTROL REGISTER

20.3 UARTx Registers

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾	—	USIDL	IREN ⁽²⁾	RTSMD	—	UEN	<1:0>
bit 15							bit 8
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEI	-	STSEL
bit 7	LFDACK	ABAUD	URAINV	BRGH	FDGEI	_<1.0>	bit (
Legend:		HC = Hardwa	re Clearable b	bit			
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	UARTEN: UA	RTx Enable bi	t(1)				
					y UARTx as defin y port latches; L		
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	USIDL: UART	Tx Stop in Idle	Mode bit				
		ues module op s module oper			Idle mode		
bit 12	IREN: IrDA [®] I	Encoder and D	ecoder Enable	e bit ⁽²⁾			
		oder and deco					
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin b	it			
		in in Simplex n in in Flow Con					
bit 10	Unimplemen	ted: Read as '	0'				
bit 9-8	UEN<1:0>: ∪	ARTx Pin Enal	ole bits				
	10 = UxTX, U 01 = UxTX, U	JxRX, UxCTS a JxRX and UxR nd UxRX pins a	and UxRTS pi TS pins are er	ns are enableo nabled an <u>d use</u>	d; UxCTS pin is d an <u>d used</u> ed; UxC <u>TS pin is</u> S and UxRTS/F	s controlled by	port latches
bit 7	WAKE: Wake	-up on Start Bi	t Detect Durin	g Sleep Mode	Enable bit		
	hardware	ontinues to sar on following r -up is enabled	•	K pin; interrupt	is generated or	n falling edge; b	it is cleared in
bit 6		RTx Loopback	Mode Select	bit			
	1 = Enables I	Loopback mod	e				
DIL O	0 = Loopback	k mode is disal					
	-	k mode is disal p-Baud Enable					
bit 5	ABAUD: Auto	o-Baud Enable	bit surement on t		eter – requires re	eception of a S	ync field (55h

REGISTER 20-1: UxMODE: UARTx MODE REGISTER

© 2009-2012 Microchip Technology Inc.

2: This feature is only available for the 16x BRG mode (BRGH = 0).

	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
	WAKFIL		_	—		SEG2PH<2:0>	
bit 15							bit
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SEG2PHTS			SEG1PH<2:0>			PRSEG<2:0>	
bit 7							bit
Legend:							
R = Readabl	le bit	W = Writable	e bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkno	own
bit 15	Unimplemen	nted: Read as	' 0 '				
bit 14	WAKFIL: Sel	lect CAN Bus	Line Filter for W	/ake-up bit			
		N bus line filte					
			t used for wake	e-up			
bit 13-11	-	ted: Read as					
bit 10-8	111 = Length)>: Phase Seg	iment 2 bits				
	III - Lengu						
	•						
	•						
	•						
	• • 000 = Length						
bit 7	• • 000 = Length	n is 1 x Tq	ent 2 Time Sele	ct bit			
bit 7	• • • • • • • • • • • • • • • • • • •	n is 1 x TQ Phase Segme ogrammable			Time (IPT), w	/hichever is greate	er
bit 7 bit 6	• • • • • • • • • • • • • • • • • • •	n is 1 x TQ Phase Segme ogrammable	oits or Informati		Time (IPT), w	/hichever is greate	er
	• • • • • • • • • • • • • •	n is 1 x TQ Phase Segme ogrammable n of SEG1PH I e of the CAN E s sampled thre	oits or Informati	on Processing sample point	Time (IPT), w	/hichever is great	er
	• • • • • • • • • • • • • • • • • • •	n is 1 x TQ Phase Segme ogrammable n of SEG1PH I e of the CAN E s sampled thre	bits or Informati Bus Line bit be times at the be at the sample	on Processing sample point	Time (IPT), w	/hichever is great	er
bit 6	• • • • • • • • • • • • • • • • • • •	n is 1 x TQ Phase Segme ogrammable n of SEG1PH I e of the CAN E s sampled thre s sampled onc D>: Phase Seg	bits or Informati Bus Line bit be times at the be at the sample	on Processing sample point	Time (IPT), w	/hichever is great	er
bit 6	• • • • • • • • • • • • • • • • • • •	n is 1 x TQ Phase Segme ogrammable n of SEG1PH I e of the CAN E s sampled thre s sampled onc D>: Phase Seg	bits or Informati Bus Line bit be times at the be at the sample	on Processing sample point	Time (IPT), w	vhichever is great	er
bit 6	• • • • • • • • • • • • • • • • • • •	n is 1 x TQ Phase Segme ogrammable n of SEG1PH I e of the CAN E s sampled thre s sampled onc D>: Phase Seg	bits or Informati Bus Line bit be times at the be at the sample	on Processing sample point	Time (IPT), w	/hichever is great	er
bit 6	• • • • • • • • • • • • • • • • • • •	n is 1 x TQ Phase Segme ogrammable n of SEG1PH I e of the CAN E s sampled thre s sampled onc D : Phase Seg n is 8 x TQ	bits or Informati Bus Line bit be times at the be at the sample	on Processing sample point	Time (IPT), w	/hichever is great	er
bit 6 bit 5-3	• • • • • • • • • • • • • • • • • • •	n is 1 x TQ Phase Segme ogrammable n of SEG1PH I e of the CAN E s sampled thre s sampled onc D>: Phase Seg n is 8 x TQ	bits or Informati Bus Line bit ee times at the ce at the sample gment 1 bits	on Processing sample point e point	Time (IPT), w	/hichever is great	er
bit 6	• • • • • • • • • • • • • • • • • • •	n is 1 x TQ Phase Segme ogrammable n of SEG1PH I e of the CAN E s sampled thre s sampled onc D>: Phase Seg n is 8 x TQ n is 1 x TQ	bits or Informati Bus Line bit be times at the be at the sample	on Processing sample point e point	Time (IPT), w	/hichever is great	er
bit 6 bit 5-3	• • • • • • • • • • • • • • • • • • •	n is 1 x TQ Phase Segme ogrammable n of SEG1PH I e of the CAN E s sampled thre s sampled onc D>: Phase Seg n is 8 x TQ n is 1 x TQ	bits or Informati Bus Line bit ee times at the ce at the sample gment 1 bits	on Processing sample point e point	Time (IPT), w	vhichever is great	er
bit 6 bit 5-3	• • • • • • • • • • • • • • • • • • •	n is 1 x TQ Phase Segme ogrammable n of SEG1PH I e of the CAN E s sampled thre s sampled onc D>: Phase Seg n is 8 x TQ n is 1 x TQ	bits or Informati Bus Line bit ee times at the ce at the sample gment 1 bits	on Processing sample point e point	Time (IPT), w	/hichever is great	er
bit 6 bit 5-3	• • • • • • • • • • • • • • • • • • •	n is 1 x TQ Phase Segme ogrammable n of SEG1PH I e of the CAN E s sampled thre s sampled onc D>: Phase Seg n is 8 x TQ n is 1 x TQ	bits or Informati Bus Line bit ee times at the ce at the sample gment 1 bits	on Processing sample point e point	Time (IPT), w	vhichever is great	er

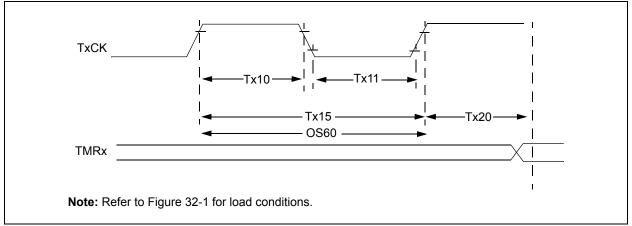
. . . .

TABLE 29-2: Bit Field	Register	RTSP Effect	S DESCRIPTION (CONTINUED) Description
	-		Watchdog Timer Window Enable bit
WINDIS	FWDT	Immediate	1 = Watchdog Timer is in Non-Window mode
			0 = Watchdog Timer is in Window mode
PLLKEN	FWDT	Immediate	PLL Lock Wait Enable bit
			 1 = Clock switches to the PLL source will wait until the PLL lock signal is valid 0 = Clock switch will not wait for PLL lock
WDTPRE	FWDT	Immediate	Watchdog Timer Prescaler bit
			1 = 1:128 0 = 1:32
APLK<1:0>	FAS ⁽²⁾	Immediate	Auxiliary Segment Key bits
			These bits must be set to '00' if AWRP = 1 and APL = 1. These bits must be set to '11' for any other value of the AWRP and APL bits. Any mismatch between either the AWRP or APL bits and the APLK bits
			(as described above), will result in code protection becoming enabled for the Auxiliary Segment. A Flash bulk erase will be required to unlock the device.
APL	FAS ⁽²⁾	Immediate	Auxiliary Segment Code-Protect bit
			1 = Auxiliary program memory is not code-protected
			0 = Auxiliary program memory is code-protected
AWRP	FAS ⁽²⁾	Immediate	Auxiliary Segment Write-Protect bit
			1 = Auxiliary program memory is not write-protected0 = Auxiliary program memory is write-protected
WDTPOST<3:0>	FWDT	Immediate	Watchdog Timer Postscaler bits
			1111 = 1:32,768
			1110 = 1:16,384
			•
			•
			•
			0001 = 1:2 0000 = 1:1
FPWRT<2:0>	FPOR	Immediate	Power-on Reset Timer Value Select bits
11 10111 2.0	11 OIX	ininediate	111 = PWRT = 128 ms
			110 = PWRT = 64 ms
			101 = PWRT = 32 ms
			100 = PWRT = 16 ms
			011 = PWRT = 8 ms
			010 = PWRT = 4 ms 001 = PWRT = 2 ms
			000 = PWRT = Disabled
BOREN ⁽¹⁾	FPOR	Immediate	Brown-out Reset (BOR) Detection Enable bit
			1 = BOR is enabled
			0 = BOR is disabled
ALTI2C2	FPOR	Immediate	Alternate I ² C [™] pins for I2C2 bit
			1 = I2C2 is mapped to the SDA2/SCL2 pins
			0 = I2C2 is mapped to the ASDA2/ASCL2 pins

Note 1: BOR should always be enabled for proper operation (BOREN = 1).

Immediate

2: This register can only be modified when code protection and write protection are disabled for both the General and Auxiliary Segments (APL = 1, AWRP = 1, APLK = 0, GSS = 1, GWRP = 1 and GSSK = 0).


Alternate I²C pins for I2C1 bit

1 = I2C1 is mapped to the SDA1/SCL1 pins 0 = I2C1 is mapped to the ASDA1/ASCL1 pins

FPOR

ALTI2C1

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Charac	teristic ⁽²⁾	Min.	Тур.	Max.	Units	Conditions	
TA10	ТтхН	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)	
			Asynchronous	35	_	—	ns		
TA11	ΤτχL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)	
			Asynchronous	10		—	ns		
TA15	ΤτχΡ	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	—	_	ns	N = prescale value (1, 8, 64, 256)	
OS60	Ft1	SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by setting bit, TCS (T1CON<1>))		DC	_	50	kHz		
TA20	TCKEXTMRL	Delay from E Clock Edge to Increment		0.75 Tcy + 40	_	1.75 Tcy + 40	ns		

Note 1: Timer1 is a Type A.

2: These parameters are characterized, but are not tested in manufacturing.

			Standard Operating Conditions: 3.0V to 3.6V (see Note 3)(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
300	TRESP	Response Time ⁽²⁾	—	150	400	ns		
301	Тмс2о∨	Comparator Mode Change to Output Valid	_		10	μS		

TABLE 32-61: COMPARATOR TIMING SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

- 2: Response time is measured with one comparator input at (VDD 1.5)/2, while the other input transitions from Vss to VDD.
- 3: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 32-11 for the minimum and maximum BOR values.

DC CHARACTERISTICS			$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$				
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions				Conditions
D300	VIOFF	Input Offset Voltage	—	±10		mV	
D301	VICM	Input Common-Mode Voltage	AVss	—	AVdd	V	
D302	CMRR	Common-Mode Rejection Ratio	-54	—	_	dB	
D305	IVREF	Internal Voltage Reference	0.19	0.20	0.21	V	BGSEL<1:0> = 10
			0.57	0.60	0.63	V	BGSEL<1:0> = 01
			1.14	1.20	1.26	V	BGSEL<1:0> = 00

TABLE 32-62: COMPARATOR MODULE SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

2: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 32-11 for the minimum and maximum BOR values.

Section Name **Update Description** Section 4.0 "Memory Added the Write Latch and Auxiliary Interrupt Vector to the Program Memory Organization" Map (see Figure 4-1). Updated the All Resets value for the DSRPAG and DSWPAG registers in the CPU Core Register Maps (see Table 4-1 and Table 4-2). Updated the All Resets value for the INTCON2 register in the Interrupt Controller Register Maps (see Table 4-3 through Table 4-6). Updated the All Resets values for all registers in the Output Compare 1 -Output Compare 16 Register Map, with the exception of the OCxTMR and OCxCON1 registers (see Table 4-9). Removed the DTM bit (TRGCON1<7> from all PWM Generator # Register Maps (see Table 4-11 through Table 4-17). Updated the All Resets value for the QEI1IOC register in the QEI1 Register Map (see Table 4-18). Updated the All Resets value for the QEI2IOC register in the QEI1 Register Map (see Table 4-19). Added Note 4 to the USB OTG Register Map (see Table 4-25) Updated all addresses in the Real-Time Clock and Calendar Register Map (see Table 4-34). Removed RPINR22 from Table 4-37 through Table 4-40. Updated the All Resets values for all registers in the Peripheral Pin Select Input Register Maps and modified the RPIN37-RPINR43 registers (see Table 4-37 through Table 4-40). Added the VREGSF bit (RCON<11>) to the System Control Register Map (see Table 4-43). Added the REFOMD bit (PMD4<3>) to the PMD Register Maps (see Table 4-44 through Table 4-47). Changed the bit range for CNT from <15:0> to <13:0> for all DMAxCNT registers in the DMAC Register Map (see Table 4-49). Updated the All Resets value and removed the ANSC15 and ANSC12 bits in the ANSLEC registers in the PORTC Register Maps (see Table 4-52 and Table 4-53). Updated DSxPAG and Page Description of O, Read and U, Read in Table 4-66. Added Note to the Table 4-67. Updated Arbiter Architecture in Figure 4-8. Updated the Unimplemented value and removed the LATG3 and LATG2 bits in the LATG registers and the CNPUG3 and CNPUG2 bits from the CNPUG registers in the PORTG Register Maps (see Table 4-60 and Table 4-61) Updated the All Resets value and removed the TRISG3 and TRISG2 bits in the TRISG registers and the ODCG3 and ODCG2 bits from the ODCG registers in the PORTG Register Maps (see Table 4-60 and Table 4-61). Section 5.0 "Flash Program Updated the NVMOP<3:0> = 1110 definition to Reserved and added Note 6 to Memory" the Nonvolatile Memory (NVM) Control Register (see Register 5-1). Section 6.0 "Resets" Added the VREGSF bit (RCON<11>) to the Reset Control Register (see Register 6-1).

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)