

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	83
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep256gu810-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. "Program Memory" (DS70613) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The device architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The device program address memory space is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from table operation or data space remapping as described in **Section 4.8 "Interfacing Program and Data Memory Spaces"**.

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The device program memory map is shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 DEVICES⁽¹⁾

	Ā	GOTO Instruction ⁽²⁾	GOTO Instruction ⁽²⁾	0x000000
		Reset Address ⁽²⁾	Reset Address ⁽²⁾	0x000002
		Interrupt Vector Table	Interrupt Vector Table	0x000004 0x0001FE
ry Space	General Segment	User Program Flash Memory (87552 instructions)	User Program Flash Memory (175104 instructions)	0x000200 0x02ABFE 0x02AC00
emo	Ŭ	Unimplemented		0x0557FE
er M		(Read '0's)	Unimplemented (Read '0's)	0x055800
Š	Ŧ	Auxiliary Program	Auxiliary Program	0x7FBFFE 0x7FC000
	mer	Flash Memory	Flash Memory	0x7FFFF8
	y Seç	Auxiliary Interrupt Vector	Auxiliary Interrupt Vector	0x7FFFFA
	ciliar	GOTO Instruction ⁽²⁾	GOTO Instruction ⁽²⁾	0x7FFFFC
•	¶¶,	Reset Address ⁽²⁾	Reset Address ⁽²⁾	0x7FFFFE
Á				0x800000
		Reserved	Reserved	
ė				0xF7FFFE
pac		Device Configuration Registers	Device Configuration Registers	0xF80000
ory S				0xF80014
Jemo		Reserved	Reserved	0xF9FFFE
ration 1		Write Latch	Write Latch	0xFA0000 0xFA00FE
nfigu		Reserved	Reserved	0xFA0100 0xFEFFFF
ŏ		DEVID (2 Words)	DEVID (2 Words)	0xFF0000 0xFF0002
		Reserved	Reserved	
•				0xFFFFFE

Note 1: Memory areas are not shown to scale.

2: The Reset location is controlled by the Reset Target Vector Select bit, RSTPRI (FICD<2>). See Section 29.0 "Special Features" for more information.

TABLE 4-40: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMU814 DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets		
RPINR35	06E6	—				IC14R<6:0>	•			—				IC13R<6:0>				0000		
RPINR36	06E8	_				IC16R<6:0>	•			_				IC15R<6:0>				0000		
RPINR37	06EA	_			S	YNCI1R<6:	0>			_			(DCFCR<6:0	>			0000		
RPINR38	06EC	_			D	TCMP1R<6:	:0>			_			S	YNCI2R<6:()>			0000		
RPINR39	06EE	_			D	TCMP3R<6:	:0>			_			D.	TCMP2R<6:	0>		(
RPINR40	06F0	_			D	TCMP5R<6:	:0>			_			D.	TCMP4R<6:	0>		1			
RPINR41	06F2	_		DTCMP7R<6:0>					_			D.	TCMP6R<6:	0>			0000			
RPINR42	06F4	—				FLT6R<6:0>	>			_	- FLT5R<6:0>						0000			
RPINR43	06F6	_	_	—	_	_	_	_	_	—				FLT7R<6:0>	•			0000		

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

				-														
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:03	>			—	—	—	—	_	_	—	_	0000
RPINR1	06A2					INT3R<6:03	>			_		•		INT2R<6:0>		•	•	0000
RPINR2	06A4	-	_	_	_	_	_			_				INT4R<6:0>	•			0000
RPINR3	06A6	_				T3CKR<6:0	>			—				T2CKR<6:0>	>			0000
RPINR4	06A8	_				T5CKR<6:0	>			—				T4CKR<6:0>	>			0000
RPINR5	06AA	_				T7CKR<6:0	>			—				T6CKR<6:0>	>			0000
RPINR6	06AC	_				T9CKR<6:0	>			—				T8CKR<6:0>	>			0000
RPINR7	06AE	_				IC2R<6:0>				—				IC1R<6:0>				0000
RPINR8	06B0	_				IC4R<6:0>				—				IC3R<6:0>				0000
RPINR9	06B2	_				IC6R<6:0>				—				IC5R<6:0>				0000
RPINR10	06B4	_				IC8R<6:0>				—				IC7R<6:0>				0000
RPINR11	06B6	_				OCFBR<6:0	>			—				OCFAR<6:0	>			0000
RPINR12	06B8	_				FLT2R<6:03	>			—				FLT1R<6:0>				0000
RPINR13	06BA	_				FLT4R<6:03	>			—				FLT3R<6:0>				0000
RPINR14	06BC	_				QEB1R<6:0	>			—				QEA1R<6:0	>			0000
RPINR15	06BE	_			ŀ	HOME1R<6:	0>			—				NDX1R<6:0	>			0000
RPINR16	06C0	_				QEB2R<6:0	>			—				QEA2R<6:0>	>			0000
RPINR17	06C2	_			ŀ	HOME2R<6:	0>			_				NDX2R<6:0	>			0000
RPINR18	06C4	_			I	J1CTSR<6:()>			—				U1RXR<6:0	>			0000
RPINR19	06C6	_			I	J2CTSR<6:()>			_				U2RXR<6:0>	>			0000
RPINR20	06C8	_				SCK1R<6:0	>			_				SDI1R<6:0>				0000
RPINR21	06CA	_	_	_	_	_	_	_	_	_				SS1R<6:0>				0000
RPINR23	06CE		—	—	—	_	—	—	_	_				SS2R<6:0>				0000
RPINR24	06D0	_				CSCKR<6:0	>			_				CSDIR<6:0>	•			0000
RPINR25	06D2	_	_	_	_	_	_	_	_	_			C	OFSINR<6:)>			0000
RPINR26	06D4	_				C2RXR<6:0	>			_				C1RXR<6:0	>			0000
RPINR27	06D6	_			I	J3CTSR<6:()>			_				U3RXR<6:0>	>			0000
RPINR28	06D8	_			I	J4CTSR<6:()>			—				U4RXR<6:0	>			0000
RPINR29	06DA	_				SCK3R<6:0	>			—				SDI3R<6:0>				0000
RPINR30	06DC	_	—	_	_	_	_	_	_	—				SS3R<6:0>				0000
RPINR31	06DE	_				SCK4R<6:0	>			—				SDI4R<6:0>				0000
RPINR32	06E0	—	—		—			—		_				SS4R<6:0>				0000
RPINR33	06E2	—				IC10R<6:0>	>			_				IC9R<6:0>				0000
RPINR34	06E4	_				IC12R<6:0>	>			_				IC11R<6:0>				0000

TABLE 4-41: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMU810 DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-55: PORTA REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	TRISA15	TRISA14	—	—	—	TRISA10	TRISA9	—	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
PORTA	0E02	RA15	RA14	_	_	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	0E04	LATA15	LATA14	_	_	_	LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
ODCA	0E06	ODCA15	ODCA14	_	_	_	_	_	_	_	_	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
CNENA	0E08	CNIEA15	CNIEA14	_	_	_	CNIEA10	CNIEA9	_	CNIEA7	CNIEA6	CNIEA5	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
CNPUA	0E0A	CNPUA15	CNPUA14	_	_	_	CNPUA10	CNPUA9	_	CNPUA7	CNPUA6	CNPUA5	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
CNPDA	0E0C	CNPDA15	CNPDA14	_	_	_	CNPDA10	CNPDA9	_	CNPDA7	CNPDA6	CNPDA5	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
ANSELA	0E0E	—	—	_	_	—	ANSA10	ANSA9	—	ANSA7	ANSA6	—	_	_	—	_	—	06C0

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-56:PORTB REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX
ODCB	0E16				—	—	—	_			—	_		—	_	—		0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	ANSB15	ANSB14	ANSB13	ANSB12	ANSB11	ANSB10	ANSB9	ANSB8	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	FFFF

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-57: PORTC REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	TRISC15	TRISC14	TRISC13	TRISC12	_	—	_	—	—	_	—	TRISC4	TRISC3	TRISC2	TRISC1	—	F01E
PORTC	0E22	RC15	RC14	RC13	RC12	_	_	_	_	_	_	_	RC4	RC3	RC2	RC1	_	XXXX
LATC	0E24	LATC15	LATC14	LATC13	LATC12	_	_	_	_	_	_	_	LATC4	LATC3	LATC2	LATC1	_	XXXX
ODCC	0E26	—	—	_	_	_	_	_	_	—	_	—	_	_	_	_	—	0000
CNENC	0E28	CNIEC15	CNIEC14	CNIEC13	CNIEC12	_	_	_	_	—	_	—	CNIEC4	CNIEC3	CNIEC2	CNIEC1	—	0000
CNPUC	0E2A	CNPUC15	CNPUC14	CNPUC13	CNPUC12	_	_	_	_	—	_	—	CNPUC4	CNPUC3	CNPUC2	CNPUC1	—	0000
CNPDC	0E2C	CNPDC15	CNPDC14	CNPDC13	CNPDC12	_	_	_	_	—	_	—	CNPDC4	CNPDC3	CNPDC2	CNPDC1	—	0000
ANSELC	0E2E	_	ANSC14	ANSC13	_	_	_	_	_	_		_	ANSC4	ANSC3	ANSC2	ANSC1	_	601E

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.1 Resets Resources

Many useful resources related to Resets are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en554310

6.1.1 KEY RESOURCES

- Section 8. "Reset" (DS70602) in the "dsPIC33E/ PIC24E Family Reference Manual"
- · Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- · Development Tools

6.2 RCON Control Register

All types of device Resets set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR and BOR bits (RCON<1:0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	SLEEP: Wake-up from Sleep Flag bit
	1 = Device has been in Sleep mode
	0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit
	1 = Device was in Idle mode
	0 = Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit
	1 = A Brown-out Reset has occurred
	0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit
	1 = A Power-on Reset has occurred
	0 = A Power-on Reset has not occurred

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
	RQCOL14	RQCOL13	RQCOL12	RQCOL11	RQCOL10	RQCOL9	RQCOL8
bit 15							bit 8
D A		DA					
R-0	R-0				R-U		R-0
RQCOL7	RQCOL6	RQCOL5	RQCOL4	RQUUL3	RQCULZ	RQUULI	RQCOLU
DIL 7							DIL U
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14	RQCOL14: C	hannel 14 Trar	nsfer Request	Collision Flag	bit		
	1 = User FO	RCE and interr	upt-based req	uest collision	detected		
	0 = No reque	est collision det	ected				
dit 13		nannel 13 Trar	ister Request	Collision Flag	DIT dotoctod		
	0 = No reque	est collision det	ected		uelecleu		
bit 12	RQCOL12: C	hannel 12 Trar	nsfer Request	Collision Flag	bit		
	1 = User FO	RCE and interr	upt-based req	uest collision	detected		
	0 = No reque	est collision det	ected				
bit 11	RQCOL11: C	hannel 11 Trar	sfer Request	Collision Flag	bit		
	1 = User FO 0 = No reque	RCE and interr	upt-based req	uest collision	detected		
bit 10	RQCOL10: C	hannel 10 Trar	nsfer Request	Collision Flag	bit		
	1 = User FO	RCE and interr	upt-based req	uest collision	detected		
	0 = No reque	est collision det	ected				
bit 9	RQCOL9: Ch	annel 9 Transf	er Request Co	ollision Flag bit	t		
	1 = User FO	RCE and interr	upt-based req	uest collision	detected		
hit 9			ecleu or Poquost Co	ulicion Elag bit			
DIL O	1 = User FO	RCE and interr	unt-based red	uest collision (detected		
	0 = No reque	st collision det	ected				
bit 7	RQCOL7: Ch	annel 7 Transf	er Request Co	llision Flag bit	t		
	1 = User FO	RCE and interr	upt-based req	uest collision	detected		
1 1 0	0 = No reque	est collision det	ected				
bit 6		annel 6 Transf	er Request Co	Ilision Flag bit	: dotootod		
	0 = No reque	est collision det	ected		uelecleu		
bit 5	RQCOL5: Ch	annel 5 Transf	er Request Co	llision Flag bit	t		
	1 = User FO	RCE and interr	upt-based req	uest collision	detected		
	0 = No reque	est collision det	ected				
bit 4	RQCOL4: Ch	annel 4 Transf	er Request Co	Ilision Flag bit	: 		
	\perp = User FO	RUE and interr	upt-based req	uest collision	aetected		
bit 3	RQCOL3: Ch	annel 3 Transf	er Request Co	llision Flag bit	t		
	1 = User FO	RCE and interr	upt-based req	uest collision	detected		
	0 = No reque	est collision det	ected				

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

10.2.2 IDLE MODE

The following occur in Idle mode:

- · The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the ECAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the ECAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

- g) The TRIS registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRIS setting. The TRIS register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRIS settings, which means that the TRIS bit must be set to input for pins with only remappable input function(s) assigned.
- h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin is disabled. Only the Analog Pin Select registers control the digital input buffer, *not* the TRIS register. The user must disable the analog function on a pin using the Analog Pin Select registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

11.6 I/O Resources

Many useful resources related to I/O are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en554301

11.6.1 KEY RESOURCES

- Section 10. "I/O Ports" (DS70598) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- Development Tools

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				T7CKR<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				T6CKR<6:0>	•		
bit 7							bit 0
R = Readat	ole hit	W = Writable	bit	II = Unimpler	nented hit rea	ad as '0'	
-n = Value a	at POR	'1' = Rit is set		'0' = Bit is cle	ared	x = Rit is unki	nown
bit 15	Unimplemer	nted: Read as '	0'				
bit 14-8	T7CKR<6:0 > (see Table 11	 Assign Timer 1-2 for input pin 	7 External Clo selection nur	ock (T7CK) to tł nbers)	ne Correspond	ding RPn/RPIn F	Pin bits
	1111111 = 	nput tied to RP	127				
	•						
	0000001 = 0000000 =	nput tied to CM nput tied to Vss	P1				
bit 7	Unimplemer	nted: Read as '	0'				
bit 6-0	T6CKR<6:0> (see Table 11	Assign Timer I-2 for input pin	6 External Closelection nur	ock (T6CK) to tl mbers)	ne Correspond	ding RPn/RPIn F	Pin bits
	1111111 =	nput tied to RP	127	/			
	000001 = U	nput tied to CM	P1				
	0000000 = 1	nput tied to Vss	, , }				

REGISTER 11-6: RPINR5: PERIPHERAL PIN SELECT INPUT REGISTER 5

REGISTER 16-21: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (CONTINUED)

bit 7-3

FLTSRC<4:0>: Fault Control Signal Source Select bits for PWM Generator #^(2,3)

- 11111 = Reserved
- 00100 = Fault 5 00011 = Fault 4
- 00010 = Fault 3
- 00001 = Fault 2
- 00000 = Fault 1

bit 2 **FLTPOL:** Fault Polarity bit for PWM Generator #⁽¹⁾

- 1 = The selected Fault source is active-low
- 0 = The selected Fault source is active-high

bit 1-0 FLTMOD<1:0>: Fault Mode bits for PWM Generator

- 11 = Fault input is disabled
- 10 = Reserved
- 01 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (cycle)
- 00 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (latched condition)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.
 - 2: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = 01000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.
 - 3: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = 01000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.

BUITER 21-3	LOAN	WILSSAGE					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1
bit 15			·	-			bit 8
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—		—	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at PO	OR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
<u> </u>							

BUFFFR 21-3 ECAN™ MESSAGE BUFFER WORD 2

bit 15-10	EID<5:0>: Extended Identifier bits
bit 9	RTR: Remote Transmission Request bit
	When TXIDE = 1:
	1 = Message will request remote transmission
	0 = Normal message
	When TXIDE = 0:
	The RTR bit is ignored.
bit 8	RB1: Reserved Bit 1
	User must set this bit to '0' per CAN protocol.
bit 7-5	Unimplemented: Read as '0'
bit 4	RB0: Reserved Bit 0
	User must set this bit to '0' per CAN protocol.
bit 3-0	DLC<3:0>: Data Length Code bits

BUFFER 21-4: ECAN™ MESSAGE BUFFER WORD 3

	_				
	Ву	te 1			
					bit 8
k R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	Ву	te 0			
					bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'					
'1' = Bit is se	et	'0' = Bit is cleared x = Bit is unknown		nown	
	x R/W-x W = Writable '1' = Bit is se	x R/W-x R/W-x By W = Writable bit '1' = Bit is set	x R/W-x R/W-x R/W-x Byte 0 W = Writable bit U = Unimplen '1' = Bit is set '0' = Bit is clea	x R/W-x R/W-x R/W-x R/W-x Byte 0 W = Writable bit U = Unimplemented bit, reac '1' = Bit is set '0' = Bit is cleared	x R/W-x R/W-x R/W-x R/W-x R/W-x Byte 0 W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set '0' = Bit is cleared x = Bit is unkr

bit 15-8 Byte 1<15:8>: ECAN Message Byte 0

bit 7-0 Byte 0<7:0>: ECAN Message Byte 1

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER	22-6: UxCC	ON: USB CON	ITROL REGI	STER (HOST	' MODE)			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	_	—		—	—	
bit 15							bit 8	
R-X, HSC			R/W-U		R/W-U	R/W-U		
bit 7	SLU	TORBOST	000101	HOSTEN	RESONE	TTDIXOT	bit 0	
Legend:		U = Unimplem	ented bit, read	d as '0'				
R = Readable	e bit	W = Writable	oit	HSC = Hardw	/are Settable/C	learable bit		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	
hit 15-8	Unimplemen	tad: Read as '()'					
bit 7		Differential Re	, ceiver I State	Flag bit				
Sit 1	1 = J state (d	ifferential '0' in l	ow-speed. diff	erential '1' in fu	Ill-speed) is de	tected on the U	SB	
	0 = No J state	e is detected						
bit 6	SE0: Live Sir	ngle-Ended Zero	o Flag bit					
	1 = Single-en	ded zero is acti	ve on the USE	3 bus				
	0 = No single	-ended zero is	detected					
bit 5	TOKBUSY: T	oken Busy Stat	us bit					
	1 = Token is I 0 = No token	being executed is being execut	by the USB m ed	odule in On-Th	e-Go state			
bit 4	USBRST: US	B Reset bit						
	1 = USB Reset has been generated; for Software Reset, application must set this bit for 50 r						for 50 ms and	
	then clea	ar it						
1 1 0	0 = USB Res	set is terminated	1					
DIT 3	HOSTEN: US	SB HOSt Mode E				die berdwere		
	1 = USB host 0 = USB host	capability is en	sabled; pull-do	wns on D+ and	D- are activate	a in nardware		
bit 2	RESUME: US	SB Resume Sig	naling Enable	bit				
	1 = Resume	signaling is acti	vated; softwar	e must set the b	oit for 10 ms an	d then clear to e	enable remote	
	0 = Resume	signaling is dis	abled					
bit 1	PPBRST: Pin	a-Pona Buffers	Reset bit					
	1 = Resets a	II Ping-Pong Bu	Iffer Pointers to	o the EVEN buf	ffer descriptor b	banks		
	0 = Ping-Por	ng Buffer Pointe	rs are not rese	et	·			
bit 0	SOFEN: USE	3 Start-of-Frame	(SOF) Enable	e bit				
	1 = Start-of-F	rame token is s	sent every one	e 1 ms				
	0 = Start-of-F	-rame token is o	disabled					

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

U-0	U-0	U-0	U-0	U-0	U-0	U-0	I-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		CFSEL<2:0>		CFLTREN		CFDIV<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-7 bit 6-4	Unimplemented: Read as '0' CFSEL<2:0>: Comparator Filter Input Clock Select bits 111 = T5CLK ⁽¹⁾ 110 = T4CLK ⁽²⁾ 101 = T3CLK ⁽¹⁾ 100 = T2CLK ⁽²⁾ 011 = SYNCO2 ⁽³⁾ 010 = SYNCO1 ⁽³⁾ 001 = Fosc ⁽⁴⁾ 000 = Fp ⁽⁴⁾						
bit 3	CFLTREN: C 1 = Digital filte 0 = Digital filte	omparator Filte er is enabled er is disabled	er Enable bit				
bit 2-0	CFDIV<2:0>: 111 = Clock [110 = Clock [101 = Clock [100 = Clock [011 = Clock [010 = Clock [001 = Clock [000 = Clock [Comparator F Divide 1:128 Divide 1:64 Divide 1:32 Divide 1:16 Divide 1:8 Divide 1:4 Divide 1:2 Divide 1:1	ilter Clock Div	ride Select bits			

REGISTER 25-5: CMxFLTR: COMPARATOR x FILTER CONTROL REGISTER

- **Note 1:** See the Type C Timer Block Diagram (Figure 13-2).
 - 2: See the Type B Timer Block Diagram (Figure 13-1).
 - 3: See the PWM Module Register Interconnect Diagram (Figure 16-2).
 - 4: See the Oscillator System Diagram (Figure 9-1).

Bit Field	Register	RTSP Effect	Description
JTAGEN	FICD	Immediate	JTAG Enable bit
			1 = JTAG is enabled
			0 = JTAG is disabled
RSTPRI	FICD	On any	Reset Target Vector Select bit
		device Reset	1 = Device will reset to Primary Flash Reset location
			0 = Device will reset to Auxiliary Flash Reset location
ICS<1:0>	FICD	Immediate	ICD Communication Channel Select bits
			11 = Communicate on PGEC1 and PGED1
			10 = Communicate on PGEC2 and PGED2
			01 = Communicate on PGEC3 and PGED3
			00 = Reserved, do not use

TABLE 29-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Note 1: BOR should always be enabled for proper operation (BOREN = 1).

2: This register can only be modified when code protection and write protection are disabled for both the General and Auxiliary Segments (APL = 1, AWRP = 1, APLK = 0, GSS = 1, GWRP = 1 and GSSK = 0).

29.2 On-Chip Voltage Regulator

All of the dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33EPXXX(GP/MC/ MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 29-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 32-13 located in **Section 32.0 "Electrical Characteristics"**.

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

FIGURE 29-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

3: Typical VCAP pin voltage is 1.8V when $VDD \ge VDDMIN$.

29.3 Brown-out Reset (BOR)

The Brown-out Reset module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the Power-up Timer (PWRT) Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 32-22 of **Section 32.0 "Electrical Characteristics"** for specific TFSCM values.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit, continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

31.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

31.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

31.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)						
DC CHARACTERISTICS			Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param.	Symbol	Characteristic	Min.	Min. Typ ⁽¹⁾ Max. Units Conditions					
	VIL	Input Low Voltage							
DI10		I/O Pins	Vss	—	0.2 Vdd	V			
DI11		PMP Pins	Vss	—	0.15 VDD	V	PMPTTL = 1		
DI15		MCLR	Vss	—	0.2 Vdd	V			
DI16		I/O Pins with OSC1 or SOSCI	Vss	—	0.2 Vdd	V			
DI18		I/O Pins with SDAx, SCLx	Vss	—	0.3 Vdd	V	SMBus disabled		
DI19		I/O Pins with SDAx, SCLx	Vss	—	0.8	V	SMBus enabled		
	Vih	Input High Voltage							
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾	0.7 Vdd	—	Vdd	V			
		I/O Pins 5V Tolerant ⁽⁴⁾	0.7 VDD	—	5.3	V			
			0.25 VDD + 0.8	—		V	PMPIIL = 1		
		I/O Pins with SDAx, SCLx	0.7 VDD 2.1	_	5.3 5.3	V	SMBus disabled		
	ICNPU	Change Notification Pull-up				-			
		Current							
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS		
	ICNPD	Change Notification Pull-down Current ⁽¹⁰⁾							
DI31			—	50	—	μA	VDD = 3.3V, VPIN = VDD		

TABLE 32-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for the 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.
- **10:** These parameters are characterized, but not tested.

FIGURE 32-39: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SSRCG = 0, SAMC<4:0> = 00010)

INDEX

Α	
AC Characteristics	511
Capacitive Loading Requirements on	
Output Pins	511
Comparator	567
Comparator Reference Voltage Settling Time	568
I/O Timing Requirements	515
Internal FRC Accuracy	514
Internal LPRC Accuracy	514
Load Conditions	511
Temperature and Voltage Specifications	511
ADC	
Control Registers	417
Helpful Tips	416
Key Features	413
Resources	416
Analog-to-Digital Converter (ADC)	413
Arithmetic Logic Unit (ALU)	46
MPASM Assembler	496

В

Bit-Reversed Addressing	. 131
Example	. 132
Implementation	. 131
Sequence Table (16-Entry)	. 132
Block Diagrams	
16-Bit Timer1 Module	271
ADCx Conversion Clock Period	.415
ADCx Module	.414
APLL Module	. 180
Comparator I/O Operating Modes	437
Comparator Voltage Reference	438
Connections for On-Chip Voltage Regulator	481
CPU Core	38
CRC Shift Engine	. 461
DCI Module	429
Digital Filter Interconnect	439
DMA Controller	. 159
DMA Controller to Peripheral Associations	. 161
dsPIC33EPXXX(GP/MC/MU)806/810/814	and
PIC24EPXXX(GP/GU)810/814	24
ECAN Module	. 360
EDS Arbiter Architecture	. 127
EDS Read Address Generation	. 122
EDS Write Address Generation	. 123
High-Speed PWM Architectural Overview	294
High-Speed PWM Register Interconnection	295
I2C Module	. 346
Input Capture Module	281
Multiplexing of Remappable Output for RPn	215
Oscillator System	. 178
Output Compare Module	287
PLL Module	. 179
PMP Module Pinout, Connections to	
External Devices	.467
Programmable CRC Module	461
Quadrature Encoder Interface Module	. 322
Reset System	. 141
RTCC Module	450
Shared Port Structure	208
SPIx module	. 337

Type B Timerx (Timer2, Timer4, Timer6, Timer8)	276
Type B, Type C Timer Pair (32-Bit Timer)	. 277
Type C Timerx (Timer3, Timer5, Timer7, Timer9)	. 276
U1RX Remappable Input	. 210
UARTx Module	. 353
USB Interface	. 386
User-Programmable Blanking Function	. 438
Watchdog Timer (WDT)	. 482
Brown-out Reset (BOR)	. 481

С

C Compilers	
MPLAB C18	496
Code Examples	
Connecting IC1 to HOME1 Digital Filter Input	
on Pin 3	217
Port Write/Read	209
PWRSAV Instruction Syntax	191
Code Protection	483
CodeGuard Security	483
Comparator	
Control Registers	440
Resources	439
Configuration Bits	477
Description	478
Configuration Register Map	477
CPU	
Addressing Modes	
Control Registers	
Data Space Addressing	
Instruction Set	
Resources	41
CRC	
Overview	462
Registers	463
Resources	462
Customer Change Notification Service	616
Customer Notification Service	616
Customer Support	616

D

Data Address Space	49
Memory Map for dsPIC33EP256MU806/810/814	
Devices with 28-Kbyte RAM	52
Memory Map for dsPIC33EP512(GP/MC/MU)806/810/8	14
Devices with 52-Kbyte RAM	50
Memory Map for PIC24EP256GU810/814 Devices	
with 28-Kbyte RAM	53
Memory Map for PIC24EP512(GP/GU)806/810/814	
Devices with 52-Kbyte RAM	51
Near Data Space	49
Organization and Alignment	49
SFR	49
Width	49
Data Converter Interface (DCI) Module 4	29
Data Memory	
Paged Space 1	24
Data Space	
Extended X 1	26
DC and AC Characteristics	
Graphs and Tables 5	573