

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	122
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep256gu814-e-pl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6 CPU Resources

Many useful resources related to the CPU are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	2
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en554310

3.6.1 KEY RESOURCES

- See Section 16. "CPU" (DS70359) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- Development Tools

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. "Program Memory" (DS70613) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The device architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The device program address memory space is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from table operation or data space remapping as described in **Section 4.8 "Interfacing Program and Data Memory Spaces"**.

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The device program memory map is shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 DEVICES⁽¹⁾

Ť	GOTO Instruction ⁽²⁾	GOTO Instruction ⁽²⁾ Reset Address ⁽²⁾	0x000000 0x000002
-	Interrupt Vector Table	Interrupt Vector Table	0x000004 0x0001FE 0x000200
/ Space	User Program Flash Memory (87552 instructions)	User Program Flash Memory (175104 instructions)	0x02ABFE 0x02AC00
User Memory Space	ט Unimplemented (Read '0's)	Unimplemented	0x0557FE 0x055800
Use	Auxiliary Program	(Read '0's) Auxiliary Program Flash Memory	0x7FBFFE 0x7FC000 0x7FFFF8
0	Auxiliary Program Flash Memory Auxiliary Interrupt Vector GOTO Instruction ⁽²⁾ Reset Address ⁽²⁾	Auxiliary Interrupt Vector	0x7FFFFA
	GOTO Instruction ⁽²⁾	GOTO Instruction ⁽²⁾	0x7FFFFC
	Reset Address ⁽²⁾	Reset Address ⁽²⁾	0x7FFFE
Î	Reserved	Reserved	0x800000
' Space	Device Configuration Registers	Device Configuration Registers	0xF7FFE 0xF80000 0xF80012 0xF80014
lemory	Reserved	Reserved	0xF9FFFE
Configuration Memory Space	Write Latch	Write Latch	0xFA0000 0xFA00FE
nfigu	Reserved	Reserved	0xFA0100 0xFEFFFE
ပိ	DEVID (2 Words)	DEVID (2 Words)	0xFF0000 0xFF0002
	Reserved	Reserved	

Note 1: Memory areas are not shown to scale.

2: The Reset location is controlled by the Reset Target Vector Select bit, RSTPRI (FICD<2>). See Section 29.0 "Special Features" for more information.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U10TGIR	0488	—	—	—			—	—	—	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	_	VBUSVDIF	0000
U10TGIE	048A	_	_	_	_	_	_	_	_	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	_	VBUSVDIE	0000
U10TGSTAT	048C	_	_	_	_	_	_	_	_	ID	—	LSTATE	—	SESVD	SESEND	_	VBUSVD	0000
U10TGCON	048E	_	_	_	_	_	_	—	_	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS	0000
U1PWRC	0490		_	_	-	_	_	_	_	UACTPND ⁽⁴⁾	_	—	USLPGRD	_	_	USUSPND	USBPWR	0000
U1IR ⁽¹⁾	04C0	_					_			STALLIF	—	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF	0000
U1IR ⁽²⁾	04C0		_	_	-	_	_	_	_	STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	DETACHIF	0000
U1IE ⁽¹⁾	04C2	_					_			STALLIE	—	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE	0000
U1IE ⁽²⁾	04C2	_		I		-			_	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	DETACHIE	0000
U1EIR ⁽¹⁾	04C4	_		I		_			_	BTSEF	BUSACCEF	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF	0000
U1EIR ⁽²⁾	04C4	_		I		_			_	BTSEF	BUSACCEF	DMAEF	BTOEF	DFN8EF	CRC16EF	EOFEF	PIDEF	0000
U1EIE ⁽¹⁾	04C6	_		I		_			_	BTSEE	BUSACCEE	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE	PIDEE	0000
U1EIE ⁽²⁾	04C6	_			-	_			-	BTSEE	BUSACCEE	DMAEE	BTOEE	DFN8EE	CRC16EE	EOFEE	PIDEE	0000
U1STAT	04C8	_		I		_			_		ENDP ⁻	T<3:0> ⁽³⁾		DIR	PPBI	_		0000
U1CON ⁽¹⁾	04CA	_			-	_			-	-	SE0	PKTDIS	—	HOSTEN	RESUME	PPBRST	USBEN	0000
U1CON ⁽²⁾	04CA	—	-	_	—	—	—	—	—	JSTATE	SE0	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN	0000
U1ADDR	04CC	—	-	_	—	—	—	—	—	LSPDEN ⁽¹⁾			USB Device A	ddress (DEV	ADDR)			0000
U1BDTP1	04CE	—	_	_	_	_	—	_	—			BDT	PTRL<15:9>				_	0000
U1FRML	04D0	—	_	_	_	_	—	_	—		-		FRML<7:0	>				0000
U1FRMH	04D2	_	_	_	_	_	_	_	_	_	—	—	—	_		FRMH<2:0>		0000
U1TOK ⁽³⁾	04D4	—	_	_	_	_	—	_	—		PID	<3:0>			EP	<3:0>		0000
U1SOF ⁽³⁾	04D6	_	_	_	_	_	_	_	_				CNT<7:0>	`				0000
U1BDTP2	04D8	—	_	_	_	_	—	_	—				BDTPTRH<23	3:16>				0000
U1BDTP3	04DA	—	-	_	—	—	—	—	—				BDTPTRU<31	:24>				0000
U1CNFG1	04DC	—	-	_	—	—	—	—	—	UTEYE	UOEMON	—	USBSIDL	—	—	—	_	0000
U1CNFG2	O4DE	—	-	_	—	—	—	—	—	—	—	UVCMPSEL	PUVBUS	EXTI2CEN	UVBUSDIS	UVCMPDIS	UTRDIS	0000
U1EP0	04E0	_	_	_	—	—	—	_	—	LSPD	RETRYDIS	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP1	04E2	_		-	_	_	-	_	-	—	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP2	04E4	_	_	_	—	_	—	_	-	—	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP3	04E6	_	—	—	—		—	—	-	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP4	04E8	_	_				_	_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

TABLE 4-27: USB OTG REGISTER MAP FOR dsPIC33EPMU806/810/814 AND PIC24EPGU806/10/814) DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is available when the module is operating in Device mode.

2: This bit is available when the module is operating in Host mode

3: Device mode only. These bits are always read as '0' in Host mode.

4: The Reset value for this bit is undefined.

TABLE 4-34: PARALLEL MASTER/SLAVE PORT REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMCON	0600	PMPEN	—	PSIDL	ADRMU	JX<1:0>	PTBEEN	PTWREN	PTRDEN	CSF	<1:0>	ALP	CS2P	CS1P	BEP	WRSP	RDSP	0000
PMMODE	0602	BUSY	IRQM	<1:0>	INCM	<1:0>	MODE16	MODE	<1:0>	WAIT	B<1:0>		WAITN	<3:0>		WAITE	<1:0>	0000
PMADDR ⁽¹⁾	0604	CS2	CS1						Para	llel Port Ad	dress (ADDR	<13:0>)						0000
PMDOUT1 ⁽¹⁾	0604																0000	
PMDOUT2	0606																0000	
PMDIN1	0608							Parallel Port	Data In Reg	ister 1 (Buf	fers Level 0 a	and 1)						0000
PMDIN2	060A							Parallel Port	Data In Reg	ister 2 (Buf	fers Level 2 a	and 3)						0000
PMAEN	060C	PTEN15	PTEN14	PTEN13	IEN13 PTEN12 PTEN11 PTEN10 PTEN9 PTEN8 PTEN7 PTEN6 PTEN5 PTEN4 PTEN3 PTEN2 PTEN1 PTEN0 0										0000			
PMSTAT	060E	IBF	IBOV			IB3F	IB2F	IB1F	IB0F	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E	008F
Lonondi		1		0				ha DMD mad										

Legend: — = unimplemented, read as '0'. Shaded bits are not used in the operation of the PMP module.

Note 1: PMADDR and PMDOUT1 are the same physical register, but are defined differently depending on the module's operating mode.

TABLE 4-35: CRC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON1	0640	CRCEN	_	CSIDL		V	WORD<4:0	>		CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	_	—	—	0000
CRCCON2	0642	-		_		D	WIDTH<4:0)>		_	_	_		Р	LEN<4:0>			0000
CRCXORL	0644								X<15:	1>							_	0000
CRCXORH	0646			X<31:16> 0000											0000			
CRCDATL	0648								CRC Data	Input Low V	Vord							0000
CRCDATH	064A		CRC Data Input High Word 0000											0000				
CRCWDATL	064C								CRC Re	sult Low Wo	ord							0000
CRCWDATH	064E								CRC Re	sult High Wo	ord							0000

Legend: - = unimplemented, read as '0'. Shaded bits are not used in the operation of the programmable CRC module.

TABLE 4-36: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620		Alarm Value Register Window based on ALRMPTR<1:0>											XXXX				
ALCFGRPT	0622	ALRMEN	CHIME	AMASK<3:0> ALRMPTR<1:0> ARPT<7:									PT<7:0>			0000		
RTCVAL	0624		RTCC Value Register Window based on RTCPTR<1:0>										XXXX					
RCFGCAL	0626	RTCEN	—	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPT	R<1:0>	CAL<7:0>							0000	

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-49: PMD REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD	0000
PMD2	0762	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	T9MD	T8MD	T7MD	T6MD	—	CMPMD	RTCCMD	PMPMD	CRCMD		QEI2MD		U3MD	_	I2C2MD	AD2MD	0000
PMD4	0766	—	_	_		_	—	—	—			U4MD		REFOMD	_	_	USB1MD	0000
PMD5	0768	IC16MD	IC15MD	IC14MD	IC13MD	IC12MD	IC11MD	IC10MD	IC9MD	OC16MD	OC15MD	OC14MD	OC13MD	OC12MD	OC11MD	OC10MD	OC9MD	0000
PMD6	076A	—	_	_		PWM4MD	PWM3MD	PWM2MD	PWM1MD			_		_	_	SPI4MD	SPI3MD	0000
		—	_	_		_	—	—	—	DMA12MD	DMA8MD	DMA4MD	DMA0MD	_	_	_		0000
PMD7	076C	—	_	_		_	—	—	—	DMA13MD	DMA9MD	DMA5MD	DMA1MD	_	_	_		0000
FINDT	0700	—	_	_		_	—	—	—	DMA14MD	DMA10MD	DMA6MD	DMA2MD	_	_	_		0000
		_	_	_	_	_	_	_	_	-	DMA11MD	DMA7MD	DMA3MD	_	_	_	_	0000

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-50: PMD REGISTER MAP FOR dsPIC33EPXXXMC806 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD	0000
PMD2	0762	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	T9MD	T8MD	T7MD	T6MD	—	CMPMD	RTCCMD	PMPMD	CRCMD	—	QEI2MD		U3MD	_	I2C2MD	AD2MD	0000
PMD4	0766		_	_	_	_	_	_	_	_	_	U4MD	_	REFOMD	_	_	_	0000
PMD5	0768	IC16MD	IC15MD	IC14MD	IC13MD	IC12MD	IC11MD	IC10MD	IC9MD	OC16MD	OC15MD	OC14MD	OC13MD	OC12MD	OC11MD	OC10MD	OC9MD	0000
PMD6	076A		_	_	_	PWM4MD	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	SPI4MD	SPI3MD	0000
			_	_	_	_	_	_	_	DMA12MD	DMA8MD	DMA4MD	DMA0MD	_	_	_	_	0000
	0760		_	_	_	_	_	_	_	DMA13MD	DMA9MD	DMA5MD	DMA1MD	_	_	_	_	0000
PMD7	076C	_	—	—	—	_	_	—	—	DMA14MD	DMA10MD	DMA6MD	DMA2MD	—	—	—	_	0000
		_	_	_	_	_	_	_	_	_	DMA11MD	DMA7MD	DMA3MD	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
_	RQCOL14	RQCOL13	RQCOL12	RQCOL11	RQCOL10	RQCOL9	RQCOL8
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
RQCOL7	RQCOL6	RQCOL5	RQCOL4	RQCOL3	RQCOL2	RQCOL1	RQCOL0
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14	-	hannel 14 Trar		Collision Flag	bit		
	1 = User FO	RCE and interrest collision det	upt-based req	0			
bit 13	•	hannel 13 Trar		Collision Flag	bit		
	1 = User FO	RCE and interrest collision det	upt-based req				
bit 12	RQCOL12: C	hannel 12 Trar RCE and interr	nsfer Request	•			
	0 = No reque	est collision det	ected				
bit 11		hannel 11 Trar	•	•			
		RCE and interrest collision det		uest collision o	detected		
bit 10		hannel 10 Trar	=	-			
		RCE and interrest collision det		uest collision o	detected		
bit 9	1 = User FO	annel 9 Transf RCE and interr est collision det	upt-based req	•			
bit 8	1 = User FO	annel 8 Transf RCE and interr	upt-based req	•			
		est collision det					
bit 7		annel 7 Transf	-	-			
		RCE and interrest collision def	•	uest collision (Delected		
bit 6		annel 6 Transf	-	-			
		RCE and interrest collision det	•	uest collision o	detected		
bit 5	-	annel 5 Transf		llision Flag bit			
		RCE and interrest collision det		uest collision o	detected		
bit 4	RQCOL4: Ch	annel 4 Transf	er Request Co	llision Flag bit			
		RCE and interrest collision det		uest collision o	detected		
bit 3	RQCOL3: Ch	annel 3 Transf	er Request Co	llision Flag bit			
		RCE and interrest collision det		uest collision o	detected		

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER (CONTINUED)

bit 2	RQCOL2: Channel 2 Transfer Request Collision Flag bit
	1 = User FORCE and interrupt-based request collision detected0 = No request collision detected
bit 1	RQCOL1: Channel 1 Transfer Request Collision Flag bit
	1 = User FORCE and interrupt-based request collision detected
	0 = No request collision detected
bit 0	RQCOL0: Channel 0 Transfer Request Collision Flag bit
	1 = User FORCE and interrupt-based request collision detected
	0 = No request collision detected

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				IC2R<6:0>			
it 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC1R<6:0>			
oit 7							bit (
_egend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value a	at POR	'1' = Bit is set	:	'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15 bit 14-8	IC2R<6:0>: /	1ted: Read as ' Assign Input Ca 1-2 for input pin	apture 2 (IC2)	to the Correspondent	onding RPn/R	PIn Pin bits	
		nput tied to RP		,			
		nput tied to CM nput tied to Vss					
bit 7	Unimplemer	nted: Read as '	0'				
bit 6-0		Assign Input Ca 1-2 for input pin		to the Corresponders)	onding RPn/R	PIn Pin bits	
	1111111 = 	nput tied to RP	127				
	•						

REGISTER 11-8: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-12: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_				OCFBR<6:0>				
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		10110		OCFAR<6:0>		10110	1010 0	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'		
-n = Value a	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is ur			nknown	
	(see Table 11-	-2 for input pin			oo oonoop	<u>g</u>	In Pin bits	
	1111111 = In 0000001 = In	-2 for input pin aput tied to RP1 aput tied to CMI aput tied to Vss	selection nun I27 P1					
bit 7	1111111 = In	put tied to RP1	selection nun 127 P1					

REGISTER 11-25: RPINR25: PERIPHERAL PIN SELECT INPUT REGISTER 25

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		—	_	—		—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		10110		COFSR<6:0>	-	10110	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at POR (1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-7 Unimplemented: Read as '0'

bit 6-0 **COFSR<6:0>:** Assign DCI FSYNC Input (COFS) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 1111111 = Input tied to RP127

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 11-47: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		RP71R<5:0>						
bit 15							bit 8		

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP70	R<5:0>		
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

bit 13-8	RP71R<5:0>: Peripheral Output Function is Assigned to RP71 Output Pin bits
	(see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'

bit 5-0 **RP70R<5:0>:** Peripheral Output Function is Assigned to RP70 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-48: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP80	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP79R<5:0>						
bit 7							bit 0	

Legend:				
R = Readable bit	Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8	RP80R<5:0>: Peripheral Output Function is Assigned to RP80 Output Pin bits
	(see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'

bit 5-0 **RP79R<5:0>:** Peripheral Output Function is Assigned to RP79 Output Pin bits (see Table 11-3 for peripheral function numbers)

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

R-0	R-0 TERRO	R-0 CNT<7:0>	R-0	R-0	R-0
	TERRO	CNT<7:0>			
					bit 8
R-0	R-0	R-0	R-0	R-0	R-0
	RERRO	CNT<7:0>			
					bit 0
' = Writable bit		U = Unimpleme	nted bit, re	ad as '0'	
' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unknown	
	/ = Writable bit	RERRO	RERRCNT<7:0>	RERRCNT<7:0>	<pre>RERRCNT<7:0></pre>

REGISTER 21-8:	CXEC: ECANX TRANSMIT/RECEIVE ERROR COUNT REGISTER

bit 15-8	TERRCNT<7:0>: Transmit Error Count bits
bit 7-0	RERRCNT<7:0>: Receive Error Count bits

REGISTER 21-9: CxCFG1: ECANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_		—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SJW<1:0>				BRP	°<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7-6	SJW<1:0>: Synchronization Jump Width bits
	11 = Length is 4 x TQ 10 = Length is 3 x TQ 01 = Length is 2 x TQ 00 = Length is 1 x TQ
bit 5-0	BRP<5:0>: Baud Rate Prescaler bits
	11 1111 = TQ = 2 x 64 x 1/FCAN
	•
	•
	•
	00 0010 = TQ = 2 x 3 x 1/FCAN 00 0001 = TQ = 2 x 2 x 1/FCAN 00 0000 = TQ = 2 x 1 x 1/FCAN

REGISTER 22-17: UxIE: USB INTERRUPT ENABLE REGISTER (HOST MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—		—	_	_	_			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
STALLIE	ATTACHIE ⁽¹⁾	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	DETACHIE			
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable b	it	U = Unimplem	ented bit, read	1 as '0'				
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unk	nown			
bit 15-8	Unimplement	ted: Read as '0'								
oit 7	STALLIE: ST	ALL Handshake	Interrupt Ena	able bit						
	1 = Interrupt	is enabled								
	0 = Interrupt	is disabled								
pit 6	ATTACHIE: P	eripheral Attach	Interrupt bit(1)						
		 1 = Interrupt is enabled 0 = Interrupt is disabled 								
bit 5		Resume Interrup	t hit							
	1 = Interrupt i									
	0 = Interrupt									
bit 4	IDLEIE: Idle [Detect Interrupt I	oit							
	1 = Interrupt									
	0 = Interrupt									
bit 3		Processing Co	mplete Interro	upt bit						
	 1 = Interrupt is enabled 0 = Interrupt is disabled 									
oit 2	•	of-Frame Token	Intorrunt hit							
			interrupt bit							
	 1 = Interrupt is enabled 0 = Interrupt is disabled 									
oit 1		3 Error Conditior	n Interrupt bit							
	1 = Interrupt		•							
	0 = Interrupt	is disabled								
bit 0		JSB Detach Inte	rrupt Enable	bit						
	1 = Interrupt	is enabled								
	0 = Interrupt									

Note 1: Unimplemented in OTG mode, read as '0'.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN			
bit 15					1	1	bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN			
bit 7						L	bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unk	nown			
bit 15			Jacking Soloot	hito						
DIL 15	•	or Low-Level N king (blanking)	•		erted ('0') compa	rator signal fro	m propagating			
					erted ('1') compar					
bit 14	Unimpleme	nted: Read as	'0'							
bit 13	OCEN: OR	Gate C Input Ei	nable bit							
		onnected to OF ot connected to	Q							
bit 12	OCNEN: OF	R Gate C Input	Inverted Enable	e bit						
		MCI is connect MCI is not con								
bit 11	OBEN: OR	DBEN: OR Gate B Input Enable bit								
		onnected to OF of connected to	•							
bit 10	OBNEN: OF	R Gate B Input I	nverted Enable	e bit						
		MBI is connect MBI is not con	•	jate						
bit 9	OAEN: OR	Gate A Input Er	nable bit							
		onnected to OF of connected to								
bit 8	OANEN: OF	R Gate A Input I	nverted Enable	e bit						
		MAI is connect MAI is not con	-	jate						
bit 7	1 = Inverted	Gate Output II ANDI is conne ANDI is not co	cted to OR gate	е						
bit 6	1 = ANDI is	Gate Output E connected to O not connected	R gate							
bit 5	ACEN: AND	Gate C Input E	Enable bit							
		onnected to AN ot connected to								
bit 4	ACNEN: AN	ID Gate C Input	Inverted Enab	ole bit						
	ACNEN: AND Gate C Input Inverted Enable bit 1 = Inverted MCI is connected to AND gate									
		MCI IS CONNEC	leu lo AND yai	e						

26.1 Writing to the RTCC Timer

Note: To allow the RTCC module to be clocked by the secondary crystal oscillator, the Secondary Oscillator Enable (LPOSCEN) bit in the Oscillator Control (OSCCON<1>) register must be set. For further details, refer to Section 7. "Oscillator" (DS70580) in the "dsPIC33E/PIC24E Family Reference Manual".

The user application can configure the time and calendar by writing the desired seconds, minutes, hours, weekday, date, month and year to the RTCC registers. Under normal operation, writes to the RTCC Timer registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To write to the RTCC register, the RTCWREN bit (RCFGCAL<13>) must be set. Setting the RTCWREN bit allows writes to the RTCC registers. Conversely, clearing the RTCWREN bit prevents writes.

To set the RTCWREN bit, the following procedure must be executed. The RTCWREN bit can be cleared at any time:

- 1. Write 0x55 to NVMKEY.
- 2. Write 0xAA to NVMKEY.
- 3. Set the RTCWREN bit using a single-cycle instruction.

The RTCC module is enabled by setting the RTCEN bit (RCFGCAL<15>). To set or clear the RTCEN bit, the RTCWREN bit (RCFGCAL<13>) must be set.

If the entire clock (hours, minutes and seconds) needs to be corrected, it is recommended that the RTCC module should be disabled to avoid coincidental write operation when the timer increments. Therefore, it stops the clock from counting while writing to the RTCC Timer register.

26.2 RTCC Resources

Many useful resources related to RTCC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en554310

26.2.1 KEY RESOURCES

- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS70584) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related "dsPIC33E/PIC24E Family Reference Manual" Sections
- Development Tools

REGISTER 26-6: RTCVAL (WHEN RTCPTR<1:0> = 01): WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
_	—	—	_	—		WDAY<2:0>	
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN	V<1:0>	HRONE<3:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				
bit 15-11	Unimplemen	ited: Read as '0	o'				
bit 10-8	WDAY<2:0>:	Binary Coded	Decimal Valu	ie of Weekday Di	git bits		

bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 26-7: RTCVAL (WHEN RTCPTR<1:0> = 00): MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_		MINTEN<2:0>			MINON	E<3:0>	
bit 15						bit 8	
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

—	SECTEN<2:0>	SECONE<3:0>
bit 7		bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

© 2009-2012 Microchip Technology Inc.

Base Instr # Assembly Mnemonic				Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
25	DAW	DAW Wn		Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	_{Wm} , _{Wn} (1)	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	<pre>#lit15,Expr(1)</pre>	Do code to PC + Expr, lit15 + 1 times	2	2	None
		DO	Wn, Expr(1)	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd ⁽¹⁾	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm, Acc, Wx, Wy, Wxd ⁽¹⁾	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd		1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side		1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side		1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side		1	С
38	GOTO	GOTO	Expr	Go to address	2	4	None
		GOTO	Wn	Go to indirect	1	4	None
		GOTO.L	Wn	Go to indirect (long address)	1	4	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	SFA
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd,AWB ⁽¹⁾	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd ⁽¹⁾	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 30-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1:

This instruction is available in dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only. Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. 2:

DC CHARACTERISTICS			$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$				
Parameter	Typ. ⁽²⁾	Max.	Doze Ratio	Units	Conditions		
DC73a	57	86	1:2	mA	-40°C	3.3V	70 MIPS
DC73g	40	60	1:128	mA			
DC70a	58	87	1:2	mA	+25°C	3.3V	70 MIPS
DC70g	41	62	1:128	mA	+25 C	3.3V	
DC71a	58	87	1:2	mA		3.3V	70 MIPS
DC71g	42	63	1:128	mA	+85°C		
DC72a	53	80	1:2	mA	1405%0	3.3V	60 MIPS
DC72g	38	57	1:128	mA	+125°C	5.50	

TABLE 32-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)⁽¹⁾

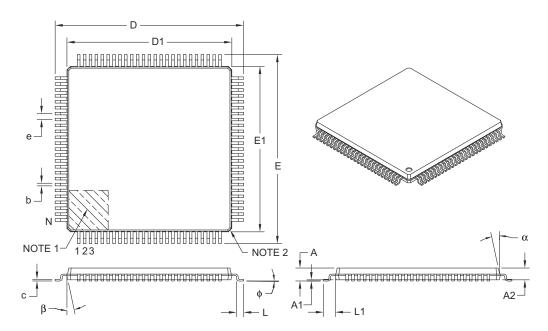
Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

 Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail with Overshoot/Undershoot < 250 mV

• CLKO is configured as an I/O input pin in the Configuration Word

· All I/O pins are configured as inputs and pulled to Vss

• MCLR = VDD, WDT and FSCM are disabled


• CPU, SRAM, program memory and data memory are operational

• No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero and unimplemented PMDx bits are set to one)

- CPU executing while (1) statement
- JTAG is disabled
- 2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

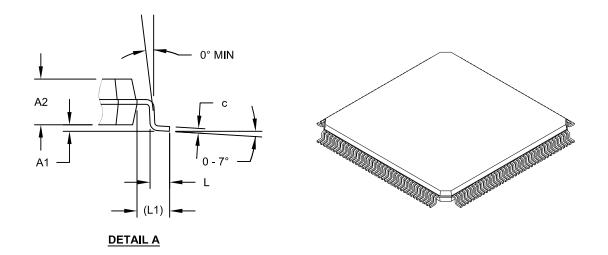
	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Number of Leads	Ν	100			
Lead Pitch	е		0.50 BSC		
Overall Height	А	-	_	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	¢	0° 3.5° 7°			
Overall Width	Е	16.00 BSC			
Overall Length	D	16.00 BSC			
Molded Package Width	E1	14.00 BSC			
Molded Package Length	D1	14.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

144-Lead Plastic Low Profile Quad Flatpack (PL) – 20x20x1.40 mm Body, with 2.00 mm Footprint [LQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Number of Leads	Ν		144		
Lead Pitch	е		0.50 BSC		
Overall Height	А	-	-	1.60	
Molded Package Height	A2	1.35	1.40	1.45	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 (REF)			
Overall Width	Е	22.00 BSC			
Overall Length	D	22.00 BSC			
Molded Body Width	E1	20.00 BSC			
Molded Body Length	D1	20.00 BSC			
Lead Thickness	С	0.09 - 0.20			
Lead Width b 0.17 0.22			0.27		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-044B Sheet 2 of 2