

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512gp806t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2:PIN NAMES: dsPIC33EP256MU810 AND dsPIC33EP512MU810
DEVICES^(1,2) (CONTINUED)

Pin Number	Full Pin Name
E1	AN19/PWM6H/RPI52/RC4
E2	AN18/PWM6L/RPI51/RC3
E3	C1IN3-/SCK2/PMA5/RP118/RG6
E4	AN17/PWM5H/RPI50/RC2
E5	No Connect
E6	RP113/RG1
E7	No Connect
K4	AN8/PMA6/RPI40/RB8
K5	No Connect
K6	RP108/RF12
K7	AN14/PMA1/RPI46/RB14
K8	VDD
K9	RP79/RD15
K10	USBID/RP99/RF3
K11	RP98/RF2
L1	PGEC1/AN6/RPI38/RB6
L2	VREF-/RA9

Pin Number	Full Pin Name
J8	No Connect
J9	No Connect
J10	RP104/RF8
J11	D-/RG3 ⁽⁵⁾
K1	PGEC3/AN1/RPI33/RB1
K2	PGED3/AN0/RPI32/RB0
K3	VREF+/RA10
L3	AVss
L4	AN9/PMA7//RPI41/RB9
L5	AN10/CVREF/PMA13/RPI42/RB10
L6	RP109/RF13
L7	AN13/PMA10/RPI45/RB13
L8	AN15/PMA0/RPI47/RB15
L9	RPI78/RD14
L10	SDA2 ⁽³⁾ /PMA9/RP100/RF4
L11	SCL2 ⁽³⁾ /PMA8/RP101/RF5

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.

2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

3: The availability of I²C[™] interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is made using the device Configuration bits, ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 29.0 "Special Features" for more information.

4: The pin name is SCL1/RG2 for the dsPIC33EP512(GP/MC)806 and PIC24EP512GP806 devices.

5: The pin name is SDA1/RG3 for the dsPIC33EP512(GP/MC)806 and PIC24EP512GP806 devices.

TABLE 4-55: PORTA REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	TRISA15	TRISA14	_	_	_	TRISA10	TRISA9	—	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
PORTA	0E02	RA15	RA14	_	_	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	0E04	LATA15	LATA14	_	_	_	LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
ODCA	0E06	ODCA15	ODCA14	_	_	_	_	_	_	_	_	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
CNENA	0E08	CNIEA15	CNIEA14	_	_	_	CNIEA10	CNIEA9	_	CNIEA7	CNIEA6	CNIEA5	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
CNPUA	0E0A	CNPUA15	CNPUA14	_	_	_	CNPUA10	CNPUA9	_	CNPUA7	CNPUA6	CNPUA5	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
CNPDA	0E0C	CNPDA15	CNPDA14	_	_	_	CNPDA10	CNPDA9	_	CNPDA7	CNPDA6	CNPDA5	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
ANSELA	0E0E	—	_	_	_	_	ANSA10	ANSA9	-	ANSA7	ANSA6	_	_	_	_	_	_	06C0

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-56:PORTB REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX
ODCB	0E16	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	ANSB15	ANSB14	ANSB13	ANSB12	ANSB11	ANSB10	ANSB9	ANSB8	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	FFFF

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-57: PORTC REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	TRISC15	TRISC14	TRISC13	TRISC12		_		_	_			TRISC4	TRISC3	TRISC2	TRISC1		F01E
PORTC	0E22	RC15	RC14	RC13	RC12	_	_		—	_			RC4	RC3	RC2	RC1	—	XXXX
LATC	0E24	LATC15	LATC14	LATC13	LATC12	_	_		—	_			LATC4	LATC3	LATC2	LATC1	—	XXXX
ODCC	0E26	—	_	_	—	_	_		—	_				_	_	—	—	0000
CNENC	0E28	CNIEC15	CNIEC14	CNIEC13	CNIEC12	_	_		—	_			CNIEC4	CNIEC3	CNIEC2	CNIEC1	—	0000
CNPUC	0E2A	CNPUC15	CNPUC14	CNPUC13	CNPUC12		-		—				CNPUC4	CNPUC3	CNPUC2	CNPUC1	—	0000
CNPDC	0E2C	CNPDC15	CNPDC14	CNPDC13	CNPDC12	_	_	_	_	_	_	_	CNPDC4	CNPDC3	CNPDC2	CNPDC1	—	0000
ANSELC	0E2E	—	ANSC14	ANSC13	_	_	_	_	_	_	_	_	ANSC4	ANSC3	ANSC2	ANSC1	_	601E

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

NOTES:

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Reset" (DS70602) of the *"dsPIC33E/PIC24E Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.

FIGURE 6-1: **RESET SYSTEM BLOCK DIAGRAM RESET** Instruction Glitch Filter WDT Module Sleep or Idle BOR Internal Regulator SYSRST POR VDD Rise Detect Trap Conflict Illegal Opcode Uninitialized W Register Security Reset Configuration Mismatch

© 2009-2012 Microchip Technology Inc.

8.1 DMA Resources

Many useful resources related to DMA are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en554310

8.1.1 KEY RESOURCES

- Section 22. "Direct Memory Access (DMA)" (DS70348) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- Development Tools

8.2 DMA Control Registers

Each DMAC Channel x (where x = 0 through 14) contains the following registers:

- 16-Bit DMA Channel Control register (DMAxCON)
- 16-Bit DMA Channel IRQ Select register (DMAxREQ)
- 32-Bit DMA RAM Primary Start Address register (DMAxSTA)
- 32-Bit DMA RAM Secondary Start Address register (DMAxSTB)
- 16-Bit DMA Peripheral Address register (DMAxPAD)
- 14-Bit DMA Transfer Count register (DMAxCNT)

Additional status registers (DMAPWC, DMARQC, DMAPPS, DMALCA and DSADR) are common to all DMAC channels. These status registers provide information on write and request collisions, as well as on last address and channel access information.

The DMA Interrupt Flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller, and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

REGISTER		IV: CLOCK D					
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI		DOZE<2:0> ⁽³⁾		DOZEN ^(1,4)		FRCDIV<2:0>	
bit 15							bit a
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLF	POST<1:0>				PLLPRE<4:0)>	
bit 7							bit
Legend:		y = Value set f	rom Config	uration bits on PC	R		
R = Readab	ole bit	W = Writable I	oit	U = Unimplem	ented bit, rea	id as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	iown
bit 15	ROI: Recove	er on Interrupt bi	t				
		s will clear the D s have no effect		nd the processor (EN bit	clock and pe	ripheral clock rat	io is set to 1:
bit 14-12	•	Processor Cloc					
	111 = Fcy d	ivided by 128					
	110 = Fcy d	•					
	101 = Fcy d	•					
	100 = Fcy di	ivided by 16 ivided by 8 (defa	uult)				
	010 = FCY d		iuit)				
	001 = Fcy d						
	000 = Fcy d	•					
bit 11		ze Mode Enable					
				petween the perip		and the processo	or clocks
				cratio forced to 1:			
bit 10-8			RC Oscillat	or Postscaler bits			
		divided by 256					
		livided by 64 livided by 32					
		divided by 16					
	011 = FRC c						
	010 = FRC c						
	001 = FRC c	•					
1.1.7.0		divided by 1 (def	,				1
bit 7-6			Jutput Divid	er Select bits (als	o denoted as	S'N2', PLL posts	caler)
	11 = Output 10 = Reserv	,					
		divided by 4 (de	fault)				
	00 = Output						
bit 5	Unimpleme	nted: Read as '()'				
Note 1: 7	This bit is cleared	when the ROI b	oit is set and	l an interrupt occu	Irs.		
	This register rese			•			
3: [•	an only be writte		the DOZEN bit is	clear. If DOZ	EN = 1, any writ	tes to

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

DOZE<2:0> are ignored.

10.5 Power-Saving Resources

Many useful resources related to Power-Saving features are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en554310

10.5.1 KEY RESOURCES

- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- Development Tools

10.6 Special Function Registers

Seven registers, PMD1: Peripheral Module Disable Control Register 1 through PMD7: Peripheral Module Disable Control Register 7, are provided for peripheral module control.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				IC2R<6:0>			
it 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC1R<6:0>			
oit 7							bit (
_egend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value a	at POR	'1' = Bit is set	:	'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15 bit 14-8	IC2R<6:0>: /	1ted: Read as ' Assign Input Ca 1-2 for input pin	apture 2 (IC2)	to the Correspondent	onding RPn/R	PIn Pin bits	
		nput tied to RP		,			
		nput tied to CM nput tied to Vss					
bit 7	Unimplemer	nted: Read as '	0'				
bit 6-0		Assign Input Ca 1-2 for input pin		to the Correspondent	onding RPn/R	PIn Pin bits	
	1111111 = 	nput tied to RP	127				
	•						

REGISTER 11-8: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				CSCKR<6:0>	>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				CSDIR<6:0>			
bit 7							bit C
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimpleme	nted: Read as '	0'				
bit 14-8	CSCKR<6:0)>: Assign DCI (Clock Input (C	SCK) to the Co	rresponding RI	Pn/RPIn Pin bit	s
	(see Table 1	1-2 for input pin	selection num	nbers)			
	1111111 =	Input tied to RP	127				
	•						
	•						
	•	Input tied to CM	D1				
		Input tied to Vss					
bit 7		nted: Read as '					
bit 6-0	•	Assign DCI D)I) to the Corre	sponding RPn/	RPIn Pin hits	
		1-2 for input pin			sponding rain		
	-	Input tied to RP		,			
		Input tied to CM					

REGISTER 11-24: RPINR24: PERIPHERAL PIN SELECT INPUT REGISTER 24

0000000 = Input tied to Vss

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IFLTMOD		C	CLSRC<4:0>(2	2,3)		CLPOL ⁽¹⁾	CLMOD
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F	LTSRC<4:0> ^{(2,3}	3)		FLTPOL ⁽¹⁾	FLTMO	D<1:0>
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkn	iown
oit 15		ndependent Fau ndent Fault mode			FLTDAT<1> to P	WMxH output a	nd Fault inn
					1:0> bits are not		
	0 = Normal	Fault mode: Cu	urrent-Limit m	ode maps Cl	LDAT<1:0> bits	to the PWMxH	and PWMx
			•		to the PWMxH		•
bit 14-10			Control Signa	al Source Sele	ect for PWM Ger	herator # bits ^{(2,3})
	11111 = Re	eserved					
	•						
	•						
	01001 = Re	served					
	01010 = Co						
	01001 = Co	•					
	01000 = Co 00111 = Re	•					
	00111 – Re						
	00101 = Fa						
	00100 = Fa						
	00011 = Fa 00010 = Fa						
	00010 – Fa						
	00000 = Fa						
bit 9	CLPOL: Cu	rrent-Limit Polar	ity bit for PWN	/I Generator #	₍₁₎		
		ected current-lim					
		ected current-lim		•			
bit 8		urrent-Limit Mode		or PWM Gene	erator #		
		Limit mode is er Limit mode is di					
			ly when PTE	N = 0. Changi	ng the clock sele	ection during op	eration will
•	ld unpredictab						
2: Wh	en Independe	ent Fault mode is	enabled (IFL	TMOD = 1) ai	nd Fault 1 is use	d for Fault mode	е

REGISTER 16-21: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER

- 2: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = 01000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.
- **3:** When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = 01000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.

© 2009-2012 Microchip Technology Inc.

r							
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0
bit 7							bit 0

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 21-23: CxRXFUL2: ECANx RECEIVE BUFFER FULL REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	
bit 15							bit 8	
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	
bit 7	•			•		•	bit 0	
Legend: C = Writable bit, bu			oit, but only '0'	nly '0' can be written to clear the bit				
R = Readable bit W = Writable bit U = U			U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un				x = Bit is unkr	nown			

bit 15-0 **RXFUL<31:16>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

BUFFER 21-5.	ECAI	N WIESSAGE	DOLLER				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			B	yte 3			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			B	yte 2			
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared		ared	x = Bit is unkr	nown			

BUFFER 21-5: ECAN™ MESSAGE BUFFER WORD 4

bit 15-8	Byte 3<15:8>: ECAN Message Byte 3

bit 7-0 Byte 2<7:0>: ECAN Message Byte 2

BUFFER 21-6: ECAN™ MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			B	/te 5			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			B	/te 4			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow				nown		

bit 15-8	Byte 5<15:8>: ECAN Message Byte 5

bit 7-0 Byte 4<7:0>: ECAN Message Byte 4

REGISTER 23-1: ADxCON1: ADCx CONTROL REGISTER 1 (CONTINUED)

bit 7-5	SSRC<2:0>: Sample Clock Source Select bits
	If SSRCG = 1:
	 111 = Reserved 110 = PWM Generator 7 primary trigger compare ends sampling and starts conversion⁽²⁾ 101 = PWM Generator 6 primary trigger compare ends sampling and starts conversion⁽²⁾ 100 = PWM Generator 5 primary trigger compare ends sampling and starts conversion⁽²⁾ 011 = PWM Generator 4 primary trigger compare ends sampling and starts conversion⁽²⁾ 010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion⁽²⁾ 010 = PWM Generator 2 primary trigger compare ends sampling and starts conversion⁽²⁾ 001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion⁽²⁾ 000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion⁽²⁾ 000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion⁽²⁾ 011 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved 101 = PWM secondary Special Event Trigger ends sampling and starts conversion⁽²⁾ 100 = Timer5 compare ends sampling and starts conversion 011 = PWM primary Special Event Trigger ends sampling and starts conversion⁽²⁾ 010 = Timer3 compare ends sampling and starts conversion 011 = PWM primary Special Event Trigger ends sampling and starts conversion⁽²⁾ 010 = Timer3 compare ends sampling and starts conversion 011 = PWM primary Special Event Trigger ends sampling and starts conversion⁽²⁾ 010 = Timer3 compare ends sampling and starts conversion 011 = PWM primary Special Event Trigger ends sampling and starts conversion⁽²⁾ 010 = Timer3 compare ends sampling and starts conversion
	000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
bit 4	SSRCG: Sample Clock Source Group bit
	(See bits<7-5> for details.)
bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = $01 \text{ or } 1x$)
	 When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0' 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence
bit 2	ASAM: ADC Sample Auto-Start bit ⁽³⁾
	 1 = Sampling begins immediately after the last conversion; SAMP bit is auto-set 0 = Sampling begins when the SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit
	 1 = ADC S&H amplifiers are sampling 0 = ADC S&H amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software can write '0' to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC Conversion Status bit ⁽³⁾
	 1 = ADC conversion cycle is completed. 0 = ADC conversion has not started or is in progress Automatically set by hardware when ADC conversion is complete. Software can write '0' to clear the DONE status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at the start of a new conversion.
Noto 1:	This bit is only available in the ADC1 module. In the ADC2 module, this bit is unimplemented and is read

Note 1: This bit is only available in the ADC1 module. In the ADC2 module, this bit is unimplemented and is read as '0'.

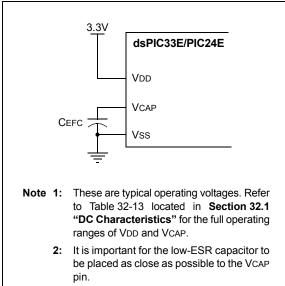
- 2: This setting is available in dsPIC33EPXXX(MC/MU)806/810/814 devices only.
- 3: Do not clear the DONE bit in software if ADC Sample Auto-Start is enabled (ASAM = 1).

REGISTER 24-2: DCIC	ON2: DCI CONTROL REGISTER 2
---------------------	-----------------------------

U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0
r	r	r	r	BLEN<1:0>		r	COFSG3
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	COFSG<2:0>		r			<3:0>	
bit 7							bit
Legend:		r = Reserved	bit				
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 15-12	Reserved : R	ead as '0'					
bit 11-10		Buffer Length C	ontrol hite				
		-		ween interrupts			
				etween interrupts			
		a words will be			.5		
		a word will be b					
bit 9	Reserved: R						
bit 8-5	COFSG<3:0>	-: Frame Sync	Generator Co	ontrol bits			
	1111 = Data	frame has 16 w	ords				
	•						
	•						
	•						
		frame has 3 wo					
		frame has 2 wo frame has 1 wo					
bit 4	Reserved: R						
bit 3-0		CI Data Word S	ize bits				
		word size is 16					
	•						
	•						
	•						
	0100 = Data	word size is 5 b	oits				
		word size is 4 b					
				nexpected resul			
				nexpected resul			
	0000 = inval	ia Selection. D	o not use. U	nexpected resul	ns may occur.		

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (CONTINUED)

- bit 4 CREF: Comparator Reference Select bit (VIN+ input)
 - 1 = VIN+ input connects to internal CVREFIN voltage
 - 0 = VIN+ input connects to CxIN1+ pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits
 - 11 = VIN- input of comparator connects to IVREF
 - 10 = VIN- input of comparator connects to CxIN3- pin
 - 01 = VIN- input of comparator connects to CxIN1- pin
 - ${\tt 00}$ = VIN- input of comparator connects to CxIN2- pin


29.2 On-Chip Voltage Regulator

All of the dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33EPXXX(GP/MC/ MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 29-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 32-13 located in **Section 32.0 "Electrical Characteristics"**.

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

FIGURE 29-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

3: Typical VCAP pin voltage is 1.8V when $VDD \ge VDDMIN$.

29.3 Brown-out Reset (BOR)

The Brown-out Reset module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the Power-up Timer (PWRT) Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 32-22 of **Section 32.0 "Electrical Characteristics"** for specific TFSCM values.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit, continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

29.5 JTAG Interface

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.

Note: Refer to Section 24. "Programming and Diagnostics" (DS70608) of the "dsPIC33E/PIC24E Family Reference Manual" for further information on usage, configuration and operation of the JTAG interface.

29.6 In-Circuit Serial Programming

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the *"dsPIC33E/PIC24E Flash Programming Specification"* (DS70619) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

29.7 In-Circuit Debugger

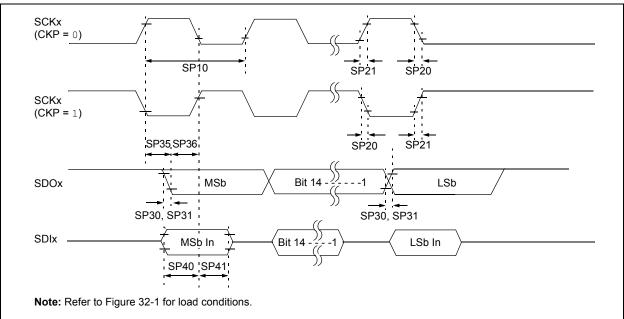
When MPLAB[®] ICD 3 or REAL ICE[™] is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

29.8 Code Protection and CodeGuard™ Security


The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices offer basic implementation of CodeGuard Security that supports only General Segment (GS) security. This feature helps protect individual Intellectual Property in collaborative system designs.

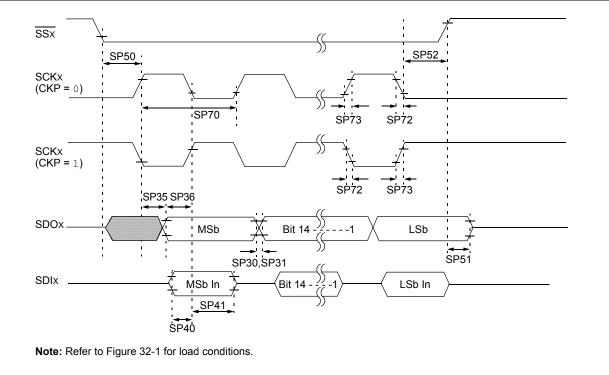
When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IPs reside on the single chip. The code protection features vary depending on the actual dsPIC33E implemented. The following sections provide an overview of these features.

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices do not support Boot Segment (BS), Secure Segment (SS) and RAM protection.

Note: Refer to Section 23. "CodeGuard™ Security" (DS70634) of the "dsPIC33E/ PIC24E Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

FIGURE 32-26: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 32-44:SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Conditions					
SP10	TscP	Maximum SCKx Frequency	_	—	10	MHz	-40°C to +125°C and see Note 3	
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See Parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_	—	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	—	—	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V (see Note 1)} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
		ADC Accuracy (12-Bit Mod	de) – Mea	sureme	nts with	Externa	I VREF+/VREF-
AD20a	Nr	Resolution	12 Data Bits		bits		
AD21a	INL	Integral Nonlinearity	-2		+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD22a	DNL	Differential Nonlinearity	>-1	-	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD23a	Gerr	Gain Error	1.25	1.5	3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD24a	EOFF	Offset Error	1.25	1.52	2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD25a	—	Monotonicity	_	_	_	_	Guaranteed ⁽²⁾
		ADC Accuracy (12-Bit Mo	de) – Mea	asureme	ents with	Interna	I VREF+/VREF-
AD20a	Nr	Resolution	12 data bits			bits	
AD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD22a	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD23a	Gerr	Gain Error	2	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24a	EOFF	Offset Error	2	3	5	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD25a	—	Monotonicity	_			_	Guaranteed ⁽²⁾
		Dynamie	c Perform	nance (1	2-Bit Mo	de)	
AD30a	THD	Total Harmonic Distortion	—	_	-75	dB	
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	_	dB	
AD32a	SFDR	Spurious Free Dynamic Range	80	-	_	dB	
AD33a	Fnyq	Input Signal Bandwidth	—	_	250	kHz	
AD34a	ENOB	Effective Number of Bits	11.09	11.3	_	bits	

TABLE 32-55: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 32-11 for the minimum and maximum BOR values.

2: The Analog-to-Digital conversion result never decreases with an increase in input voltage and has no missing codes.