

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	83
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512gu810-e-pt
Program Memory Type EEPROM Size RAM Size Voltage - Supply (Vcc/Vdd) Data Converters Oscillator Type Operating Temperature Mounting Type Package / Case Supplier Device Package Purchase URL	FLASH - 24K x 16 3V ~ 3.6V A/D 32x10b/12b Internal -40°C ~ 125°C (TA) Surface Mount 100-TQFP 100-TQFP (12x12) https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512gu810-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-69: PORTH REGISTER MAP FOR dsPIC33EPXXXMU814 AND PIC24EPXXXGU814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISH	0E70	TRISH15	TRISH14	TRISH13	TRISH12	TRISH11	TRISH10	TRISH9	TRISH8	TRISH7	TRISH6	TRISH5	TRISH4	TRISH3	TRISH2	TRISH1	TRISH0	FFFF
PORTH	0E72	RH15	RH14	RH13	RH12	RH11	RH10	RH9	RH8	RH7	RH6	RH5	RH4	RH3	RH2	RH1	RH0	XXXX
LATH	0E74	LATH15	LATH14	LATH13	LATH12	LATH11	LATH10	LATH9	LATH8	LATH7	LATH6	LATH5	LATH4	LATH3	LATH2	LATH1	LATH0	XXXX
ODCH	0E76	ODCH15	ODCH14	ODCH13	ODCH12	ODCH11	ODCH10	ODCH9	ODCH8	ODCH7	ODCH6	ODCH5	ODCH4	ODCH3	ODCH2	ODCH1	ODCH0	0000
CNENH	0E78	CNIEH15	CNIEH14	CNIEH13	CNIEH12	CNIEH11	CNIEH10	CNIEH9	CNIEH8	CNIEH7	CNIEH6	CNIEH5	CNIEH4	CNIEH3	CNIEH2	CNIEH1	CNIEH0	0000
CNPUH	0E7A	CNPUH15	CNPUH14	CNPUH13	CNPUH12	CNPUH11	CNPUH10	CNPUH9	CNPUH8	CNPUH7	CNPUH6	CNPUH5	CNPUH4	CNPUH3	CNPUH2	CNPUH1	CNPUH0	0000
CNPDH	0E7C	CNPDH15	CNPDH14	CNPDH13	CNPDH12	CNPDH11	CNPDH10	CNPDH9	CNPDH8	CNPDH7	CNPDH6	CNPDH5	CNPDH4	CNPDH3	CNPDH2	CNPDH1	CNPDH0	0000
ANSELH	0E7E	_	—	—	_	—	—	_			_		_		—		_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-70: PORTJ REGISTER MAP FOR dsPIC33EPXXXMU814 AND PIC24EPXXXGU814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISJ	0E80	TRISJ15	TRISJ14	TRISJ13	TRISJ12	TRISJ11	TRISJ10	TRISJ9	TRISJ8	TRISJ7	TRISJ6	TRISJ5	TRISJ4	TRISJ3	TRISJ2	TRISJ1	TRISJ0	FFFF
PORTJ	0E82	RJ15	RJ14	RJ13	RJ12	RJ12	RJ10	RJ9	RJ8	RJ7	RJ6	RJ5	RJ4	RJ3	RJ2	RJ1	RJ0	XXXX
LATJ	0E84	LATJ15	LATJ14	LATJ13	LATJ12	LATJ11	LATJ10	LATJ9	LATJ8	LATJ7	LATJ6	LATJ5	LATJ4	LATJ3	LATJ2	LATJ1	LATJ0	XXXX
ODCJ	0E86	ODCJ15	ODCJ14	ODCJ13	ODCJ12	ODCJ11	ODCJ10	ODCJ9	ODCJ8	ODCJ7	ODCJ6	ODCJ5	ODCJ4	ODCJ3	ODCJ2	ODCJ1	ODCJ0	0000
CNENJ	0E88	CNIEJ15	CNIEJ14	CNIEJ13	CNIEJ12	CNIEJ11	CNIEJ10	CNIEJ9	CNIEJ8	CNIEJ7	CNIEJ6	CNIEJ5	CNIEJ4	CNIEJ3	CNIEJ2	CNIEJ1	CNIEJ0	0000
CNPUJ	0E8A	CNPUJ15	CNPUJ14	CNPUJ13	CNPUJ12	CNPUJ11	CNPUJ10	CNPUJ9	CNPUJ8	CNPUJ7	CNPUJ6	CNPUJ5	CNPUJ4	CNPUJ3	CNPUJ2	CNPUJ1	CNPUJ0	0000
CNPDJ	0E8C	CNPDJ15	CNPDJ14	CNPDJ13	CNPDJ12	CNPDJ11	CNPDJ10	CNPDJ9	CNPDJ8	CNPDJ7	CNPDJ6	CNPDJ5	CNPDJ4	CNPDJ3	CNPDJ2	CNPDJ1	CNPDJ0	0000
ANSELJ	0E8E	—	—	—	—	—	—	—	_	_	—	_	_	_	—	—	—	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.8 Interfacing Program and Data Memory Spaces

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 architecture uses a 24-bit wide Program Space and a 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 architecture provides two methods by which Program Space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

TABLE 4-77: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address								
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>				
Instruction Access	User	0		PC<22:1>		0				
(Code Execution)			0xx xxxx x	XXX XXX						
TBLRD/TBLWT	User	TB	LPAG<7:0>							
(Byte/Word Read/Write)		0	XXX XXXX	xxxx xxxx xxxx xxxx Data EA<15:0>						
	Configuration	TB	LPAG<7:0>							
		1	XXX XXXX	XXXX XX	*** ****					

FIGURE 4-12: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

REGISTER 8-5:	DMAXSTBH: DMA CHANNEL X START ADDRESS REGISTER B (HIGH)
---------------	---

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
_	_	—	—	—	_	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB<	23:16>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STB<23:16>: Secondary Start Address bits (source or destination)

REGISTER 8-6: DMAXSTBL: DMA CHANNEL x START ADDRESS REGISTER B (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 STB<15:0>: Secondary Start Address bits (source or destination)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				T3CKR<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				T2CKR<6:0>	•		
bit 7							bit 0
R = Readat	ole hit	W = Writable	bit	II = Unimpler	nented hit rea	nd as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nwn
bit 15	Unimplemer	nted: Read as '	0'				
bit 14-8	T3CKR<6:0> (see Table 11	 Assign Timer 1-2 for input pin 	3 External Clo selection nur	ock (T3CK) to tł nbers)	ne Correspond	ding RPn/RPIn F	Pin bits
	1111111 = 	nput tied to RP	127				
	•						
	0000001 = 0000000 =	nput tied to CM nput tied to Vss	P1				
bit 7	Unimplemer	nted: Read as '	0'				
bit 6-0	T2CKR<6:0> (see Table 11	Assign Timer 1-2 for input pin	2 External Closelection nur	ock (T2CK) to tl mbers)	ne Correspond	ding RPn/RPIn F	Pin bits
	11111111 =	nput tied to RP	127				
	0000001 = 	nout tied to CM	P1				
	0000000 =	nput tied to Vss	, , }				

REGISTER 11-4: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				T5CKR<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				T4CKR<6:0>	•		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimpleme	nted: Read as '	0'				
bit 14-8	T5CKR<6:0	>: Assign Timer	5 External Clo	ock (T5CK) to th	he Correspon	ding RPn/RPIn F	Pin bits
	(see Table 1	1-2 for input pin	selection nur	nbers)			
	1111111 =	Input tied to RP	127				
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	5				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-0	T4CKR<6:0 (see Table 1	: Assign Timer 1-2 for input pin	4 External Clo selection nur	ock (T4CK) to tl nbers)	he Correspon	ding RPn/RPIn F	Pin bits
	1111111 =	Input tied to RP	127				
	•						
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	5				

REGISTER 11-5: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				T9CKR<6:0>	•		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				T8CKR<6:0>	•		
bit 7	·						bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-8	T9CKR<6:0>	: Assign Timer	9 External Cl	ock (T9CK) to th	he Correspon	ding RPn/RPIn F	Pin bits
	(see Table 11	-2 for input pin	selection nur	mbers)			
	1111111 = I r	nput tied to RP	127				
	•						
	0000001 = lr	nput tied to CM	P1				
	II = 0000000	nput tied to Vss	5				
bit 7	Unimplemen	ited: Read as '	0'				
bit 6-0	T8CKR<6:0>	: Assign Timer	8 External Cl	ock (T8CK) to th	he Correspon	ding RPn/RPIn F	Pin bits
	(see Table 11	-2 for input pin	selection nur	mbers)			
	1111111 = I r	nput tied to RP	127				
	•						
	0000001 = Ir	nput tied to CM	P1				
	n l = 0000000 = I	nput tied to Vss	5				

REGISTER 11-7: RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6

REGISTER 11-29:	RPINR29: PERIPHERAL	PIN SELECT	INPUT REGISTER 29
------------------------	----------------------------	------------	--------------------------

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				SCK3R<6:0>	>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				SDI3R<6:0>			
bit 7							bit C
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-8	SCK3R<6:0> (see Table 11	-2 for input pin	Clock Input (S selection nur	SCK3) to the Co nbers)	orresponding l	RPn/RPIn Pin bit	ts
	1111111 = lr	nput tied to RP	127	,			
	0000001 = lr	oput tied to CM	P1				
	ii = 0000000	nput tied to Vss	5				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-0	SDI3R<6:0>:	Assign SPI3 D	ata Input (SD	013) to the Corre	esponding RP	n/RPIn Pin bits	
	(see Table 11	-2 for input pin	selection nur	nbers)			
	1111111 = I r	nput tied to RP	127				
	•						
	•						
	0000001 = lr	nput tied to CM	P1				
	il = 0000000	nput tied to Vss	5				

© 2009-2012 Microchip Technology Inc.

16.1 PWM Resources

Many useful resources related to the high-speed PWM are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en554310

16.1.1 KEY RESOURCES

- Section 11. "High-Speed PWM" (DS70645) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- Development Tools

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 16-8: SSEVTCMP: PWM SECONDARY SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SSEVT	CMP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SSEVT	CMP<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

bit 15-0 SSEVTCMP<15:0>: Special Event Compare Count Value bits

REGISTER 16-9: CHOP: PWM CHOP CLOCK GENERATOR REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
CHPCLKEN	_	—	_	_	—	CHOPC	CLK<9:8>	
bit 15		·					bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			CHOPC	CLK<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unk	x = Bit is unknown	
			-· · -					

bit 15	CHPCLKEN: Enable Chop Clock Generator bit
	1 = Chop clock generator is enabled
	0 = Chop clock generator is disabled
bit 14-10	Unimplemented: Read as '0'
bit 9-0	CHOPCLK<9:0>: Chop Clock Divider bits
	The frequency of the chop clock signal is given by the following expression:
	Chop Frequency = FPWM/(CHOP<9:0> + 1)
	Where, FPWM is FP divided by the value based on the PCLKDIV settings.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_	—	_	—	—	AMSK9	AMSK8
bit 15	-						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7							bit 0
Legend:							

bit 15-10 Unimplemented: Read as '0'

R = Readable bit

-n = Value at POR

bit 9-0 AMSKx: Mask for Address bit x Select bit

For 10-Bit Address:

1 = Enables masking for bit Ax of incoming message address; bit match is not required in this position

'0' = Bit is cleared

U = Unimplemented bit, read as '0'

x = Bit is unknown

0 = Disables masking for bit Ax; bit match is required in this position

For 7-Bit Address (I2CxMSK<6:0> only):

W = Writable bit

'1' = Bit is set

1 = Enables masking for bit Ax + 1 of incoming message address; bit match is not required in this position

0 = Disable masking for bit Ax + 1; bit match is required in this position

22.0 USB ON-THE-GO (OTG) MODULE (dsPIC33EPXXXMU8XX AND PIC24EPGU8XX DEVICES ONLY)

- Note 1: This data sheet is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 25. "USB On-The-Go (OTG)" (DS70571) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

22.1 Overview

The Universal Serial Bus (USB) On-The-Go (OTG) module includes the following features:

- USB Full-Speed Support for Host and Device
- Low-Speed Host Support
- USB On-The-Go Support
- Integrated Signaling Resistors
- Integrated Analog Comparators for VBUS Monitoring
- Integrated USB Transceiver
- Hardware Performs Transaction Handshaking
- Endpoint Buffering Anywhere in System RAM
- Integrated DMA Controller to Access System RAM
- Support for all four transfer types:
 - Control
 - Interrupt
 - Bulk Data
 - Isochronous
- Queueing of up to Four Endpoint Transfers
 without Servicing
- USB 5V Charge Pump Controller

The USB module contains the analog and digital components to provide a USB 2.0 full-speed and low-speed embedded host, full-speed device or OTG implementation with a minimum of external components.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), pull-up and pull-down resistors, and the register interface. Figure 22-1 illustrates the block diagram of the USB OTG module.

The device auxiliary clock generator provides the 48 MHz clock required for USB communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the protocol for data transfers. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module.

Note: The implementation and use of the USB specifications and other third party specifications or technology may require a license from various entities, including, but not limited to USB Implementers Forum, Inc. (also referred to as USB-IF). It is your responsibility to obtain more information regarding any applicable licensing obligations.

22.2 Clearing USB OTG Interrupts

Unlike device level interrupts, the USB OTG interrupt status flags are not freely writable in software. All USB OTG flag bits are implemented as hardware set-only bits. Additionally, these bits can only be cleared in software by writing a '1' to their locations (i.e., performing a BSET instruction). Writing a '0' to a flag bit (i.e., a BCLR instruction) has no effect.

Note: Throughout this section, a bit that can only be cleared by writing a '1' to its location is referred to as "Write '1' to clear bit". In register descriptions, this function is indicated by the descriptor, "K".

REGISIER	22-4: UXSI	AI: 038 314	105 REGIS	IER			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_		—	—	—	—
bit 15							bit 8
R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	U-0	U-0
	ENDPT	<3:0> ⁽²⁾		DIR	PPBI ⁽¹⁾		_
bit 7							bit 0
Legend:		U = Unimplen	nented bit, read	d as '0'			
R = Readable	e bit	W = Writable	bit	HSC = Hardw	are Settable/C	Clearable bit	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 7-4	Unimplemented: Read as '0' ENDPT<3:0>: Last Endpoint Activity Number bits (represents the number of the endpoint BDT updated by the last USB transfer) ⁽²⁾ 1111 = Endpoint 15 1110 = Endpoint 14 • 0001 = Endpoint 1 0000 = Endpoint 0						
bit 3	 DIR: Last Buffer Descriptor Direction Indicator bit 1 = The last transaction was a transmit transfer (TX) 0 = The last transaction was a receive transfer (RX) 						
bit 2	 PPBI: Ping-Pong Buffer Descriptor Pointer Indicator bit⁽¹⁾ 1 = The last transaction was to the ODD buffer descriptor bank 0 = The last transaction was to the EVEN buffer descriptor bank 						
bit 1-0	Unimplemen	ted: Read as ')'				

Note 1: This bit is only valid for endpoints with available EVEN and ODD buffer descriptor registers.

2: In Host mode, all transactions are processed through Endpoint 0 and the Endpoint 0 BDTs. Therefore, ENDPT<3:0> will always read as '0000'.

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 24-5: RSCON: DCI RECEIVE SLOT CONTROL REGISTE	REGISTER 24-5:	RSCON: DCI RECEIVE SLOT CONTROL	REGISTER
--	----------------	---------------------------------	----------

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RSE7	RSE6	RSE5	RSE4	RSE3	RSE2	RSE1	RSE0

bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0

bit 7

RSE<15:0>: Receive Slot Enable bits

 $\ensuremath{\mathtt{1}}$ = CSDI data is received during the individual time slot n

 $_{\rm 0}$ = CSDI data is ignored during the individual time slot n

REGISTER 24-6: TSCON: DCI TRANSMIT SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| TSE7 | TSE6 | TSE5 | TSE4 | TSE3 | TSE2 | TSE1 | TSE0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

TSE<15:0>: Transmit Slot Enable Control bits

1 = Transmit buffer contents are sent during the individual time slot n

0 = CSDO pin is tri-stated or driven to logic '0' during the individual time slot, depending on the state of the CSDOM bit

25.0 COMPARATOR MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 26. "Op Amp/ Comparator" (DS70357) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The comparator module provides three comparators that can be configured in different ways. As shown in Figure 25-1, individual comparator options are specified by the comparator module's Special Function Register (SFR) control bits.

These options allow users to:

- Select the edge for trigger and interrupt generation
- Configure the comparator voltage reference and band gap
- · Configure output blanking and masking

The comparator operating mode is determined by the input selections (i.e., whether the input voltage is compared to a second input voltage or to an internal voltage reference).

FIGURE 25-1: COMPARATOR I/O OPERATING MODES

FIGURE 26-1: RTCC BLOCK DIAGRAM

REGISTER 26-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—	MINTEN<2:0>			MINONE<3:0>				
bit 15							bit 8	
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—	SECTEN<2:0>				SECON	IE<3:0>		
bit 7							bit 0	
Lagand								

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

Base Instr #	Assembly Mnemonic	/ Assembly Syntax		Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
25	DAW	DAW Wn		Wn = decimal adjust Wn	1	1	С
26	DEC	DEC f f=f-1		1	1	C,DC,N,OV,Z	
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm, Wn(1)	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	#lit15,Expr ⁽¹⁾	Do code to PC + Expr, lit15 + 1 times	2	2	None
		DO	Wn,Expr ⁽¹⁾	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd ⁽¹⁾	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm, Acc, Wx, Wy, Wxd ⁽¹⁾	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH Wns, Wnd Swap Wns with Wnd		1	1	None	
35	FBCL	FBCL	Ws,Wnd	, Wnd Find Bit Change from Left (MSb) Side		1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	4	None
		GOTO	Wn	Go to indirect	1	4	None
		GOTO.L	Wn	Go to indirect (long address)	1	4	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	SFA
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn, Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd ⁽¹⁾	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 30-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1:

This instruction is available in dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only. Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. 2:

FIGURE 32-16: SPI1, SPI3 AND SPI4 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 32-34: SPI1, SPI3 AND SPI4 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	TscP	Maximum SCKx Frequency	—		15	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	—	_		ns	See Parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	-	_	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	-	_	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

1:128

70

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 17.0 "Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMU806/810/814 Devices Only)"	Reordered the bit values for the OUTFNC<1:0> bits and updated the default POR bit value to 'x' for the HOME, INDEX, QEB, and QEA bits in the QEI I/O Control Register (see Register 17-2).
Section 23.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated VREFL in the ADC1 and ADC2 Module Block Diagram (see Figure 23-1).
Section 25.0 "Comparator	Added Note 1 to the Comparator I/O Operating Modes (see Figure 25-1).
Module"	Removed the CLPWR bit (CMxCON<12>) (see Register 25-2).
Section 29.0 "Special Features"	Added a new first paragraph to Section 29.1 "Configuration Bits"
Section 30.0 "Instruction Set Summary"	The following instructions have been updated (see Table 30-2):
	• BKA
	• CALL
	• CPBGT
	• CPBLT
	• CPBNE
	• GOTO
	• MOVPAG
	• MUL
	• RCALL
	• RETFIE
	• RETLW
	• RETURN
	• TBLRDH
	• TBLRDL
Section 32.0 "Electrical Characteristics"	Updated the Typical and Maximum values for DC Characteristics: Operating Current (IDD) (see Table 32-5).
	Updated the Typical and Maximum values for DC Characteristics: Idle Current (IIDLE) (see Table 32-6).
	Updated the Maximum values for DC Characteristics: Power-down Current (IPD) (see Table 32-7).
	Updated the Maximum values for DC Characteristics: Doze Current (IDOZE) (see Table 32-8).
	Updated the parameter numbers for Internal FRC Accuracy (see Table 32-19).
	Updated the parameter numbers and the Typical value for parameter F21b for Internal RC Accuracy (see Table 32-20).
	Updated the Minimum value for PM6 and the Typical and Maximum values for PM7 in Parallel Master Port Read Requirements (see Table 32-52).
	Added DMA Module Timing Requirements (see Table 32-54).