

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	83
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512gu810-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-12: PWM REGISTER MAP FOR dsPIC33EPXXX(MC/MU)806/810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0C00	PTEN		PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SY	NCSRC<	2:0>		SEV	TPS<3:0>		0000
PTCON2	0C02	_		_	_	_	—	_	_	_	_	_	—	—		PCLKDIV<2:	0>	0000
PTPER	0C04								PTPER<15	5:0>								FFF8
SEVTCMP	0C06								SEVTCMP<	15:0>								0000
MDC	0C0A								MDC<15:	0>								0000
STCON	0C0E	_	_	_	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SY	NCSRC<	2:0>		SEV	TPS<3:0>		0000
STCON2	0C10	_		_	_	—	_	—	—	_	_	_	_	—	I	PCLKDIV<2:	0>	0000
STPER	0C12								STPER<15	5:0>								FFF8
SSEVTCMP	0C14							:	SSEVTCMP<	:15:0>								0000
CHOP	0C1A	CHPCLKEN		_	—	—	—					CHOPC	_K<9:0>					0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: PWM GENERATOR 1 REGISTER MAP FOR dsPIC33EPXXX(MC/MU)806/810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0C20	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	:1:0>	DTCP		MTBS	CAM	XPRES	IUE	0000
IOCON1	0C22	PENH	PENL	POLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDAT<1:0> CLDAT<1:0> SWAP OSYNC											0000			
FCLCON1	0C24	IFLTMOD		CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> FLTPOL FLTMOD<1:0>										0000				
PDC1	0C26		PDC1<15:0> 00									0000						
PHASE1	0C28		PHASE1<15:0> 000									0000						
DTR1	0C2A	_	— DTR1<13:0>								0000							
ALTDTR1	0C2C	_	_						A	LTDTR1<1	3:0>							0000
SDC1	0C2E								SDC1<15:0)>								0000
SPHASE1	0C30							ç	SPHASE1<1	5:0>								0000
TRIG1	0C32								TRGCMP<1	5:0>								0000
TRGCON1	0C34		TRGDI	V<3:0>		_	_	_	_	_	_			TRG	STRT<5:0	>		0000
PWMCAP1	0C38							F	WMCAP1<1	5:0>								0000
LEBCON1	0C3A	PHR	R PHF PLR PLF FLTLEBEN CLLEBEN — — — — BCH BCL BPHH BPHL BPLH BPLL 000									0000						
LEBDLY1	0C3C	_	-	_	_		•	•	•		LEB<11	:0>			•	•	•	0000
AUXCON1	0C3E	_		_	_		BLANKS	SEL<3:0>		_			CHOPS	EL<3:0>		CHOPHEN	CHOPLEN	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

	• · .	••••••	.,	-, 0/										-	_		-									
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets								
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	_	UEN<	<1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000								
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110								
U1TXREG	0224	_	_	_	_	—	_	_				UART	k Transmit F	Register				XXXX								
U1RXREG	0226	_	_	_		—	_	—				UART	xReceive R	egister				0000								
U1BRG	0228							Baud	Rate Gen	erator Pres	scaler							0000								
U2MODE	0230	UARTEN		USIDL	IREN	RTSMD	—	UEN<	<1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000								
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110								
U2TXREG	0234	—				—	—	—				UART	k Transmit F	Register				XXXX								
U2RXREG	0236	_	UARTx Receive Register								0000															
U2BRG	0238							Baud	Rate Gen	erator Pres	scaler							0000								
U3MODE	0250	UARTEN	_	USIDL	IREN	RTSMD	—	UEN<	<1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000								
U3STA	0252	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110								
U3TXREG	0254	—	_	_	_	—	_	—				UART	x Transmit F	Register				xxxx								
U3RXREG	0256	—	—	—	—	—	_					UART	x Receive R	legister				0000								
U3BRG	0258							Baud	Rate Gen	erator Pres	scaler	-	-				-	0000								
U4MODE	02B0	UARTEN	_	USIDL	IREN	RTSMD	_	UEN<	<1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000								
U4STA	02B2	UTXISEL1	ISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN UTXBF TRMT URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA								0110															
U4TXREG	02B4	_	_	_	_	_	_	_				UART	k Transmit F	Register				xxxx								
U4RXREG	02B6	_	_	—	_	-	_	—				UART	x Receive R	legister				0000								
U4BRG	02B8							Baud	Rate Gen	erator Pres	scaler							0000								

TABLE 4-23: UART1, UART2, UART3 and UART4 REGISTER MAP

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 5-2:	NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER
---------------	--

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_	—	—
bit 15	•						bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMAE)RU<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkı	nown

bit 15-8	Unimplemented: Read as '0'
511 15-0	

bit 7-0 **NVMADRU<7:0>:** Nonvolatile Memory Upper Write Address bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-3: NVMADR: NONVOLATILE MEMORY ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit	t	U = Unimpler	mented bit, read	d as '0'	

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 NVMADR<15:0>: Nonvolatile Memory Write Address bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMKE	EY<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register (write-only) bits

6.1 Resets Resources

Many useful resources related to Resets are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en554310

6.1.1 KEY RESOURCES

- Section 8. "Reset" (DS70602) in the "dsPIC33E/ PIC24E Family Reference Manual"
- · Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- · Development Tools

6.2 RCON Control Register

All types of device Resets set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR and BOR bits (RCON<1:0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				INT3R<6:0>			
bit 15	ŀ						bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				INT2R<6:0>			
bit 7							bit C
Legend:							
R = Readab		W = Writable		U = Unimplem			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	INT3R<6:0>: (see Table 11	I-2 for input pin	al Interrupt 3 (selection num	,	rresponding I	RPn/RPIn Pin bit	ts
bit 15 bit 14-8	INT3R<6:0> (see Table 11 1111111 = I	: Assign Externa I-2 for input pin nput tied to RP ⁻ nput tied to CM	al Interrupt 3 (selection num 127 P1	,	rresponding I	RPn/RPIn Pin bil	ts
	INT3R<6:0> (see Table 11 1111111 = I	: Assign Externa I-2 for input pin nput tied to RP1	al Interrupt 3 (selection num 127 P1	,	rresponding I	RPn/RPIn Pin bil	is

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

17.2 QEI Control Registers

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIEN		QEISIDL		PIMOD<2:0>	[1]	IMV<	1:0> (2)
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	-	INTDIV<2:0> ⁽³⁾		CNTPOL	GATEN		<1:0>
bit 7		-					bit
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14	0 = Module co	ounters are ena ounters are disa ted: Read as '0	abled, but SF	Rs can be read	d or written to		
	-						
bit 13	1 = Discontine	I Stop in Idle M ues module ope s module opera	eration when	device enters I lode	dle mode		
bit 12-10				ion Mode Selec	t bits ⁽¹⁾		
	101 = Resets 100 = Secon registe 011 = First ir registe 010 = Next ir 001 = Every	b Count mode for a the position co d index event a r ndex event after ndex input even index input even	ounter when fter home event fter home event t initializes the	ounter the position cou ent initializes po nt initializes po ne position courter position counter	osition counter osition counter oter with conten	with contents o	f the QEIxIC of the QEIxI
bit 9-8	IMV<1:0>: Ind	dex Match Valu	e bits ⁽²⁾				
	10 = Index n 01 = Index n	natch occurs wh natch occurs wh natch occurs wh nput event does	nen QEB = 1 nen QEB = 0	and QEA = 0 and QEA = 1			
bit 7		ted: Read as '0					

REGISTER 17-1: QEIxCON: QEIx CONTROL REGISTER

- 2: When CCM = 00, and QEA and QEB values match Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset.
 - 3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

21.0 ENHANCED CAN (ECAN™) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70353) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

21.1 Overview

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices contain two ECAN modules.

The ECANx module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN Specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN Specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details. The ECANx module features are as follows:

- Implementation of the CAN Protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and Extended Data Frames
- 0-8 Bytes Data Length
- Programmable Bit Rate up to 1 Mbit/sec
- Automatic Response to Remote Transmission Requests
- Up to 8 Transmit Buffers with Application-Specific Prioritization and Abort Capability (each buffer can contain up to 8 bytes of data)
- Up to 32 Receive Buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 Full (standard/extended identifier) Acceptance Filters
- Three Full Acceptance Filter Masks
- DeviceNet[™] Addressing Support
- Programmable Wake-up Functionality with Integrated Low-Pass Filter
- Programmable Loopback mode Supports Self-Test Operation
- Signaling via Interrupt Capabilities for all CAN Receiver and Transmitter Error States
- · Programmable Clock Source
- Programmable Link to Input Capture Module (IC2 for the ECAN1 and ECAN2 modules) for Time-Stamping and Network Synchronization
- · Low-Power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

REGISTER 22-15: UxIR: USB INTERRUPT STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 15 bit 8									

R/K-0, HS	R-0	R/K-0, HS					
STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	DETACHIF
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	K = Write '1' to clear bit	HS = Hardware Settable bit				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-8	Unimplemented: Read as '0'
bit 7	STALLIF: STALL Handshake Interrupt bit
	1 = A STALL handshake was sent by the peripheral device during the handshake phase of the transaction in Device mode
	0 = A STALL handshake has not been sent
bit 6	ATTACHIF: Peripheral Attach Interrupt bit
	1 = A peripheral attachment has been detected by the module; set if the bus state is not SE0 and there has been no bus activity for 2.5 μ s
	0 = No peripheral attachment is detected
bit 5	RESUMEIF: Resume Interrupt bit
	1 = A K-State is observed on the D+ or D- pin for 2.5 μs (differential '1' for low speed, differential '0' for full speed)
	0 = No K-State is observed
bit 4	IDLEIF: Idle Detect Interrupt bit
	 1 = Idle condition is detected (constant Idle state of 3 ms or more) 0 = No Idle condition is detected
bit 3	TRNIF: Token Processing Complete Interrupt bit
	 1 = Processing of current token is complete; read USTAT register for endpoint BDT information 0 = Processing of current token is not complete; clear USTAT register or load next token from STAT
bit 2	SOFIF: Start-of-Frame Token Interrupt bit
	1 = Start-of-Frame threshold is reached by the host0 = No Start-of-Frame token threshold is reached
bit 1	UERRIF: USB Error Condition Interrupt bit
	1 = An unmasked error condition has occurred; only error states enabled in the UxEIE register can set this bit
	0 = No unmasked error condition has occurred
bit 0	DETACHIF: Detach Interrupt bit
	 1 = A peripheral detachment has been detected by the module 0 = No peripheral detachment has been detected

24.0 DATA CONVERTER INTERFACE (DCI) MODULE

- Note 1: This data sheet is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 20. Data Converter Interface (DCI)" (DS70356) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

24.1 Module Introduction

The Data Converter Interface (DCI) module allows simple interfacing of devices, such as audio coder/ decoders (Codecs), ADC and D/A Converters. The following interfaces are supported:

- Framed Synchronous Serial Transfer (Single or Multi-Channel)
- Inter-IC Sound (I²S) Interface
- AC-Link Compliant mode

General features include:

- Programmable word size up to 16 bits
- Supports up to 16 time slots, for a maximum frame size of 256 bits
- Data buffering for up to 4 samples without CPU overhead

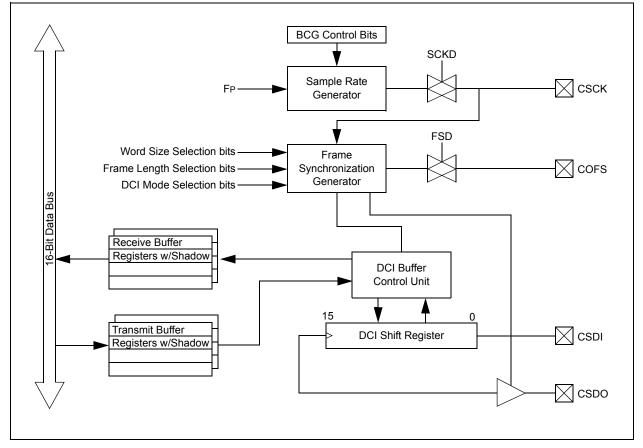
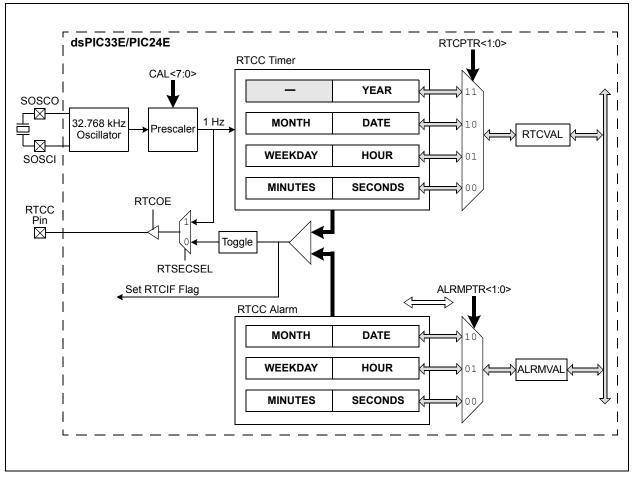



FIGURE 24-1: DCI MODULE BLOCK DIAGRAM

FIGURE 26-1: RTCC BLOCK DIAGRAM

26.1 Writing to the RTCC Timer

Note: To allow the RTCC module to be clocked by the secondary crystal oscillator, the Secondary Oscillator Enable (LPOSCEN) bit in the Oscillator Control (OSCCON<1>) register must be set. For further details, refer to Section 7. "Oscillator" (DS70580) in the "dsPIC33E/PIC24E Family Reference Manual".

The user application can configure the time and calendar by writing the desired seconds, minutes, hours, weekday, date, month and year to the RTCC registers. Under normal operation, writes to the RTCC Timer registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To write to the RTCC register, the RTCWREN bit (RCFGCAL<13>) must be set. Setting the RTCWREN bit allows writes to the RTCC registers. Conversely, clearing the RTCWREN bit prevents writes.

To set the RTCWREN bit, the following procedure must be executed. The RTCWREN bit can be cleared at any time:

- 1. Write 0x55 to NVMKEY.
- 2. Write 0xAA to NVMKEY.
- 3. Set the RTCWREN bit using a single-cycle instruction.

The RTCC module is enabled by setting the RTCEN bit (RCFGCAL<15>). To set or clear the RTCEN bit, the RTCWREN bit (RCFGCAL<13>) must be set.

If the entire clock (hours, minutes and seconds) needs to be corrected, it is recommended that the RTCC module should be disabled to avoid coincidental write operation when the timer increments. Therefore, it stops the clock from counting while writing to the RTCC Timer register.

26.2 RTCC Resources

Many useful resources related to RTCC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en554310

26.2.1 KEY RESOURCES

- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS70584) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- Development Tools

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
_	—	—	—	—	—	RTSECSEL ⁽¹⁾	PMPTTL	
bit 7		-					bit 0	
Legend:								
R = Readable	= Readable bit W = Writable bit U = Unimplemented bit, read a			d as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknow	= Bit is unknown	

REGISTER 26-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

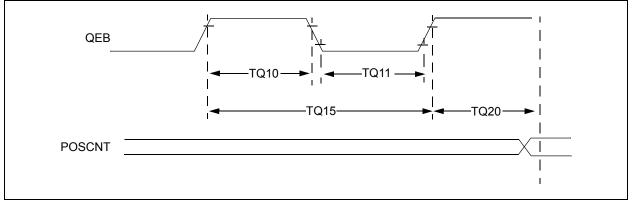
bit 15-2	Unimplemented: Read as '0'
bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
	 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin
bit 0	Not used by the RTCC module.

Not used by the RTCC module.

Note 1: To enable the actual RTCC output, the RTCOE bit (RCFGCAL<10>) must be set.

DC CHA	RACTER	ISTICS	Standar (unless Operatin	otherwi	ise stat	anditions: 3.0V to 3.6V ed) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
	Voi	Output Low Voltage I/O Pins: 4x Sink Driver Pins – All I/O Pins except OSC2 and SOSCO		_	0.4	V	$IOL \le 10 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
DO10 Vol	Output Low Voltage I/O Pins: 8x Sink Driver Pins – OSC2 and SOSCO	_	_	0.4	V	Iol \leq 15 mA, Vdd = 3.3V		
D000	Maria	Output High Voltage I/O Pins: 4x Sink Driver Pins – All I/O Pins except OSC2 and SOSCO	2.4	_	_	V	ІОН ≥ -10 mA, VDD = 3.3V	
DO20	Vон	Output High Voltage I/O Pins: 8x Sink Driver Pins – OSC2 and SOSCO	2.4	_	_	V	ІОн ≥ -15 mA, VDD = 3.3V	
		Output High Voltage	1.5 ⁽¹⁾	_	—		IOH \ge -14 mA, VDD = 3.3V	
		4x Sink Driver Pins – All I/O Pins	2.0 ⁽¹⁾	—	—	V	ІОН ≥ -12 mA, VDD = 3.3V	
DO20A	Vout	except OSC2 and SOSCO	3.0 ⁽¹⁾	_	_		$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
DOZUA	VUHI	Output High Voltage	1.5 ⁽¹⁾		_		$IOH \ge -22 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
		I/O Pins: 8x Sink Driver Pins – OSC2 and	2.0 ⁽¹⁾		_	V	IOH ≥ -18 mA, VDD = 3.3V	
		SOSCO	3.0 ⁽¹⁾		_]	IOH ≥ -10 mA, VDD = 3.3V	

Note 1: Parameters are characterized, but not tested.


TABLE 32-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS		Standard Operating Conditions: 3.0V to $3.6V^{(2)}$ (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param.	Symbol	Characteristic		Min. ⁽¹⁾	Тур.	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low		2.7		2.9	V	Vdd

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have degraded performance. Device functionality is tested but not characterized.

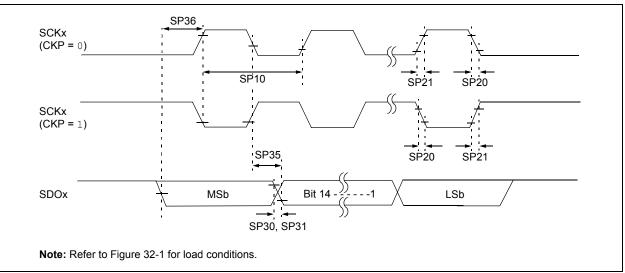


TABLE 32-26: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characte	eristic ⁽¹⁾	Min. Typ. Max. Units Conditions				Conditions
TQ10	TtQH	TQCK High Time	Synchronous, with Prescaler	-			ns	Must also meet Parameter TQ15
TQ11	TtQL	TQCK Low Time	Synchronous, with Prescaler	[Greater of (12.5 or 0.5 Tcy)/N] + 25	_	_	ns	Must also meet Parameter TQ15
TQ15	TtQP	TQCP Input Period	Synchronous, with Prescaler	[Greater of (25 or Tcy)/N] + 50	_	_	ns	
TQ20	TCKEXTMRL	Delay from Exte Clock Edge to T		—	1	Тсү	_	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 32-24: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 32-42: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$			
Param.	aram. Symbol Characteristic ⁽¹⁾ Min. Typ. ⁽²⁾ Max. Units Condition				Conditions		
SP10	TscP	Maximum SCKx Frequency		_	15	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	-	—		ns	See Parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	-	—		ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	-	—	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	-	—		ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	-	6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

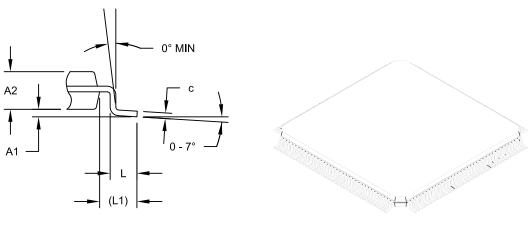
- **3:** The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

TABLE 32-46:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	TscP	Maximum SCKx Input Frequency	_	_	11	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx \downarrow Input	120	—	_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output, High-Impedance	10	—	50	ns	See Note 4	
SP52	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	—	_	ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.


3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

NOTES:

144-Lead Plastic Thin Quad Flatpack (PH)-16x16x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

	MILLIMETERS					
Dimens	MIN	NOM	MAX			
Number of Pins	N	144				
Lead Pitch	е	0.40 BSC				
Overall Height	A	-	-	1.20		
Molded PackageThickness	A2	0.95	1.00	1.05		
Standoff	A1	0.05	-	0.15		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Overall Width	D	18.00 BSC				
Overall Length	E	18.00 BSC				
Molded Body Width	D1	16.00 BSC				
Molded Body Length	E1	16.00 BSC				
Lead Thickness	С	0.09 - 0.20				
Lead Width	b	0.13	-	0.23		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-155B Sheet 2 of 2

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 17.0 "Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMU806/810/814 Devices Only)"	Reordered the bit values for the OUTFNC<1:0> bits and updated the default POR bit value to 'x' for the HOME, INDEX, QEB, and QEA bits in the QEI I/O Control Register (see Register 17-2).
Section 23.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated VREFL in the ADC1 and ADC2 Module Block Diagram (see Figure 23-1).
Section 25.0 "Comparator Module"	Added Note 1 to the Comparator I/O Operating Modes (see Figure 25-1). Removed the CLPWR bit (CMxCON<12>) (see Register 25-2).
Section 29.0 "Special Features"	Added a new first paragraph to Section 29.1 "Configuration Bits"
Section 30.0 "Instruction Set Summary"	The following instructions have been updated (see Table 30-2): BRA CALL CPBEQ CPBGT CPBLT CPBNE GOTO MOVPAG MUL RCALL RETFIE RETFIE RETLW RETURN TBLRDH TBLRDH
Section 32.0 "Electrical Characteristics"	 TBLRDL Updated the Typical and Maximum values for DC Characteristics: Operating Current (IDD) (see Table 32-5). Updated the Typical and Maximum values for DC Characteristics: Idle Current (IDLE) (see Table 32-6). Updated the Maximum values for DC Characteristics: Power-down Current (IPD) (see Table 32-7). Updated the Maximum values for DC Characteristics: Doze Current (IDOZE) (see Table 32-8). Updated the parameter numbers for Internal FRC Accuracy (see Table 32-19). Updated the parameter numbers and the Typical value for parameter F21b for Internal RC Accuracy (see Table 32-20). Updated the Minimum value for PM6 and the Typical and Maximum values for PM7 in Parallel Master Port Read Requirements (see Table 32-52). Added DMA Module Timing Requirements (see Table 32-54).

SPI1, SPI3 and SPI4 Slave Mode (Full-Duplex,	
CKE = 0, CKP = 1, SMP = 0)535	5
SPI1, SPI3 and SPI4 Slave Mode (Full-Duplex,	
CKE = 1, CKP = 0, SMP = 0)531	
SPI1, SPI3 and SPI4 Slave Mode (Full-Duplex,	
CKE = 1, CKP = 1, SMP = 0)533	3
SPI2 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)541	
SPI2 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)540)
SPI2 Master Mode (Half-Duplex, Transmit Only)539)
SPI2 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)549)
SPI2 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)547	7
SPI2 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)543	3
SPI2 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)545	5
Timer1 External Clock Requirements	
Timer2, Timer4, Timer6, Timer8 External	
Clock Requirements)
Timer3, Timer5, Timer7, Timer9 External	
Clock Requirements)
UARTx I/O	
USB OTG (dsPIC33EPXXXMU8XX,	
PIC24EPXXXGU8XX Devices)555	5

U

UARTx
Control Registers
Helpful Tips
Resources
Universal Asynchronous Receiver
Transmitter (UART) 353
USB On-The-Go (OTG)
Clearing Interrupts
Control Registers
Overview
Resources
V
Voltage Regulator (On-Chip) 481
W
Watchdog Timer (WDT)
Programming Considerations
WWW Address
WWW, On-Line Support 20