

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	83
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512gu810t-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. "Program Memory" (DS70613) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The device architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The device program address memory space is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from table operation or data space remapping as described in **Section 4.8 "Interfacing Program and Data Memory Spaces"**.

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The device program memory map is shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 DEVICES⁽¹⁾

	Ā	GOTO Instruction ⁽²⁾	GOTO Instruction ⁽²⁾	0x000000
		Reset Address ⁽²⁾	Reset Address ⁽²⁾	0x000002
		Interrupt Vector Table	Interrupt Vector Table	0x000004 0x0001FE
ry Space	General Segment	User Program Flash Memory (87552 instructions)	User Program Flash Memory (175104 instructions)	0x000200 0x02ABFE 0x02AC00
emo	Ŭ	Unimplemented		0x0557FE
er M		(Read '0's)	Unimplemented (Read '0's)	0x055800
Š	Ŧ	Auxiliary Program	Auxiliary Program	0x7FBFFE 0x7FC000
	mer	Flash Memory	Flash Memory	0x7FFFF8
	y Seç	Auxiliary Interrupt Vector	Auxiliary Interrupt Vector	0x7FFFFA
	ciliar	GOTO Instruction ⁽²⁾	GOTO Instruction ⁽²⁾	0x7FFFFC
V	¶¶,	Reset Address ⁽²⁾	Reset Address ⁽²⁾	0x7FFFFE
Á				0x800000
		Reserved	Reserved	
ė				0xF7FFFE
pac		Device Configuration Registers	Device Configuration Registers	0xF80000
ory S				0xF80014
Jemo		Reserved	Reserved	0xF9FFFE
ration 1		Write Latch	Write Latch	0xFA0000 0xFA00FE
nfigu		Reserved	Reserved	0xFA0100 0xFEFFFF
ŏ		DEVID (2 Words)	DEVID (2 Words)	0xFF0000 0xFF0002
		Reserved	Reserved	
•				0xFFFFFE

Note 1: Memory areas are not shown to scale.

2: The Reset location is controlled by the Reset Target Vector Select bit, RSTPRI (FICD<2>). See Section 29.0 "Special Features" for more information.

4.8.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>).

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>), is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-13: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70609) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33EPXXX(GP/MC/MU)806/810/ 814 and PIC24EPXXX(GP/GU)810/814 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data either in blocks or 'rows' of 128 instructions (384 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 1024 instructions (3072 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

NOTES:

11.4.4.2 Virtual Connections

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices support virtual (internal) connections to the output of the comparator modules, CMP1OUT, CMP2OUT and CMP3OUT (see Figure 25-1 in Section 25.0 "Comparator Module"). In addition, dsPIC33EPXXXMU806/810/814 devices support virtual connections to the filtered QEI module inputs, FINDX1, FHOME1, FINDX2 and FHOME2 (see Figure 17-1 in Section 17.0 "Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXX(MC/ MU)8XX Devices Only)".

Virtual connections provide a simple way of interperipheral connection without utilizing a physical pin. For example, by setting the FLT1R<6:0> bits of the RPINR12 register to the value of `b000001, the output of the analog comparator, CMP1OUT, will be connected to the PWM Fault 1 input, which allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device. Virtual connection to the QEI module allows peripherals to be connected to the QEI digital filter input. To utilize this filter, the QEI module must be enabled, and its inputs must be connected to a physical RPn/RPIn pin. Example 11-2 illustrates how the input capture module can be connected to the QEI digital filter.

11.4.4.3 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn/RPIn pins is possible. This includes both many-to-one and one-tomany mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

EXAMPLE 11-2: CONNECTING IC1 TO HOME1 DIGITAL FILTER INPUT ON PIN 3 OF THE dsPIC33EP512MU810 DEVICE

RPINR15 = 0x5600; /* Connect the QEI1 HOME1 input to RP86 (pin 3) */
RPINR7 = 0x009; /* Connect the IC1 input to the digital filter on the FHOME1 input */
QEI1IOC = 0x4000; /* Enable the QEI digital filter */
QEI1CON = 0x8000; /* Enable the QEI module */

REGISTER 11-18: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17 (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				HOME2R<6:0>	.(1)		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INDX2R<6:0>(1)		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	U = Unimplen	nented bit, rea	ad as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown
	1111111 =	Input tied to RP [*] Input tied to CM Input tied to Vss	127 P1				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-0	INDX2R<6:0 (see Table 1 1111111 =)	D>: Assign QEI2 1-2 for input pin Input tied to RP ² Input tied to CM	INDEX2 (IND selection num 127 P1	0X2) to the Corr nbers)	responding RI	Pn/RPIn Pin bits ⁱ	(1)
	00000000 =	Input tied to Vss	;				

Note 1: These bits are available on dsPIC33EPXXX(MC/MU)806/810/814 devices only.

13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70362) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)
- ADC2 Event Trigger (Timer4/5 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2, Timer4, Timer6 or Timer8 is the least significant word; Timer3, Timer5, Timer7 or Timer9 is the most significant word of the 32-bit timers.

Note: For 32-bit operation, T3CON, T5CON, T7CON and T9CON control bits are ignored. Only T2CON, T4CON, T6CON and T8CON control bits are used for setup and control. Timer2, Timer4, Timer6 and Timer8 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3, Timer5, Ttimer7 and Timer9 interrupt flags.

A block diagram for an example 32-bit timer pair is shown Figure 13-3.

Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	ИР<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read a				d as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown		

REGISTER 16-20: TRIGx: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER

bit 15-0 TRGCMP<15:0>: PWM Primary Trigger Control Value bits

When the primary PWM functions in local time base, this register contains the compare values that can trigger the ADC module.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0				
PHR	PHF	PLR	PLF	FLILEBEN	CLLEBEN	—	—				
bit 15							bit 8				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	—	BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL				
bit 7							bit 0				
1											
Legena: P = Peadable bit $W = Writable bit$ $U = Unimplemented bit read as '0'$											
-n = Value at P		'1' = Bit is set	JIL	0' = Bit is cle	ared	as u v = Bit is unkn	own				
	OK	I – DILIS SEL			aleu		lowin				
bit 15	PHR: PWMxH	Rising Edge	rigger Enable	e bit							
	1 = Rising edg	ge of PWMxH v	vill trigger Lea	ading-Edge Bla	inking counter						
	0 = Leading-E	dge Blanking i	gnores rising	edge of PWM	κΗ						
DIT 14	1 - Falling od		vill trigger Enabl	e DII ading Edgo Bl	nking countor						
	0 = Leading-E	Edge Blanking i	gnores falling	edge of PWM	xH						
bit 13	PLR: PWMxL	Rising Edge T	rigger Enable	e bit							
	1 = Rising edg	ge of PWMxL w	/ill trigger Lea	ading-Edge Bla	nking counter						
	0 = Leading-E	Edge Blanking i	gnores rising	edge of PWM	٢L						
bit 12	PLF: PWMxL	Falling Edge T	rigger Enable	e bit adina Edao Dia	nking counter						
	0 = Leading-E	ge of Profinition v Edge Blanking i	anores falling	l edge of PWM	xL						
bit 11	FLTLEBEN: F	ault Input Lead	ding-Edge Bla	anking Enable I	bit						
	1 = Leading-E 0 = Leading-E	Edge Blanking i Edge Blanking i	s applied to s s not applied	elected Fault in to selected Fa	nput ult input						
bit 10	CLLEBEN: C	urrent-Limit Lea	ading-Edge B	lanking Enable	e bit						
	1 = Leading-E	Edge Blanking i	s applied to s	elected current	t-limit input						
	0 = Leading-E	Edge Blanking i	s not applied	to selected cur	rent-limit input						
bit 9-6	Unimplement	ted: Read as '0)'		(1)						
bit 5	BCH: Blanking	g in Selected B	lanking Signa	al High Enable	bit ⁽¹⁾	ted blenking of	an al ia biab				
	1 = State blanking	na when select	ed blanking s	Fault input sigr	iais) when selec	cled blanking si	gnai is nign				
bit 4	BCL: Blanking	g in Selected B	lanking Signa	al Low Enable I	oit ⁽¹⁾						
	1 = State blan	king (of current	t-limit and/or	Fault input sigr	als) when seled	ted blanking si	gnal is low				
	0 = No blankir	ng when select	ed blanking s	ignal is low							
bit 3	BPHH: Blanki	ing in PWMxH	High Enable I	bit							
	1 = State blan	iking (of curren) na when PWMs	t-limit and/or	Fault input sigr	als) when PWM	IxH output is hi	gh				
bit 2	BPHL: Blanki	ng in PWMxH l	_ow Enable b	oit							
	1 = State blan 0 = No blankir	king (of current	t-limit and/or (H output is lo	Fault input sigr	nals) when PWM	1xH output is lo	W				
bit 1	BPLH: Blanki	ng in PWMxL F	ligh Enable b	bit							
	1 = State blan	king (of current	t-limit and/or	Fault input sigr	nals) when PWM	1xL output is hi	gh				
bit 0	BPLL: Blanki	na in PWMxI I	ow Enable hi	ישיי it							
	1 = State blan	king (of current	t-limit and/or	Fault input sigr	als) when PWM	IxL output is lo	w				
	0 = No blankir	ng when PWM	L output is lo	W							

REGISTER 16-22: LEBCONX: LEADING-EDGE BLANKING CONTROL REGISTER x

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	VCFG<2:0)>	_		CSCNA	CHPS	<1:0>
bit 15				•			bit 8
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS			SMPI<4:0>			BUFM	ALTS
bit 7							bit 0
1							
R - Readable	bit	W = Writable k	nit	II – Unimple	mented bit read	1 ac '0'	
n – Valuo at E		'1' = Rit is set	Jit	$0^{\circ} - \text{Bit is observed}$	anenteu bit, reat	v – Bitic upkr	
	-OK	I – DILIS SEL			eareu		IOWII
bit 15-13	VCFG<2:0	>: Converter Volta	age Reference	Configuration	n bits		
		VREEH	VREFI				
	000	AVDD	Avss				
	001	External VREF+	Avss				
	010	Avdd	External VR	EF-			
	011	External VREF+	External VR	EF-			
	1xx	Avdd	Avss				
bit 12-11	Unimplem	ented: Read as '0)'				
bit 10	CSCNA: Ir	nput Scan Select b	oit				
	1 = Scans	inputs for CH0+ d	uring Sample A	A bit			
	0 = Does n	not scan inputs					
bit 9-8	CHPS<1:0	>: Channel Select	bits				
	When AD1	<u>2B = 1, CHPS<1:</u>	<u>0> is: U-0, Unii</u>	mplemented,	<u>Read as '0':</u>		
	1x = Conv	erts CH0, CH1, CH	H2 and CH3				
	01 = Conv	erts CH0 and CH1 erts CH0					
bit 7	BUFS: But	ffer Fill Status bit (onlv valid wher	h BUFM = 1)			
	1 = ADC is	s currently filling th	e second half o	of the buffer: t	he user applicati	on should acce	ess data in the
	first ha	alf of the buffer					
	0 = ADC i	s currently filling th	he first half of	the buffer; the	e user applicatio	n should acce	ss data in the
	secon	d half of the buffer					
bit 6-2	SMPI<4:0>	>: Increment Rate	bits				
	When ADL $01111 = C$	<u>DMAEN = 0:</u>	oftor completi	on of over 1	Sth comple/conv	orgion oppratio	
	01111 - G	Senerales interrupt	after completi	on of every 10	5th sample/conv	ersion operatio	
	•			UN DI EVELY I	Stri Sample/Conv	ersion operatio	
	•						
	•						
	00001 = G	Senerates interrupt	after completi	on of every 2	nd sample/conve	ersion operatio	n
	00000 = G	Senerates interrupt	after completi	on of every sa	ample/conversio	n operation	
	When ADD	DMAEN = 1:					
	11111 = lr	crements the DM	A address afte	r completion of	of every 32nd sa	mple/conversion	on operation
	11110 = Ir		A address afte	r completion of	of every 31st sai	npie/conversio	n operation
	•						
	•						
	00001 = lr	ncrements the DM	A address afte	r completion of	of every 2nd sar	nple/conversio	n operation
	00000 = I r	ncrements the DM	A address afte	r completion of	of every sample/	conversion ope	eration

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 25	5-4: CMxN CONT	4: CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER									
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN				
bit 15					·		bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN				
bit 7		-	·	•			bit 0				
Legend:											
R = Readable I	oit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown				
bit 15	HLMS: High 1 = The masl 0 = The masl	or Low-Level N king (blanking) king (blanking)	Aasking Select function will pre function will pre	bits event any asse event any asse	erted ('0') compa erted ('1') compa	arator signal from arator signal from	m propagating m propagating				
bit 14	Unimpleme	nted: Read as	'0'								
bit 13	OCEN: OR (1 = MCI is co 0 = MCI is no	Gate C Input Er onnected to OF ot connected to	nable bit gate OR gate								
bit 12	OCNEN: OR	Gate C Input I	nverted Enable	e bit							
	1 = Inverted 0 = Inverted	MCI is connect MCI is not con	ed to OR gate nected to OR g	gate							
bit 11	OBEN: OR 0 1 = MBI is co 0 = MBI is no	Gate B Input Er onnected to OR ot connected to	able bit gate OR gate								
bit 10	OBNEN: OR	Gate B Input I	nverted Enable	e bit							
	1 = Inverted 0 = Inverted	MBI is connect MBI is not coni	ed to OR gate nected to OR g	jate							
bit 9	OAEN: OR (Gate A Input Er	able bit								
	1 = MAI is co 0 = MAI is no	onnected to OR ot connected to	gate OR gate								
bit 8	OANEN: OR	Gate A Input I	nverted Enable	e bit							
	1 = Inverted 0 = Inverted	MAI is connect MAI is not con	ed to OR gate nected to OR g	jate							
bit 7	NAGS: AND 1 = Inverted 0 = Inverted	Gate Output Ir ANDI is conner ANDI is not con	nverted Enable cted to OR gat nnected to OR	e bit e gate							
bit 6	PAGS: AND 1 = ANDI is 0 0 = ANDI is 1	Gate Output E connected to O not connected f	nable bit R gate o OR gate								
bit 5	ACEN: AND 1 = MCI is co	Gate C Input E onnected to AN	Enable bit D gate								
hit 4		D Gate C Input	Inverted Ench	le hit							
	1 = Inverted 0 = Inverted	MCI is connect MCI is not con	ed to AND gat	gate							

REGISTER 28-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER (CONTINUED)

bit 3	CS1P: Chip Select 0 Polarity bit ⁽¹⁾ 1 = Active-high (PMCS1/PMCS) ⁽²⁾ 0 = Active-low (PMCS1/PMCS)
bit 2	BEP: Byte Enable Polarity bit 1 = Byte enable active-high (PMBE) 0 = Byte enable active-low (PMBE)
bit 1	WRSP: Write Strobe Polarity bit For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10): 1 = Write strobe is active-high (PMWR) 0 = Write strobe is active-low (PMWR) For Master Mode 1 (PMMODE<9:8> = 11):
L:1 0	1 = Enables strobe active-high (PMENB) 0 = Enables strobe active-low (PMENB)
DIEU	For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10): 1 = Read strobe is active-high (PMRD) 0 = Read strobe is active-low (PMRD) For Master Mode 1 (PMMODE<9:8> = 11): 1 = Enables strobe active-high (PMRD/PMWR) 0 = Enables strobe active-low (PMRD/PMWR)

- Note 1: These bits have no effect when their corresponding pins are used as address lines.
 - 2: PMCS1 applies to Master mode and PMCS applies to Slave mode.

REGISTER 28-2: PMMODE: PARALLEL MASTER PORT MODE REGISTER (CONTINUED)

- bit 1-0 WAITE<1:0>: Data Hold After Strobe Wait State Configuration bits^(1,2,3)
 - 11 = Wait of 4 TP 10 = Wait of 3 TP 01 = Wait of 2 TP 00 = Wait of 1 TP
- Note 1: The applied Wait state depends on whether data and address are multiplexed or demultiplexed. See Section 28.4.1.8. "Wait States" in Section 28. "Parallel Master Port (PMP)" (DS70576) in the "dsPIC33E/PIC24E Family Reference Manual" for more information.
 - 2: WAITB<1:0> and WAITE<1:0> bits are ignored whenever WAITM<3:0> = 0000.
 - **3:** TP = 1/FP.

FIGURE 32-16: SPI1, SPI3 AND SPI4 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 32-34: SPI1, SPI3 AND SPI4 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	TscP	Maximum SCKx Frequency	—		15	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	—	_		ns	See Parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	-	_	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	-	_	_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns		
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 32-38:SPI1, SPI3 AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V					
АС СНА	RACTERIS	rics	(unless othe	erwise s	tated)			
			Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
					-40*	$C \leq IA \leq$	+125°C for Extended	
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	TscP	Maximum SCKx Input Frequency	_		11	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—	_		ns	See Parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	—		ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_		ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns		
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \uparrow or SCKx \downarrow Input	120	—		ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output, High-Impedance	10	—	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	—	_	ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 32-24: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 32-42: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	TscP	Maximum SCKx Frequency	—		15	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

FIGURE 32-25: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 32-43:SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	TscP	Maximum SCKx Frequency			10	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	—	-	_	ns	See Parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_		ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4**: Assumes 50 pF load on all SPIx pins.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			7.35
Optional Center Pad Length	T2			7.35
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA–Formerly XBGA]

Microchip Technology Drawing C04-148 Rev D Sheet 1 of 2