

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	83
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512gu810t-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

Pin Diagrams

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	<pre>111 = CPU Interrupt Priority Level is 7 (15, user interrupts are disabled) 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9)</pre>
	000 = CPU Interrupt Priority Level is 0 (8)
bit 4	
	1 = REPEAT loop in progress 0 = REPEAT loop not in progress
bit 3	N: MCU ALU Negative bit
	 1 = Result was negative 0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	This bit is available on dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1.
- 3: The IPL<2:0> bits are read-only when NSTDIS = 1 (INTCON1<15>).
- **4:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

TABLE 4-40: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMU814 DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR35	06E6	—				IC14R<6:0>	•			—	IC13R<6:0>							0000
RPINR36	06E8	_		IC16R<6:0>							IC15R<6:0> 00						0000	
RPINR37	06EA	_		SYNCI1R<6:0>							OCFCR<6:0> 0(0000
RPINR38	06EC	_		DTCMP1R<6:0>						_	SYNCI2R<6:0>						0000	
RPINR39	06EE	_		DTCMP3R<6:0>						_	DTCMP2R<6:0>					0000		
RPINR40	06F0	_			D	TCMP5R<6:	:0>			_	DTCMP4R<6:0>						0000	
RPINR41	06F2	_			D	TCMP7R<6:	:0>			_	DTCMP6R<6:0>						0000	
RPINR42	06F4	—		FLT6R<6:0>						_	FLT5R<6:0>					0000		
RPINR43	06F6	_	_	—	_	_	_	_	_	—				FLT7R<6:0>	•			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-53: COMPARATOR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0A80	CMSIDL	—	-	—	—	C3EVT	C2EVT	C1EVT	_	-	_	—	—	C3OUT	C2OUT	C10UT	0000
CVRCON	0A82	_	_	—	_	_	VREFSEL	BGSE	L<1:0>	CVREN CVROE CVRR CVRSS CVR<3:0>		<3:0>		0000				
CM1CON	0A84	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPO	L<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM1MSKSRC	0A86	_	_	—	_		SELSRO	CC<3:0>		SELSRCB<3:0>				SELSRCA<3:0>				
CM1MSKCON	0A88	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM1FLTR	0A8A	_	_	—	_	_	_	_	_	_	(CFSEL<2:0	>	CFLTREN CFDIV<2:0>		>	0000	
CM2CON	0A8C	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPO	L<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM2MSKSRC	0A8E	_	_	—	_		SELSRO	CC<3:0>			SELSRCB<3:0> SE		SELSRO	ELSRCA<3:0>				
CM2MSKCON	0A90	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM2FLTR	0A92	_	_	—	_	_	_	_	_	_	(CFSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000
CM3CON	0A94	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPO	L<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM3MSKSRC	0A96	_	_	—	_		SELSRO	CC<3:0>			SELSR	CB<3:0>			SELSRCA<3:0>			0000
CM3MSKCON	0A98	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM3FLTR	0A9A	_	_	_	_	_	_	_	_	_	(CFSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

FIGURE 4-11: **BIT-REVERSED ADDRESS EXAMPLE**

TABLE 4-76: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

		Norma	al Addre	SS	Bit-Reversed Address					
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal	
0	0	0	0	0	0	0	0	0	0	
0	0	0	1	1	1	0	0	0	8	
0	0	1	0	2	0	1	0	0	4	
0	0	1	1	3	1	1	0	0	12	
0	1	0	0	4	0	0	1	0	2	
0	1	0	1	5	1	0	1	0	10	
0	1	1	0	6	0	1	1	0	6	
0	1	1	1	7	1	1	1	0	14	
1	0	0	0	8	0	0	0	1	1	
1	0	0	1	9	1	0	0	1	9	
1	0	1	0	10	0	1	0	1	5	
1	0	1	1	11	1	1	0	1	13	
1	1	0	0	12	0	0	1	1	3	
1	1	0	1	13	1	0	1	1	11	
1	1	1	0	14	0	1	1	1	7	
1	1	1	1	15	1	1	1	1	15	

4.8 Interfacing Program and Data Memory Spaces

The dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 architecture uses a 24-bit wide Program Space and a 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 architecture provides two methods by which Program Space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

TABLE 4-77: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address								
Access Type Instruction Access Code Execution) BLRD/TBLWT Byte/Word Read/Write)	Space	<23>	<22:16>	<15>	<14:1>	<0>				
Instruction Access	User	0	0 PC<22:1>							
(Code Execution)		0xx xxxx xxxx xxxx xxxx								
TBLRD/TBLWT (Byte/Word Read/Write)	User	TB	LPAG<7:0>	Data EA<15:0>						
		0	XXX XXXX	XXXX XXX						
	Configuration	TB	LPAG<7:0>							
		1	XXX XXXX	XXXX XX						

FIGURE 4-12: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

10.2.2 IDLE MODE

The following occur in Idle mode:

- · The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the ECAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the ECAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

10.5 Power-Saving Resources

Many useful resources related to Power-Saving features are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en554310

10.5.1 KEY RESOURCES

- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- Development Tools

10.6 Special Function Registers

Seven registers, PMD1: Peripheral Module Disable Control Register 1 through PMD7: Peripheral Module Disable Control Register 7, are provided for peripheral module control.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_			_			_
bit 15				4	1		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
DMA12MD	DMA8MD	DMA4MD	DMA0MD				
DMA13MD	DMA9MD	DMA5MD	DMA1MD	-			
DMA14MD	DMA10MD	DMA6MD	DMA2MD		_	_	_
_	DMA11MD	DMA7MD	DMA3MD	-			
bit 7		•			•		bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-8	Unimplement	ted: Read as ')'				
bit 7	DMA12MD: D	MA12 Module	Disable bit				
	1 = DMA12 m	odule is disable	ed				
	0 = DMA12 m	odule is enable	ed				
	DMA13MD: D	MA13 Module	Disable bit				
	1 = DMA13 m	nodule is disable	ed				
	0 = DWA13 m	lodule is enable					
	DMA14MD: D	MA14 Module	Disable bit				
	1 = DMA14 m	odule is disable	ed				
bit 6			zu sable hit				
bit 0	1 = DMA8 mo	dule is disable	d				
	0 = DMA8 mo	dule is enabled	1				
	DMA9MD: DN	MA2 Module Di	sable bit				
	1 = DMA9 mo	dule is disable	d				
	0 = DMA9 mo	dule is enabled	t				
	DMA10MD: D	MA10 Module	Disable bit				
	1 = DMA10 m	odule is disable	ed				
	0 = DMA10 m	odule is enable	ed				
	DMA11MD: D	MA11 Module	Disable bit				
	1 = DMA11 m	odule is disable	ed				
	0 = DMA11 m	iodule is enable	a a				
dit 5		viA4 Module Di	sable bit				
	$\perp = DIVIA4 Ino0 = DMA4 mo$	oule is disable	1				
			sahle hit				
	1 = DMA5 mo	dule is disable	d				
	0 = DMA5 mo	dule is enabled	1				
	DMA6MD: DM	MA6 Module Di	sable bit				
	1 = DMA6 mo	dule is disable	d				
	0 = DMA6 mo	dule is enabled	ł				
	DMA7MD: DM	MA7 Module Di	sable bit				
	1 = DMA7 mo	dule is disable	d				
	0 = DMA7 mo	dule is enabled	ł				

REGISTER 10-7: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER	REGISTER 10-7:	PMD7: PERIPHERAL MO	DULE DISABLE CONT	ROL REGISTER 7
---	----------------	---------------------	-------------------	----------------

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				SYNCI1R<6:0	>				
bit 15							bit		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—				OCFCR<6:0>	>				
bit 7							bit		
Legend:	ala hit	VV – Writabla	h:t		popted bit rea	ad aa '0'			
			DIL		nenteu bit, rea				
-n = value a	at POR	= Bit is set		"0" = Bit is cie	ared	x = Bit is unki	nown		
	(see lable 1 1111111 =	nput tied to RP nput tied to RP nput tied to CM nput tied to Vss	selection nur 127 P1	mbers)					
bit 7	Unimpleme	nted: Read as '	0'						
bit 6-0	OCFCR<6:0 (see Table 1 1111111 = I	>: Assign Output 1-2 for input pin nput tied to RP	ut Fault C (O selection nur 127	CFC) to the Cor mbers)	responding R	Pn/RPIn Pin bits			
	0000001 = 0000000 =	nput tied to CM nput tied to Vss	P1						

REGISTER 11-37: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37

HSC-0	HSC-0	HSC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
FLTSTAT	-(1) CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽²⁾	MDCS ⁽²⁾						
bit 15							bit 8						
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0						
Γ)TC<1:0>	DTCP ⁽³⁾	_	MTBS	CAM ^(2,4)	XPRES ⁽⁵⁾	IUE ⁽²⁾						
bit 7							bit 0						
Legend:		HSC = Set or	Cleared in Ha	ardware									
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'							
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown						
bit 15	FLTSTAT: Fai	ult Interrupt Sta	itus bit ⁽¹⁾										
	1 = Fault inter 0 = No Fault i This bit is clea	 1 = Fault interrupt is pending 0 = No Fault interrupt is pending This bit is cleared by setting FLTIEN = 0. 											
bit 14	CLSTAT: Cur	rent-Limit Interi	upt Status bit	(1)									
	1 = Current-li	mit interrupt is	pending										
	0 = No curren	t-limit interrupt	is pending										
hit 10		ared by setting	CLIEN = 0 .										
DIL 13	1 = Trigger int	terrunt is nendi	Status Dit										
	0 = No trigger This bit is clea	interrupt is penal	nding TRGIEN = 0.										
bit 12	FLTIEN: Faul	t Interrupt Enal	ole bit										
	1 = Fault inter	rrupt is enabled	1										
	0 = Fault inter	rupt is disable	d and FLTSTA	T bit is cleared	d								
bit 11	CLIEN: Curre	ent-Limit Interru	pt Enable bit										
	1 = Current-III 0 = Current-III	mit interrupt is a	enabled disabled and (CLSTAT bit is (cleared								
bit 10	TRGIEN: Tria	ger Interrupt F	nable bit		olouiou								
bit to	1 = A triager e	event generate	s an interrupt	reauest									
	0 = Trigger ev	ent interrupts a	are disabled a	nd TRGSTAT	bit is cleared								
bit 9	ITB: Independ	dent Time Base	e Mode bit ⁽²⁾										
	1 = PHASEx/	SPHASEx regi	sters provide t	ime base peri	od for this PWN	l generator							
	0 = PTPER re	egister provides	s timing for this	s PWM genera	ator								
bit 8	MDCS: Maste	er Duty Cycle F	legister Selec	t bit ⁽²⁾									
	1 = MDC regi 0 = PDCx and	ster provides d	uty cycle infor rs provide dut	mation for this	S PWM generato	or VM generator							
				y 5yolo inionin		in generator							
Note 1:	Software must clea	ar the interrunt	status here ar	nd in the corre	sponding IFS bi	t in the interrun	t controller						
2:	These bits should	not be changed	after the PW	M is enabled ((PTEN = 1).								
3:	DTC<1:0> = 11 for	r DTCP to be e	ffective; other	wise, DTCP is	ignored.								

REGISTER 16-11: PWMCONx: PWMx CONTROL REGISTER

- 4: The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
- **5:** To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

REGISTER 16-16: DTRx: PWMx DEAD-TIME REGISTE	R
--	---

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	-			DTR	x<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DTR	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 16-17: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—		ALTDTRx<13:8>							
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			ALTDT	Rx<7:0>						
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable I	oit	U = Unimpler	nented bit, read	d as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 21-22: CxRXFUL1: ECANx RECEIVE BUFFER FULL REGISTER 1
--

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0
bit 7							bit 0

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 21-23: CxRXFUL2: ECANx RECEIVE BUFFER FULL REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16
bit 7							bit 0
Legend:		C = Writable b	oit, but only '0'	can be writter	n to clear the bit		
R = Readable b	oit	W = Writable	able bit U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 **RXFUL<31:16>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 21-24:	CxRXOVF1: ECANx RECEIVE BUFFER OVERFLOW REGISTER 1
------------------------	--

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXOVF7 | RXOVF6 | RXOVF5 | RXOVF4 | RXOVF3 | RXOVF2 | RXOVF1 | RXOVF0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0

RXOVF<15:0>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

REGISTER 21-25: CxRXOVF2: ECANx RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

REGISTER 22-17: UxIE: USB INTERRUPT ENABLE REGISTER (HOST MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	_	—	_	_	—	_	—			
bit 15 bit 8										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
STALLIE	ATTACHIE ⁽¹⁾	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	DETACHIE			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		0' = Bit is clear	ared	x = Bit is unkr	nown			
hit 15 0	Unimploment	ted: Dood oo '	,							
DIL 10-0 bit 7		ALL Handshak) Dintorrunt Enc	blo bit						
	1 = Interrupt i	is enabled								
	0 = Interrupt	is disabled								
bit 6	ATTACHIE: P	eripheral Attac	h Interrupt bit ^{(*}	1)						
	1 = Interrupt	is enabled								
	0 = Interrupt	is disabled								
bit 5	RESUMEIE: H	Resume Interru	pt bit							
	0 = Interrupt	is disabled								
bit 4	IDLEIE: Idle [Detect Interrupt	bit							
	1 = Interrupt	is enabled								
	0 = Interrupt	is disabled								
bit 3	TRNIE: Toker	Processing Co	omplete Interru	upt bit						
	1 = Interrupt	is enabled								
bit 2	SOFIE: Start-	of-Frame Toker	n Interrupt bit							
	1 = Interrupt i	is enabled	· ····································							
	0 = Interrupt	is disabled								
bit 1	UERRIE: USE	B Error Condition	on Interrupt bit							
	1 = Interrupt	is enabled								
hit 0		ISB Detach Int	errunt Enchlo	hit						
	1 = Interrunt i	is enabled	enupt Enable	DIL						
	0 = Interrupt	is disabled								

Note 1: Unimplemented in OTG mode, read as '0'.

23.2 ADC Helpful Tips

- 1. The SMPIx control bits in the ADxCON2 registers:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated, if enabled.
 - b) When the CSCNA bit in the ADxCON2 register is set to '1', this determines when the ADC analog scan channel list, defined in the AD1CSSL/AD1CSSH registers, starts over from the beginning.
 - c) When the DMA peripheral is not used (ADDMAEN = 0), this determines when the ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0.
 - d) When the DMA peripheral is used (ADDMAEN = 1), this determines when the DMA Address Pointer is incremented after a sample/conversion operation. ADC1BUF0 is the only ADC buffer used in this mode. The ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0. The DMA address is incremented after completion of every 32nd sample/conversion operation. Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA.
- 2. When the DMA module is disabled (ADDMAEN = 0), the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used subject to the SMPIx bits and the condition described in 1c) above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- 3. When the DMA module is disabled (ADDMAEN = 1), the ADC module has only 1 ADC result buffer (i.e., ADC1BUF0) per ADC peripheral and the ADC conversion result must be read, either by the CPU or DMA controller, before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (ADxCON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (ADxCON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.

23.3 ADC Resources

Many useful resources related to Analog-to-Digital conversion are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en554310

23.3.1 KEY RESOURCES

- Section 16. "Analog-to-Digital Converter (ADC)" (DS70621) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- Development Tools

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

REGISTER 26-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—		—	—	— WDAY2		WDAY1	WDAY0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTE	N<1:0>		E<3:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

TABLE 32-48:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

			Standard Op	perating	Conditi	ons: 3.0	V to 3.6V			
			(unless otherwise stated)							
				Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
				$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions			
SP70	TscP	Maximum SCKx Input Frequency	_	—	11	MHz	See Note 3			
SP72	TscF	SCKx Input Fall Time				ns	See Parameter DO32 and Note 4			
SP73	TscR	SCKx Input Rise Time	—	_		ns	See Parameter DO31 and Note 4			
SP30	TdoF	SDOx Data Output Fall Time	_	_		ns	See Parameter DO32 and Note 4			
SP31	TdoR	SDOx Data Output Rise Time				ns	See Parameter DO31 and Note 4			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns				
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	-	_	ns				
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	-	_	ns				
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns				
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \uparrow or SCKx \downarrow Input	120			ns				
SP51	TssH2doZ	SSx ↑ to SDOx Output, High-Impedance	10	—	50	ns	See Note 4			
SP52	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40	-	—	ns	See Note 4			

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

			Standard (unless Operatin	d Operati otherwise g tempera	ing Cond e stated) ature -4	ditions: 3.) 10°C ≤ TA 10°C ≤ TA	.0V to 3.6V (see Note 4) ≤ +85°C for Industrial ≤ +125°C for Extended
Param.	Symbol	Characteristic	Min.	Conditions			
-		Cloc	k Parame	ters			
AD50	TAD	ADC Clock Period	117.6	_	_	ns	
AD51	tRC	ADC Internal RC Oscillator Period	—	250		ns	
		Con	version R	ate			
AD55	tCONV	Conversion Time	_	14 Tad		ns	
AD56	FCNV	Throughput Rate	—	_	500	Ksps	
AD57	TSAMP	Sample Time	3 Tad	—	_	_	
		Timin	ng Parame	eters			
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2 Tad		3 Tad	—	Auto-Convert Trigger not selected
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2 Tad	—	3 Tad	_	
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾	—	0.5 Tad	_	—	
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾	—	—	20	μS	See Note 3

TABLE 32-57: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: The tDPU parameter is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (ADxCON1<15>) = 1). During this time, the ADC result is indeterminate.

4: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 32-11 for the minimum and maximum BOR values.

1:128

70