

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                          |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | PIC                                                                             |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 60 MIPs                                                                         |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART, USB OTG                |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                                      |
| Number of I/O              | 83                                                                              |
| Program Memory Size        | 512KB (170K x 24)                                                               |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 24K x 16                                                                        |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                       |
| Data Converters            | A/D 32x10b/12b                                                                  |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 100-TQFP                                                                        |
| Supplier Device Package    | 100-TQFP (12x12)                                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512gu810t-i-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. Their pinout diagrams appear on the following pages.

## TABLE 1: dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 CONTROLLER FAMILIES

|                   |            |               |                                                |                            | Remappable Peripherals        |               |                           |                                                |     |                             |     |       |                                    |                           |     |                                                             |      |       |                      |                                  |     |                      |          |
|-------------------|------------|---------------|------------------------------------------------|----------------------------|-------------------------------|---------------|---------------------------|------------------------------------------------|-----|-----------------------------|-----|-------|------------------------------------|---------------------------|-----|-------------------------------------------------------------|------|-------|----------------------|----------------------------------|-----|----------------------|----------|
| Device            | Pins       | Packages      | Program Flash Memory<br>(Kbyte) <sup>(1)</sup> | RAM (Kbyte) <sup>(2)</sup> | 16-Bit Timer <sup>(3,4)</sup> | Input Capture | Output Compare (with PWM) | Motor Control PWM<br>(Channels) <sup>(5)</sup> | QEI | UART with IrDA <sup>®</sup> | IdS | ECAN™ | External Interrupts <sup>(6)</sup> | DMA Controller (Channels) | DCI | Analog Comparators/<br>Inputs Per Comparator <sup>(7)</sup> | RTCC | I²C ™ | <b>CRC Generator</b> | 10-Bit/12-Bit ADC <sup>(8)</sup> | USB | Parallel Master Port | I/O Pins |
| dsPIC33EP256MU806 | 64         | QFN,<br>TQFP  | 280                                            | 28                         | 9                             | 16            | 16                        | 8                                              | 2   | 4                           | 4   | 2     | 5                                  | 15                        | 1   | 3/4                                                         | 1    | 2     | 1                    | 2 ADC,<br>24 ch                  | 1   | Y                    | 51       |
| dsPIC33EP256MU810 | 100<br>121 | TQFP<br>TFBGA | 280                                            | 28                         | 9                             | 16            | 16                        | 12                                             | 2   | 4                           | 4   | 2     | 5                                  | 15                        | 1   | 3/4                                                         | 1    | 2     | 1                    | 2 ADC,<br>32 ch                  | 1   | Y                    | 83       |
| dsPIC33EP256MU814 | 144        | TQFP,<br>LQFP | 280                                            | 28                         | 9                             | 16            | 16                        | 14                                             | 2   | 4                           | 4   | 2     | 5                                  | 15                        | 1   | 3/4                                                         | 1    | 2     | 1                    | 2 ADC,<br>32 ch                  | 1   | Y                    | 122      |
| dsPIC33EP512GP806 | 64         | QFN,<br>TQFP  | 536                                            | 52                         | 9                             | 16            | 16                        |                                                | -   | 4                           | 4   | 2     | 5                                  | 15                        | 1   | 3/4                                                         | 1    | 2     | 1                    | 2 ADC,<br>24 ch                  | _   | Y                    | 53       |
| dsPIC33EP512MC806 | 64         | QFN,<br>TQFP  | 536                                            | 52                         | 9                             | 16            | 16                        | 8                                              | 2   | 4                           | 4   | 2     | 5                                  | 15                        | 1   | 3/4                                                         | 1    | 2     | 1                    | 2 ADC,<br>24 ch                  |     | Y                    | 53       |
| dsPIC33EP512MU810 | 100<br>121 | TQFP<br>TFBGA | 536                                            | 52                         | 9                             | 16            | 16                        | 12                                             | 2   | 4                           | 4   | 2     | 5                                  | 15                        | 1   | 3/4                                                         | 1    | 2     | 1                    | 2 ADC,<br>32 ch                  | 1   | Y                    | 83       |
| dsPIC33EP512MU814 | 144        | TQFP,<br>LQFP | 536                                            | 52                         | 9                             | 16            | 16                        | 14                                             | 2   | 4                           | 4   | 2     | 5                                  | 15                        | 1   | 3/4                                                         | 1    | 2     | 1                    | 2 ADC,<br>32 ch                  | 1   | Y                    | 122      |
| PIC24EP256GU810   | 100<br>121 | TQFP<br>TFBGA | 280                                            | 28                         | 9                             | 16            | 16                        | 0                                              | 0   | 4                           | 4   | 2     | 5                                  | 15                        | 1   | 3/4                                                         | 1    | 2     | 1                    | 2 ADC,<br>32 ch                  | 1   | Y                    | 83       |
| PIC24EP256GU814   | 144        | TQFP,<br>LQFP | 280                                            | 28                         | 9                             | 16            | 16                        | 0                                              | 0   | 4                           | 4   | 2     | 5                                  | 15                        | 1   | 3/4                                                         | 1    | 2     | 1                    | 2 ADC,<br>32 ch                  | 1   | Y                    | 122      |
| PIC24EP512GP806   | 64         | QFN,<br>TQFP  | 586                                            | 52                         | 9                             | 16            | 16                        | _                                              | _   | 4                           | 4   | 2     | 5                                  | 15                        | 1   | 3/4                                                         | 1    | 2     | 1                    | 2 ADC,<br>24 ch                  | _   | Y                    | 53       |
| PIC24EP512GU810   | 100<br>121 | TQFP<br>TFBGA | 536                                            | 52                         | 9                             | 16            | 16                        | 0                                              | 0   | 4                           | 4   | 2     | 5                                  | 15                        | 1   | 3/4                                                         | 1    | 2     | 1                    | 2 ADC,<br>32 ch                  | 1   | Y                    | 83       |
| PIC24EP512GU814   | 144        | TQFP,L<br>QFP | 536                                            | 52                         | 9                             | 16            | 16                        | 0                                              | 0   | 4                           | 4   | 2     | 5                                  | 15                        | 1   | 3/4                                                         | 1    | 2     | 1                    | 2 ADC,<br>32 ch                  | 1   | Y                    | 122      |

Note 1: Flash size is inclusive of 24 Kbytes of auxiliary Flash. Auxiliary Flash supports simultaneous code execution and self-erase/programming. Refer to Section 5. "Flash Programming" (DS70609) in the "dsPIC33E/PIC24E Family Reference Manual".

2: RAM size is inclusive of 4 Kbytes of DMA RAM (DPSRAM) for all devices.

3: Up to eight of these timers can be combined into four 32-bit timers.

4: Eight out of nine timers are remappable.

5: PWM Faults and Sync signals are remappable.

**6**: Four out of five interrupts are remappable.

7: Comparator output is remappable.

8: The ADC2 module supports 10-bit mode only.

## Pin Diagrams (Continued)

| 21-1 |           | Α` ΄     |              |           | dsPIC:<br>dsPIC: | 33EP256<br>33EP512 | MU810<br>MU810 |           | i = pins a | ire up to | ov tolera    |
|------|-----------|----------|--------------|-----------|------------------|--------------------|----------------|-----------|------------|-----------|--------------|
| _    | 1         | 2        | 3            | 4         | 5                | 6                  | 7              | 8         | 9          | 10        | 11           |
|      | O<br>RE4  | O<br>RE3 | <b>R</b> G13 | O<br>RE0  | RG0              | RF1                | O<br>Vdd       | NC        | RD12       | RD2       | RD1          |
| 5    | NC        | RG15     | O<br>RE2     | O<br>RE1  | O<br>RA7         | RF0                | O<br>VCAP      | RD5       | RD3        | ⊖<br>Vss  | O<br>RC14    |
| ;    | O<br>RE6  | O<br>VDD | RG12         | RG14      | O<br>RA6         | NC                 | O<br>RD7       | RD4       | NC         | O<br>RC13 | <b>R</b> D11 |
| ,    | O<br>RC1  | O<br>RE7 | O<br>RE5     | NC        | NC               | NC                 | O<br>RD6       | RD13      | RD0        | NC        | <b>R</b> D10 |
|      | O<br>RC4  | C<br>RC3 | O<br>RG6     | O<br>RC2  | NC               | RG1                | NC             | RA15      | RD8        | RD9       | RA14         |
|      | MCLR      | O<br>RG8 | O<br>RG9     | O<br>RG7  | ⊖<br>Vss         | NC                 | NC             | O<br>VDD  | O<br>RC12  | ⊖<br>Vss  | O<br>RC15    |
| •    | C<br>RE8  | C<br>RE9 | RA0          | NC        |                  | O<br>Vss           | O<br>Vss       | NC        | RA5        | RA3       | RA4          |
| I    | C)<br>RB5 | O<br>RB4 | NC           | NC        | NC               |                    | NC             | VBUS      | USB3V3     | ()<br>RG2 | RA2          |
|      | O<br>RB3  | O<br>RB2 | O<br>RB7     | O<br>AVDD | O<br>RB11        | RA1                | O<br>RB12      | NC        | NC         | RF8       | O<br>RG3     |
|      | O<br>RB1  | O<br>RB0 | O<br>RA10    | O<br>RB8  | NC               | RF12               | O<br>RB14      |           | RD15       | RF3       | RF2          |
|      | O<br>RB6  | O<br>RA9 | O<br>AVss    | O<br>RB9  | O<br>RB10        | RF13               | O<br>RB13      | O<br>RB15 | RD14       | RF4       | RF5          |

#### 3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. "CPU" (DS70359) in the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24-bit instruction word, with a variable length opcode field. The Program Counter (PC) is 24 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

#### 3.1 Registers

Devices have sixteen 16-bit working registers in the programmer's model. Each of the working registers can act as a Data, Address or Address Offset register. The 16th working register (W15) operates as a Software Stack Pointer for interrupts and calls. The working registers, W0 through W3, and selected bits from the STATUS register, have shadow registers for fast context saves and restores using a single POP.S or PUSH.S instruction.

#### 3.2 Instruction Set

The dsPIC33EPXXXMU806/810/814 instruction set has two classes of instructions: the MCU class of instructions and the DSP class of instructions. The PIC24EPXXX(GP/GU)810/814 instruction set has the MCU class of instructions and does not support DSP instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

#### 3.3 Data Space Addressing

The Base Data Space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operate solely through the X memory AGU, which accesses the entire memory map as one linear data space. On dsPIC33EPXXX(GP/MC/ MU)806/810/814 devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

The upper 32 Kbytes of the data space memory map can optionally be mapped into Program Space at any 16K program word boundary. The program-to-data space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were data space. Moreover, the Base Data Space address is used in conjunction with a read or write page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8M words or 16 Mbytes. Refer to **Section 3. "Data Memory"** (DS70595) and **Section 4. "Program Memory"** (DS70613) in the *"dsPIC33E/ PIC24E Family Reference Manual"* for more details on EDS, PSV and table accesses.

On dsPIC33EPXXX(GP/MC/MU)806/810/814 devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms. PIC24EPXXX(GP/GU)810/814 devices do not support Modulo and Bit-Reversed Addressing.

#### 3.4 Addressing Modes

The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

<sup>© 2009-2012</sup> Microchip Technology Inc.

#### REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

| bit 2 | <ul> <li>SFA: Stack Frame Active Status bit</li> <li>1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and DSWPAG values</li> </ul> |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space                                                                                            |
| bit 1 | RND: Rounding Mode Select bit <sup>(1)</sup>                                                                                                                            |
|       | <ul><li>1 = Biased (conventional) rounding is enabled</li><li>0 = Unbiased (convergent) rounding is enabled</li></ul>                                                   |
| bit 0 | IF: Integer or Fractional Multiplier Mode Select bit <sup>(1)</sup>                                                                                                     |
|       | 1 = Integer mode is enabled for DSP multiply                                                                                                                            |
|       | 0 = Fractional mode is enabled for DSP multiply                                                                                                                         |

- Note 1: This bit is available on dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.
  - **2:** This bit is always read as '0'.
  - 3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

### TABLE 4-41: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMU810 DEVICES ONLY (CONTINUED)

| File<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13       | Bit 12 | Bit 11     | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6           | Bit 5 | Bit 4 | Bit 3      | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |  |
|--------------|-------|--------|--------|--------------|--------|------------|--------|-------|-------|-------|-----------------|-------|-------|------------|-------|-------|-------|---------------|--|
| RPINR35      | 06E6  | —      |        |              |        | IC14R<6:0> | >      |       |       | —     | IC13R<6:0> 000/ |       |       |            |       |       |       |               |  |
| RPINR36      | 06E8  | _      |        |              |        | IC16R<6:0> | >      |       |       | _     | IC15R<6:0> 0    |       |       |            |       |       |       |               |  |
| RPINR37      | 06EA  | _      |        | SYNCI1R<6:0> |        |            |        |       |       |       | OCFCR<6:0> 0    |       |       |            |       |       |       |               |  |
| RPINR38      | 06EC  | _      |        | DTCMP1R<6:0> |        |            |        |       |       |       |                 |       | S     | YNCI2R<6:( | )>    |       |       | 0000          |  |
| RPINR39      | 06EE  | _      |        |              | D      | TCMP3R<6   | :0>    |       |       | _     |                 |       | D     | TCMP2R<6:  | 0>    |       |       | 0000          |  |
| RPINR40      | 06F0  | _      |        |              | D      | TCMP5R<6   | :0>    |       |       | _     | DTCMP4R<6:0>    |       |       |            |       |       |       | 0000          |  |
| RPINR41      | 06F2  | _      | _      |              |        |            |        |       |       | _     | DTCMP6R<6:0>    |       |       |            |       |       |       | 0000          |  |
| RPINR42      | 06F4  | _      |        | FLT6R<6:0>   |        |            |        |       |       | _     | FLT5R<6:0>      |       |       |            |       |       |       | 0000          |  |
| RPINR43      | 06F6  | —      | —      |              |        |            |        |       | _     | _     |                 |       |       | FLT7R<6:0> | >     |       |       | 0000          |  |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

| IADE         |       |        |        |        |        |        |        |        |       |        |        |        |        |        |        |        |
|--------------|-------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|
| File<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8 | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  |
| PMD1         | 0760  | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   | —      | —      | DCIMD | I2C1MD | U2MD   | U1MD   | SPI2MD | SPI1MD | C2MD   | C1MD   |
| PMD2         | 0762  | IC8MD  | IC7MD  | IC6MD  | IC5MD  | IC4MD  | IC3MD  | IC2MD  | IC1MD | OC8MD  | OC7MD  | OC6MD  | OC5MD  | OC4MD  | OC3MD  | OC2MD  |
| PMD3         | 0764  | T9MD   | T8MD   | T7MD   | T6MD   | _      | CMPMD  | RTCCMD | PMPMD | CRCMD  | _      | -      | _      | U3MD   | _      | I2C2MD |
| PMD4         | 0766  | _      | _      | _      | —      | _      | _      | _      | _     | _      | _      | U4MD   | _      | REFOMD | —      | _      |
| PMD5         | 0768  | IC16MD | IC15MD | IC14MD | IC13MD | IC12MD | IC11MD | IC10MD | IC9MD | OC16MD | OC15MD | OC14MD | OC13MD | OC12MD | OC11MD | OC10MD |

\_\_\_\_

\_

\_

\_

\_

#### PMD REGISTER MAP FOR dePIC33EPXXXGP8XX AND PIC24EPXXXGP8XX DEVICES ONLY TABLE 4-51.

\_

\_

\_

\_

\_ x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

\_

\_

\_

\_

#### **TABLE 4-52:** PMD REGISTER MAP FOR PIC24EPXXXGU810/814 DEVICES ONLY

\_

\_

\_

\_

\_

| File<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8 | Bit 7   | Bit 6   | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|--------------|-------|--------|--------|--------|--------|--------|--------|--------|-------|---------|---------|--------|--------|--------|--------|--------|--------|---------------|
| PMD1         | 0760  | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   | —      | —      | DCIMD | I2C1MD  | U2MD    | U1MD   | SPI2MD | SPI1MD | C2MD   | C1MD   | AD1MD  | 0000          |
| PMD2         | 0762  | IC8MD  | IC7MD  | IC6MD  | IC5MD  | IC4MD  | IC3MD  | IC2MD  | IC1MD | OC8MD   | OC7MD   | OC6MD  | OC5MD  | OC4MD  | OC3MD  | OC2MD  | OC1MD  | 0000          |
| PMD3         | 0764  | T9MD   | T8MD   | T7MD   | T6MD   | _      | CMPMD  | RTCCMD | PMPMD | CRCMD   | _       | _      | _      | U3MD   | _      | I2C2MD | AD2MD  | 0000          |
| PMD4         | 0766  | _      | _      | _      | _      | _      | _      | _      | _     | _       | _       | U4MD   | _      | REFOMD | _      | _      | USB1MD | 0000          |
| PMD5         | 0768  | IC16MD | IC15MD | IC14MD | IC13MD | IC12MD | IC11MD | IC10MD | IC9MD | OC16MD  | OC15MD  | OC14MD | OC13MD | OC12MD | OC11MD | OC10MD | OC9MD  | 0000          |
| PMD6         | 076A  | _      | _      | _      | _      | _      | _      | _      | _     | _       | _       | _      | _      | _      | _      | SPI4MD | SPI3MD | 0000          |
|              |       | _      | _      | —      | —      | —      | _      | —      | _     | DMA12MD | DMA8MD  | DMA4MD | DMA0MD | —      | —      | —      |        | 0000          |
|              | 0760  | _      | _      | _      | _      | _      | _      | _      | _     | DMA13MD | DMA9MD  | DMA5MD | DMA1MD | _      | _      | _      | _      | 0000          |
| PIVID7       | 0760  | _      | _      | —      | —      | —      | _      | —      | _     | DMA14MD | DMA10MD | DMA6MD | DMA2MD | —      | —      | —      |        | 0000          |
|              |       | _      | _      | _      | _      | _      | _      | _      | _     | _       | DMA11MD | DMA7MD | DMA3MD | _      | _      | _      |        | 0000          |

\_

\_

\_

\_

\_

DMA12MD

DMA13MD

DMA14MD

DMA8MD

DMA9MD

DMA10MD

DMA11MD

DMA4ME

DMA5MD

DMA6ME

DMA7MD

DMA0MD

DMA1MD

DMA2MD

DMA3MD

\_

\_

\_

\_

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PMD6

PMD7

076A

076C

\_

\_

\_\_\_\_

\_

\_

\_

\_

\_

\_

\_

\_

\_

\_

\_

All

Resets

0000

0000

0000 0000

0000

0000

0000

0000

0000

0000

Bit 0

AD1MD

OC1MD

AD2MD

\_

OC9MD

SPI3MD

\_

\_

\_

\_

SPI4MD

\_

\_

\_

\_

\_

\_

\_

\_

\_

#### 4.6 Modulo Addressing (dsPIC33EPXXXMU806/810/814 Devices Only)

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y data spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

#### 4.6.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

| Note: | Y space Modulo Addressing EA calcula- |
|-------|---------------------------------------|
|       | tions assume word-sized data (LSb of  |
|       | every EA is always clear).            |

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

#### 4.6.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled.
- If YWM = 1111, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '1111' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '1111' and the YMODEN bit is set at MODCON<14>.

#### Byte MOV #0x1100, W0 Address MOV W0, XMODSRT ;set modulo start address #0x1163, W0 0x1100 MOV WO, MODEND MOV ;set modulo end address MOV #0x8001, W0 W0, MODCON ;enable W1, X AGU for modulo MOV MOV #0x0000, W0 ;WO holds buffer fill value MOV #0x1110, W1 ;point W1 to buffer 0x1163 ;fill the 50 buffer locations DO AGAIN, #0x31 MOV WO, [W1++] ;fill the next location AGAIN: INC WO, WO ; increment the fill value Start Addr = 0x1100 End Addr = 0x1163Length = 0x0032 words

#### FIGURE 4-10: MODULO ADDRESSING OPERATION EXAMPLE

#### REGISTER 7-1: SR: CPU STATUS REGISTER<sup>(1)</sup>

bit 7

| R/W-0                | R/W-0                   | R/W-0                | R/W-0 | R/C-0 | R/C-0 | R-0   | R/W-0 |
|----------------------|-------------------------|----------------------|-------|-------|-------|-------|-------|
| OA                   | OB                      | SA                   | SB    | OAB   | SAB   | DA    | DC    |
| bit 15               |                         |                      |       |       |       |       | bit 8 |
|                      |                         |                      |       |       |       |       |       |
| R/W-0 <sup>(3)</sup> | R/W-0 <sup>(3)</sup>    | R/W-0 <sup>(3)</sup> | R-0   | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|                      | IPL<2:0> <sup>(2)</sup> |                      | RA    | N     | OV    | Z     | С     |

bit 0

| Legend:           | C = Clearable bit |                                    |                    |  |  |
|-------------------|-------------------|------------------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit  | U = Unimplemented bit, read as '0' |                    |  |  |
| -n = Value at POR | '1' = Bit is set  | '0' = Bit is cleared               | x = Bit is unknown |  |  |

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits<sup>(2,3)</sup>

- 111 = CPU Interrupt Priority Level is 7 (15, user interrupts are disabled)
- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)
- Note 1: For complete register details, see Register 3-1: "SR: CPU Status Register".
  - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1.
  - **3:** The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

| Function                | RPnR<5:0> | Output Name                                     |
|-------------------------|-----------|-------------------------------------------------|
| U4TX                    | 011101    | RPn tied to UART4 Transmit                      |
| U4RTS                   | 011110    | RPn tied to UART4 Ready-to-Send                 |
| SDO3                    | 011111    | RPn tied to SPI3 Data Output                    |
| SCK3                    | 100000    | RPn tied to SPI3 Clock Output                   |
| SS3                     | 100001    | RPn tied to SPI3 Slave Select                   |
| SDO4                    | 100010    | RPn tied to SPI4 Data Output                    |
| SCK4                    | 100011    | RPn tied to SPI4 Clock Output                   |
| SS4                     | 100100    | RPn tied to SPI4 Slave Select                   |
| OC9                     | 100101    | RPn tied to Output Compare 9 Output             |
| OC10                    | 100110    | RPn tied to Output Compare 10 Output            |
| OC11                    | 100111    | RPn tied to Output Compare 11 Output            |
| OC12                    | 101000    | RPn tied to Output Compare 12 Output            |
| OC13                    | 101001    | RPn tied to Output Compare 13 Output            |
| OC14                    | 101010    | RPn tied to Output Compare 14 Output            |
| OC15                    | 101011    | RPn tied to Output Compare 15 Output            |
| OC16                    | 101100    | RPn tied to Output Compare 16 Output            |
| SYNCO1 <sup>(1)</sup>   | 101101    | RPn tied to PWM Primary Time Base Sync Output   |
| SYNCO2 <sup>(1)</sup>   | 101110    | RPn tied to PWM Secondary Time Base Sync Output |
| QEI1CCMP <sup>(1)</sup> | 101111    | RPn tied to QEI 1 Counter Comparator Output     |
| QEI2CCMP <sup>(1)</sup> | 110000    | RPn tied to QEI 2 Counter Comparator Output     |
| REFCLK                  | 110001    | RPn tied to Reference Clock Output              |

## TABLE 11-3: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn) (CONTINUED)

Note 1: This function is available in dsPIC33EPXXX(MC/MU)806/810/814 devices only.

#### 16.1 PWM Resources

Many useful resources related to the high-speed PWM are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

| Note: | In the event you are not able to access the |
|-------|---------------------------------------------|
|       | product page using the link above, enter    |
|       | this URL in your browser:                   |
|       | http://www.microchip.com/wwwproducts/       |
|       | Devices.aspx?dDocName=en554310              |

#### 16.1.1 KEY RESOURCES

- Section 11. "High-Speed PWM" (DS70645) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- Development Tools

#### FIGURE 21-1: ECANX MODULE BLOCK DIAGRAM



#### 21.2 Modes of Operation

The ECANx module can operate in one of several operation modes selected by the user. These modes include:

- Initialization mode
- Disable mode
- Normal Operation mode
- · Listen Only mode
- Listen All Messages mode
- · Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CxCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>). The module does not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

#### 21.3 ECAN Resources

Many useful resources related to ECAN are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en554310

#### 21.3.1 KEY RESOURCES

- Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70353) in the "dsPIC33E/PIC24E Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33E/PIC24E Family Reference Manual"* Sections
- Development Tools

# dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

| U-0         | U-0                                                       | U-0                                           | U-0              | U-0              | U-0              | U-0             | U-0   |  |  |  |
|-------------|-----------------------------------------------------------|-----------------------------------------------|------------------|------------------|------------------|-----------------|-------|--|--|--|
|             |                                                           | _                                             |                  | _                | _                | _               | _     |  |  |  |
| oit 15      |                                                           |                                               |                  |                  |                  |                 | bit   |  |  |  |
|             |                                                           |                                               |                  |                  |                  |                 |       |  |  |  |
| R/W-0       | R/W-0                                                     | R/W-0                                         | R/W-0            | R/W-0            | R/W-0            | R/W-0           | R/W-0 |  |  |  |
| BTSEE       | BUSACCEE                                                  | DMAEE                                         | BTOEE            | DFN8EE           | CRC16EE          | CRC5EE          | PIDEE |  |  |  |
| oit 7       |                                                           |                                               |                  |                  |                  |                 | bit   |  |  |  |
|             |                                                           |                                               |                  |                  |                  |                 |       |  |  |  |
| _egend:     |                                                           |                                               |                  |                  |                  |                 |       |  |  |  |
| २ = Readab  | le bit                                                    | W = Writable                                  | bit              | U = Unimplen     | nented bit, read | l as '0'        |       |  |  |  |
| n = Value a | t POR                                                     | '1' = Bit is set                              |                  | '0' = Bit is cle | ared             | x = Bit is unkn | own   |  |  |  |
|             |                                                           |                                               |                  |                  |                  |                 |       |  |  |  |
| oit 15-8    | Unimplement                                               | ed: Read as '                                 | 0'<br>. <b>–</b> |                  |                  |                 |       |  |  |  |
| oit 7       | BTSEE: Bit St                                             | BTSEE: Bit Stuff Error Interrupt Enable bit   |                  |                  |                  |                 |       |  |  |  |
|             | 1 = Interrupt is enabled                                  |                                               |                  |                  |                  |                 |       |  |  |  |
| nit 6       | BIISACCEE: Bus Access Error Interrunt Enable bit          |                                               |                  |                  |                  |                 |       |  |  |  |
|             | 1 = Interrupt i                                           | 1 = Interrupt is enabled                      |                  |                  |                  |                 |       |  |  |  |
|             | 0 = Interrupt is disabled                                 |                                               |                  |                  |                  |                 |       |  |  |  |
| bit 5       | DMAEE: DMA Error Interrupt Enable bit                     |                                               |                  |                  |                  |                 |       |  |  |  |
|             | 1 = Interrupt i                                           | 1 = Interrupt is enabled                      |                  |                  |                  |                 |       |  |  |  |
|             | 0 = Interrupt is disabled                                 |                                               |                  |                  |                  |                 |       |  |  |  |
| bit 4       | BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit |                                               |                  |                  |                  |                 |       |  |  |  |
|             | 1 = Interrupt is enabled                                  |                                               |                  |                  |                  |                 |       |  |  |  |
| hit 3       | 0 - Interrupt is disabled                                 |                                               |                  |                  |                  |                 |       |  |  |  |
|             | 1 = Interrupt is enabled                                  |                                               |                  |                  |                  |                 |       |  |  |  |
|             | 0 = Interrupt is disabled                                 |                                               |                  |                  |                  |                 |       |  |  |  |
| bit 2       | CRC16EE: CRC16 Failure Interrupt Enable bit               |                                               |                  |                  |                  |                 |       |  |  |  |
|             | 1 = Interrupt is enabled                                  |                                               |                  |                  |                  |                 |       |  |  |  |
|             | 0 = Interrupt is disabled                                 |                                               |                  |                  |                  |                 |       |  |  |  |
| bit 1       | CRC5EE: CRC5 Host Error Interrupt Enable bit              |                                               |                  |                  |                  |                 |       |  |  |  |
|             | 1 = Interrupt is enabled                                  |                                               |                  |                  |                  |                 |       |  |  |  |
|             |                                                           | 0 = Interrupt is disabled                     |                  |                  |                  |                 |       |  |  |  |
| Dit Ü       | PIDEE: PID C                                              | PIDEE: PID Check Failure Interrupt Enable bit |                  |                  |                  |                 |       |  |  |  |
|             | 1 = Interrupt is enabled                                  |                                               |                  |                  |                  |                 |       |  |  |  |

## dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

#### REGISTER 22-29: UxFRML: USB FRAME NUMBER LOW REGISTER

| U-0                                                                        | U-0                                                                  | U-0 | U-0 | U-0   | U-0  | U-0 | U-0   |
|----------------------------------------------------------------------------|----------------------------------------------------------------------|-----|-----|-------|------|-----|-------|
| —                                                                          | —                                                                    | —   | _   | —     | _    | _   |       |
| bit 15                                                                     |                                                                      |     |     |       |      |     | bit 8 |
|                                                                            |                                                                      |     |     |       |      |     |       |
| R-0                                                                        | R-0                                                                  | R-0 | R-0 | R-0   | R-0  | R-0 | R-0   |
|                                                                            |                                                                      |     | FRM | <7:0> |      |     |       |
| bit 7                                                                      |                                                                      |     |     |       |      |     | bit 0 |
|                                                                            |                                                                      |     |     |       |      |     |       |
| Legend:                                                                    |                                                                      |     |     |       |      |     |       |
| R = Readable b                                                             | R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |     |     |       |      |     |       |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown |                                                                      |     |     |       | nown |     |       |

bit 15-8 Unimplemented: Read as '0'

bit 7-0 FRM<7:0>: 11-Bit Frame Number Lower 8 bits

These register bits are updated with the current frame number whenever a SOF token is received.

NOTES:

#### 31.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

#### 31.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

#### 31.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel<sup>®</sup> standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

#### 31.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

#### 31.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- · Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility





#### TABLE 32-26: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS

| AC CHARACTERISTICS |                                         |                                                           | Standard Operating Co<br>(unless otherwise state<br>Operating temperature | ed)<br>-40°C<br>-40°C                    | o <b>ns: 3.0</b> °<br>C ≤ Ta ≤<br>C ≤ Ta ≤ | <b>V to 3.6</b><br>+85°C fi<br>+125°C | <b>V</b><br>or Industrial<br>for Extended |                                  |
|--------------------|-----------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------|-------------------------------------------|----------------------------------|
| Param.             | m. Symbol Characteristic <sup>(1)</sup> |                                                           | Min.                                                                      | Тур.                                     | Max.                                       | Units                                 | Conditions                                |                                  |
| TQ10               | TtQH                                    | TQCK High<br>Time                                         | Synchronous, with Prescaler                                               | [Greater of<br>(12.5 or 0.5 Tcy)/N] + 25 |                                            | _                                     | ns                                        | Must also meet<br>Parameter TQ15 |
| TQ11               | TtQL                                    | TQCK Low<br>Time                                          | Synchronous, with Prescaler                                               | [Greater of<br>(12.5 or 0.5 Tcy)/N] + 25 | _                                          | —                                     | ns                                        | Must also meet<br>Parameter TQ15 |
| TQ15               | TtQP                                    | TQCP Input<br>Period                                      | Synchronous, with Prescaler                                               | [Greater of (<br>25 or Tcy)/N] + 50      | —                                          | —                                     | ns                                        |                                  |
| TQ20               | TCKEXTMRL                               | Delay from External TxCK<br>Clock Edge to Timer Increment |                                                                           | _                                        | 1                                          | Тсү                                   | —                                         |                                  |

**Note 1:** These parameters are characterized but not tested in manufacturing.

| AC CHARA             | CTERISTICS                                                        |             | $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$ |     |     |     |  |  |
|----------------------|-------------------------------------------------------------------|-------------|----------------------------------------------------------|-----|-----|-----|--|--|
| Maximum<br>Data Rate | Iaximum<br>Pata Rate Master Master<br>(Half-Duplex) (Full-Duplex) |             | Slave<br>Transmit/Receive<br>(Full-Duplex)               | СКЕ | СКР | SMP |  |  |
| 15 MHz               | Table 32-42                                                       |             |                                                          | 0,1 | 0,1 | 0,1 |  |  |
| 10 MHz               | —                                                                 | Table 32-43 | —                                                        | 1   | 0,1 | 1   |  |  |
| 10 MHz               | _                                                                 | Table 32-44 | —                                                        | 0   | 0,1 | 1   |  |  |
| 15 MHz               | _                                                                 | —           | Table 32-45                                              | 1   | 0   | 0   |  |  |
| 11 MHz               | _                                                                 | —           | Table 32-46                                              | 1   | 1   | 0   |  |  |
| 15 MHz               | _                                                                 | _           | Table 32-47                                              | 0   | 1   | 0   |  |  |
| 11 MHz               | _                                                                 | _           | Table 32-48                                              | 0   | 0   | 0   |  |  |

#### TABLE 32-41: SPI2 MAXIMUM DATA/CLOCK RATE SUMMARY

# FIGURE 32-23: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS



| AC CHARACTERISTICS |                            |                                                                       | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ |                     |       |       |                                      |  |
|--------------------|----------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|---------------------|-------|-------|--------------------------------------|--|
| Param.             | ram. Symbol Characteristic |                                                                       |                                                       | Typ. <sup>(1)</sup> | Max.  | Units | Conditions                           |  |
|                    |                            | Cloc                                                                  | k Parame                                              | ters                |       |       |                                      |  |
| AD50               | TAD                        | ADC Clock Period                                                      | 76                                                    | —                   | _     | ns    |                                      |  |
| AD51               | tRC                        | ADC Internal RC Oscillator Period                                     | —                                                     | 250                 | —     | ns    |                                      |  |
|                    |                            | Con                                                                   | version F                                             | late                |       |       |                                      |  |
| AD55               | tCONV                      | Conversion Time                                                       | —                                                     | 12 Tad              |       | —     |                                      |  |
| AD56               | FCNV                       | Throughput Rate                                                       | —                                                     |                     | 1.1   | Msps  | Using sequential<br>sampling         |  |
| AD57               | TSAMP                      | Sample Time                                                           | 2 Tad                                                 | —                   | _     | _     |                                      |  |
|                    |                            | Timin                                                                 | g Param                                               | eters               |       |       |                                      |  |
| AD60               | tPCS                       | Conversion Start from Sample<br>Trigger <sup>(2)</sup>                | 2 Tad                                                 | _                   | 3 Tad | —     | Auto-Convert Trigger<br>not selected |  |
| AD61               | tpss                       | Sample Start from Setting<br>Sample (SAMP) bit <sup>(2)</sup>         | 2 Tad                                                 | _                   | 3 Tad | —     |                                      |  |
| AD62               | tcss                       | Conversion Completion to<br>Sample Start (ASAM = $1$ ) <sup>(2)</sup> | —                                                     | 0.5 TAD             | _     | —     |                                      |  |
| AD63               | tdpu                       | Time to Stabilize Analog Stage from ADC Off to ADC On <sup>(2)</sup>  |                                                       | _                   | 20    | μS    | See Note 3                           |  |

#### TABLE 32-58: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

**Note 1:** These parameters are characterized but not tested in manufacturing.

**2:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

**3:** The tDPU parameter is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (ADxCON1<15>) = 1). During this time, the ADC result is indeterminate.

4: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 32-11 for the minimum and maximum BOR values.

#### 100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm Footprint [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                          | Units            | MILLIMETERS |          |      |  |
|--------------------------|------------------|-------------|----------|------|--|
|                          | Dimension Limits | MIN         | NOM      | MAX  |  |
| Number of Leads          | N                |             | 100      | •    |  |
| Lead Pitch               | e                |             | 0.50 BSC |      |  |
| Overall Height           | А                | -           | -        | 1.20 |  |
| Molded Package Thickness | A2               | 0.95        | 1.00     | 1.05 |  |
| Standoff                 | A1               | 0.05        | -        | 0.15 |  |
| Foot Length              | L                | 0.45        | 0.60     | 0.75 |  |
| Footprint                | L1               | 1.00 REF    |          |      |  |
| Foot Angle               | φ                | 0°          | 3.5°     | 7°   |  |
| Overall Width            | E 16.00 BSC      |             |          |      |  |
| Overall Length           | D                | 16.00 BSC   |          |      |  |
| Molded Package Width     | E1               | 14.00 BSC   |          |      |  |
| Molded Package Length    | D1               | 14.00 BSC   |          |      |  |
| Lead Thickness           | С                | 0.09        | -        | 0.20 |  |
| Lead Width               | b                | 0.17        | 0.22     | 0.27 |  |
| Mold Draft Angle Top     | α                | 11°         | 12°      | 13°  |  |
| Mold Draft Angle Bottom  | β                | 11°         | 12°      | 13°  |  |

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B