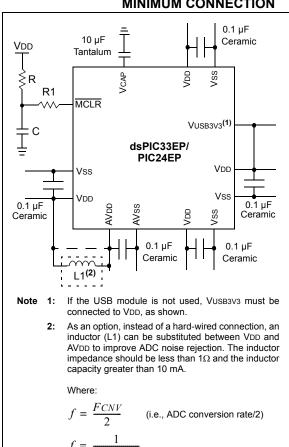


Welcome to E-XFL.COM

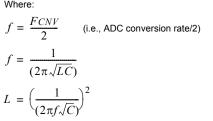
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFl


Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	122
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	24K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TQFP
Supplier Device Package	144-TQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep512gu814-i-ph

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 µF to 47 µF.

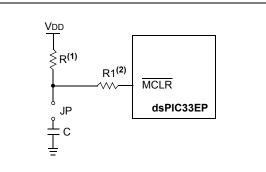
2.3 **CPU Logic Filter Capacitor** Connection (VCAP)

A low-ESR (< 1 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor greater than 4.7 µF (10 µF is recommended), 16V connected to ground. The type can be ceramic or tantalum. See Section 32.0 "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See Section 29.2 "On-Chip Voltage Regulator" for details.

Master Clear (MCLR) Pin 2.4

The MCLR pin provides two specific device functions:


- · Device Reset
- · Device Programming and Debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

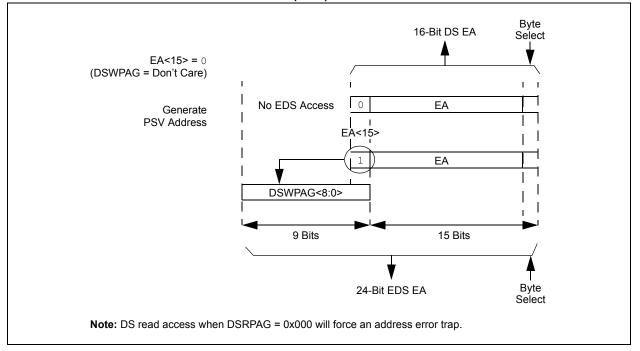
For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN FIGURE 2-2: CONNECTIONS

- **Note 1:** $R \leq 10 \text{ k}\Omega$ is recommended. A suggested starting value is 10 k Ω . Ensure that the MCLR pin VIH and VIL specifications are met.
 - $R1 \leq 470\Omega$ will limit any current flowing into 2: MCLR from the external capacitor C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)


bit 2	 SFA: Stack Frame Active Status bit 1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and DSWPAG values
	0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space
bit 1	RND: Rounding Mode Select bit ⁽¹⁾
	1 = Biased (conventional) rounding is enabled0 = Unbiased (convergent) rounding is enabled
bit 0	IF: Integer or Fractional Multiplier Mode Select bit ⁽¹⁾
	1 = Integer mode is enabled for DSP multiply
	0 = Fractional mode is enabled for DSP multiply

- Note 1: This bit is available on dsPIC33EPXXX(GP/MC/MU)806/810/814 devices only.
 - **2:** This bit is always read as '0'.
 - 3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

TABLE 4-21 :	QEI2 REGISTER MAP FOR dsPIC33EPXXX(MC/MU)806/810/814 DEVICES ONLY
---------------------	---

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
QEI2CON	05C0	QEIEN	—	QEISIDL		PIMOD<2:0>		IMV<	<1:0>	—		INTDIV<2:0	>	CNTPOL	GATEN	CCM	<1:0>	0000
QEI2IOC	05C2	QCAPEN	FLTREN		QFDIV<2:0>	DIV<2:0> OUTFNC<1:0> SWPAB HOMPOL IDXPOL QEBPOL QEAPOL HOME INDEX QEB QE				QEA	000x							
QEI2STAT	05C4	_	—	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN	PCIIRQ	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN	0000
POS2CNTL	05C6		POSCNT<15:0>											0000				
POS2CNTH	05C8		POSCNT<31:16>											0000				
POS2HLD	05CA		POSHLD<15:0>											0000				
VEL2CNT	05CC		VELCNT<15:0>											0000				
INT2TMRL	05CE		INTTMR<15:0>										0000					
INT2TMRH	05D0		INTTMR<31:16>										0000					
INT2HLDL	05D2		INTHLD<15:0>								0000							
INT2HLDH	05D4								INTHLD<31:	16>								0000
INDX2CNTL	05D6								INDXCNT<15	5:0>								0000
INDX2CNTH	05D8							I	NDXCNT<31	:16>								0000
INDX2HLD	05DA								INDXHLD<15	5:0>								0000
QEI2GECL	05DC								QEIGEC<15	:0>								0000
QEI2ICL	05DC								QEIIC<15:0)>								0000
QEI2GECH	05DE								QEIGEC<31:	16>								0000
QEI2ICH	05DE								QEIIC<31:1	6>								0000
QEI2LECL	05E0								QEILEC<15	0>								0000
QEI2LECH	05E2								QEILEC<31:	16>								0000
a secondo																		

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

EXAMPLE 4-2: EXTENDED DATA SPACE (EDS) WRITE ADDRESS GENERATION

The paged memory scheme provides access to multiple 32-Kbyte windows in the EDS and PSV memory. The Data Space Page registers DSxPAG, in combination with the upper half of data space address can provide up to 16 Mbytes of additional address space in the EDS and 12 Mbytes (DSRPAG only) of PSV address space. The paged data memory space is shown in Example 4-3.

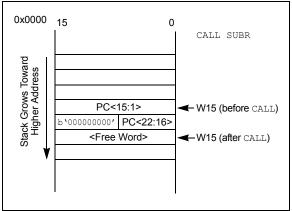
The Program Space (PS) can be accessed with DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG. Writes to PS are not supported, so DSWPAG is dedicated to DS, including EDS, only. The data space and EDS can be read from and written to using DSRPAG and DSWPAG, respectively.

4.4.4 SOFTWARE STACK

The W15 register serves as a dedicated software Stack Pointer (SP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating of the Stack Pointer (for example, creating stack frames).

Note: To protect against misaligned stack accesses, W15<0> is fixed to '0' by the hardware.

W15 is initialized to 0x1000 during all Resets. This address ensures that the SP points to valid RAM in all dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814 devices and permits stack availability for non-maskable trap exceptions. These can occur before the SP is initialized by the user software. You can reprogram the SP during initialization to any location within data space.


The Stack Pointer always points to the first available free word and fills the software stack working from lower toward higher addresses. Figure 4-9 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> is pushed onto the first available stack word, then PC<22:16> is pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-9. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- Note 1: For main system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging and is therefore, restricted to the address range of 0x0000 to 0xFFFF. The same applies to W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in and across X, Y and DMA RAM spaces, care must be exercised regarding its use, particularly with regard to local automatic variables in a C development environment.

FIGURE 4-9: CALL SI

CALL STACK FRAME

4.5 Instruction Addressing Modes

The addressing modes, shown in Table 4-75, form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.5.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.5.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 < function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- · Register Indirect Pre-Modified
- 5-bit or 10-bit Literal
 - Note: Not all instructions support all of the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US<	1:0>	EDT		DL<2:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	VAR: Variable Exception Processing Latency Control bit
	1 = Variable exception processing is enabled
	0 = Fixed exception processing is enabled
	(2)

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2: "CORCON: Core Control Register".

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER (CONTINUED)

- bit 2 **PPST2:** Channel 2 Ping-Pong Mode Status Flag bit
 - 1 = DMASTB2 register selected0 = DMASTA2 register selected
- bit 1 **PPST1:** Channel 1 Ping-Pong Mode Status Flag bit
- 1 = DMASTB1 register selected
 - 0 = DMASTA1 register selected
- bit 0 PPST0: Channel 0 Ping-Pong Mode Status Flag bit
 - 1 = DMASTB0 register selected
 - 0 = DMASTA0 register selected

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD
pit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD
pit 7	CONNE	COOMD	COOND	OOHND	COOMD	OOZIND	bit
Legend:							
R = Readabl	e bit	W = Writable	bit		nented bit, read	1 26 (0)	
n = Value at		'1' = Bit is set	bit	$0^{\circ} = \text{Bit is clear}$		x = Bit is unkr	
	PUR	I = DILIS SEL			areu	X = DILIS UNKI	IOWII
oit 15	IC8MD: Input	Capture 8 Mod	lule Disable bit				
		oture 8 module oture 8 module					
oit 14	IC7MD: Input	Capture 2 Mod	dule Disable bit				
		oture 7 module oture 7 module					
oit 13	IC6MD: Input	Capture 6 Mod	dule Disable bit				
		oture 6 module oture 6 module					
oit 12	IC5MD: Input	Capture 5 Mod	dule Disable bit				
	• •	oture 5 module oture 5 module					
oit 11	IC4MD: Input	Capture 4 Mod	dule Disable bit				
		oture 4 module oture 4 module					
oit 10	IC3MD: Input	Capture 3 Mod	dule Disable bit				
		oture 3 module oture 3 module					
oit 9	IC2MD: Input	Capture 2 Mod	dule Disable bit				
		oture 2 module oture 2 module					
oit 8	IC1MD: Input	Capture 1 Mod	dule Disable bit				
		oture 1 module oture 1 module					
oit 7	OC8MD: Out	put Compare 8	Module Disable	e bit			
	•	ompare 8 modu ompare 8 modu					
oit 6	OC7MD: Out	put Compare 7	Module Disable	e bit			
		ompare 7 modu ompare 7 modu					
oit 5	OC6MD: Out	put Compare 6	Module Disable	e bit			
		ompare 6 modu ompare 6 modu					
	-						
oit 4	OC5MD: Out	put Compare 5	Module Disable	e bit			

REGISTER 11-22: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—		SS1R<6:0>								
bit 7		bi								
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown						

bit 15-7 Unimplemented: Read as '0'

bit 6-0 SS1R<6:0>: Assign SPI1 Slave Select Input (SS1) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 1111111 = Input tied to RP127

> . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-23: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	_	—		_	_	_	—			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—		SS2R<6:0>								
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	1 as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown							

bit 15-7 Unimplemented: Read as '0'

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—			IC10R<6:0>						
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
0-0	10,00-0	10,00-0	10,00-0	IC9R<6:0>	10.00-0	10/00-0	1000-0		
bit 7				1091(<0.0>			bit (
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, rea	ıd as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	x = Bit is unknown		
		Input tied to RP	P1						
bit 7		Input tied to Vss							
bit 6-0	Unimplemented: Read as '0' IC9R<6:0>: Assign Input Capture 9 (IC9) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 1111111 = Input tied to RP127								
	•		. – .						
	0000001 =	Input tied to CM	P1						

REGISTER 11-33: RPINR33: PERIPHERAL PIN SELECT INPUT REGISTER 33

00000001 = Input tied to CMP 00000000 = Input tied to Vss

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0	SYNCSEL<4:0>: Trigger/Synchronization Source Selection bit	s
	11111 = No Sync or Trigger source for OCx	
	11110 = INT2 pin synchronizes or triggers OCx	
	11101 = INT1 pin synchronizes or triggers OCx	
	11100 = Reserved	
	11011 = ADC1 module synchronizes or triggers OCx	
	11010 = CMP3 module synchronizes or triggers OCx	
	11001 = CMP2 module synchronizes or triggers OCx	
	11000 = CMP1 module synchronizes or triggers OCx	
	10111 = IC8 module synchronizes or triggers OCx	
	10110 = IC7 module synchronizes or triggers OCx	
	10101 = IC6 module synchronizes or triggers OCx	
	10100 = IC5 module synchronizes or triggers OCx	
	10011 = IC4 module synchronizes or triggers OCx	
	10010 = IC3 module synchronizes or triggers OCx	
	10001 = IC2 module synchronizes or triggers OCx	
	10000 = IC1 module synchronizes or triggers OCx	
	01111 = Timer5 synchronizes or triggers OCx	
	01110 = Timer4 synchronizes or triggers OCx	
	01101 = Timer3 synchronizes or triggers OCx	
	01100 = Timer2 synchronizes or triggers OCx (default)	
	01011 = Timer1 synchronizes or triggers OCx	
	01010 = No Sync or Trigger source for OCx	
	01001 = OC9 module synchronizes or triggers $OCx^{(1,2)}$	
	01000 = OC8 module synchronizes or triggers $OCx^{(1,2)}$	
	00111 = OC7 module synchronizes or triggers $OCx^{(1,2)}$	
	00110 = OC6 module synchronizes or triggers $OCx^{(1,2)}$	
	00101 = OC5 module synchronizes or triggers $OCx^{(1,2)}$	
	00100 = OC4 module synchronizes or triggers $OCx^{(1,2)}$	
	00011 = OC3 module synchronizes or triggers $OCx^{(1,2)}$	
	00010 = OC2 module synchronizes or triggers $OCx^{(1,2)}$	
	$00001 = OC1 \text{ module synchronizes or triggers OCx}^{(1,2)}$	
	00000 = No Sync or Trigger source for OCx	

- **Note 1:** Do not use the OCx module as its own Sync or Trigger source.
 - 2: When the OCy module is turned OFF, it sends a trigger out signal. If the OCx module uses the OCy module as a Trigger source, the OCy module must be unselected as a Trigger source prior to disabling it.

IFLTMOD bit 15		C	1 SPC - 4.0 - (2	.3)		al Day (1)	
bit 15		CLSRC<4:0> ^(2,3)			CLPOL ⁽¹⁾	CLMOD	
							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FL	_TSRC<4:0> ^{(2,3}	3)		FLTPOL ⁽¹⁾	FLTMO	D<1:0>
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
oit 15	IFLTMOD: In	idependent Fau	It Mode Enabl	le bit			
	1 = Indepen	dent Fault mode	e: Current-limi	t input maps F	LTDAT<1> to P	VMxH output a	nd Fault inpr
					:0> bits are not u		
					.DAT<1:0> bits t		
					to the PWMxH a		
bit 14-10	CLSRC<4:0>	Current-Limit	Control Signa	al Source Sele	ct for PWM Gen	erator # bits ^{(2,3})
	11111 = Res	served					
	•						
	•						
	•						
	01001 = Res	served					
	01010 = Cor	mparator 3					
	01001 = Cor	mparator 2					
	01000 = Cor	mparator 1					
	00111 = Res						
	00110 = Fau						
	00101 = Fau						
	00100 = Fau						
	00011 = Fau						
	00010 = Fau 00001 = Fau						
	00000 = Fau						
bit 9		rent-Limit Polar	ity bit for PWN	I Generator #	(1)		
		cted current-lim					
	0 = The selec	cted current-lim	it source is ac	tive-high			
bit 8	CLMOD: Cur	rrent-Limit Mode	e Enable bit fo	r PWM Gener	rator #		
		₋imit mode is er ₋imit mode is di					
	ese bits should Id unpredictable		ly when PTEN	l = 0. Changir	ng the clock sele	ction during op	eration will

REGISTER 16-21: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER

- 2: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = 01000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.
- **3:** When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = 01000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.

20.3 UARTx Registers

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
UARTEN ⁽¹⁾	—	USIDL	IREN ⁽²⁾	RTSMD	—	UEN	<1:0>		
bit 15							bit 8		
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEI	-	STSEL		
bit 7	LFDACK	ABAUD	URAINV	BRGH	FDGEI	_<1.0>	bit (
Legend:		HC = Hardwa	re Clearable b	bit					
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	UARTEN: UA	RTx Enable bi	t(1)						
					y UARTx as defin y port latches; L				
bit 14	Unimplemen	ted: Read as '	0'						
bit 13	USIDL: UART	Tx Stop in Idle	Mode bit						
		ues module op s module oper			Idle mode				
bit 12	IREN: IrDA [®] I	Encoder and D	ecoder Enable	e bit ⁽²⁾					
		oder and deco							
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin b	it					
		in in Simplex n in in Flow Con							
bit 10	Unimplemen	ted: Read as '	0'						
bit 9-8	UEN<1:0>: UARTx Pin Enable bits								
	10 = UxTX, U 01 = UxTX, U	JxRX, UxCTS a JxRX and UxR nd UxRX pins a	and UxRTS pi TS pins are er	ns are enableo nabled an <u>d use</u>	d; UxCTS pin is d an <u>d used</u> ed; UxC <u>TS pin is</u> S and UxRTS/F	s controlled by	port latches		
bit 7	WAKE: Wake	-up on Start Bi	t Detect Durin	g Sleep Mode	Enable bit				
	hardware	ontinues to sar on following r -up is enabled	•	K pin; interrupt	is generated or	n falling edge; b	it is cleared in		
bit 6		RTx Loopback	Mode Select	bit					
	1 = Enables I	Loopback mod	e						
DIL O	0 = Loopback	k mode is disal							
	-	k mode is disal p-Baud Enable							
bit 5	ABAUD: Auto	o-Baud Enable	bit surement on t		eter – requires re	eception of a S	ync field (55h		

REGISTER 20-1: UxMODE: UARTx MODE REGISTER

© 2009-2012 Microchip Technology Inc.

2: This feature is only available for the 16x BRG mode (BRGH = 0).

dsPIC33EPXXX(GP/MC/MU)806/810/814 and PIC24EPXXX(GP/GU)810/814

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F7BF	P<3:0>		F6BP<3:0>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F5BF	P<3:0>		F4BP<3:0>					
bit 7							bit 0		
Legend:	lo hit	M = Mritabla	h it		control hit roo	d aa (0)			
R = Readab		W = Writable		U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unknown					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is u			IOWN		
bit 15-12	F7BP<3:0>:	RX Buffer Masl	k for Filter 7 k	oits					
		r hits received ir r hits received ir	n RX FIFO bu						
			n RX FIFO bu						
	1110 = Filte		n RX FIFO bu						
	1110 = Filte • • • •		n RX FIFO bu n RX Buffer 1 n RX Buffer 1	4					

- bit 7-4 F5BP<3:0>: RX Buffer Mask for Filter 5 bits (same values as bit 15-12)
- bit 3-0 F4BP<3:0>: RX Buffer Mask for Filter 4 bits (same values as bit 15-12)

REGISTER 21-14: CxBUFPNT3: ECANx FILTER 8-11 BUFFER POINTER REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	F11B	P<3:0>			F10E	3P<3:0>				
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/M/-0			
10,00-0	-	P<3:0>	10.00-0		-	P<3:0>	W-0 R/W-0 bit 0			
bit 7	1 3 01	10.02			100	1 3.02	hit 0			
							bit o			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cleared x = Bit is unknowr			nown			
bit 15-12	F11BP<3:0	RX Buffer Ma	sk for Filter 1	1 bits						
				IFO buffer						
	1111 = Filte	er hits received in	h RX FIFO bu	lπer						
		er hits received in er hits received in		-						
				-						

	•
	•
	0001 = Filter hits received in RX Buffer 1
	0000 = Filter hits received in RX Buffer 0
bit 11-8	F10BP<3:0>: RX Buffer Mask for Filter 10 bits (same values as bit 15-12)
bit 7-4	F9BP<3:0>: RX Buffer Mask for Filter 9 bits (same values as bit 15-12)
bit 3-0	F8BP<3:0>: RX Buffer Mask for Filter 8 bits (same values as bit 15-12)

Legend: R = Readable I	hit	W = Writable I	oit		nented bit read	1 22 (0)	
bit 7							bit 0
CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

REGISTER 23-8: AD1CSSH: ADC1 INPUT SCAN SELECT REGISTER HIGH^(1,2,3)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

CSS<31:16>: ADC1 Input Scan Selection bits

- 1 =Selects ANx for input scan
- 0 = Skips ANx for input scan
- **Note 1:** On devices with less than 32 analog inputs, all ADxCSSH bits can be selected by user software. However, inputs selected for scan without a corresponding input on the device converts to VREFL.
 - **2:** CSSx = ANx, where x = 16-31.
 - 3: ADC2 only supports analog inputs, AN0-AN15; therefore, no ADC2 Input Scan Select register exists.

REGISTER 23-9: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW^(1,2)

Legend:							
bit 7							bit 0
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

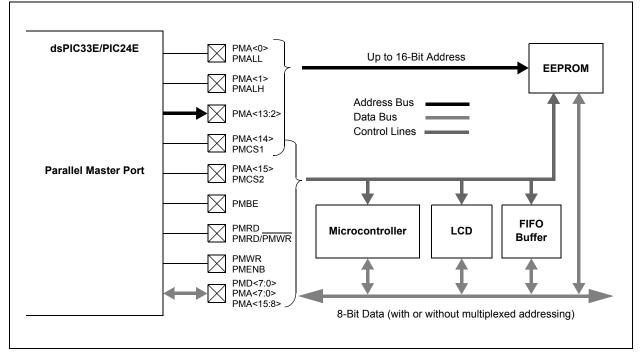
•				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

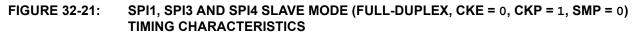
bit 15-0

CSS<15:0>: ADC Input Scan Selection bits

- 1 = Selects ANx for input scan
- 0 = Skips ANx for input scan
- **Note 1:** On devices with less than 16 analog inputs, all ADxCSSL bits can be selected by the user. However, inputs selected for scan without a corresponding input on the device converts to VREFL.
 - **2:** CSSx = ANx, where x = 0-15.

28.0 PARALLEL MASTER PORT (PMP)


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXX(GP/MC/MU)806/ 810/814 and PIC24EPXXX(GP/GU)810/ 814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 28. "Parallel Master Port (PMP)" (DS70576) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.


Key features of the PMP module include:

- Eight Data Lines
- Up to 16 Programmable Address Lines
- Up to 2 Chip Select Lines
- Programmable Strobe Options:
 - Individual read and write strobes, or
 - Read/Write strobe with enable strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- · Programmable Polarity on Control Signals
- Legacy Parallel Slave Port (PSP) Support
- Enhanced Parallel Slave Support:
 - Address support
 - 4-byte deep auto-incrementing buffer
- · Programmable Wait States

FIGURE 28-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

TABLE 32-39:SPI1, SPI3 AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

АС СНА		rics	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	TscP	Maximum SCKx Input Frequency	_	_	15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	_		—	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time			_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx \downarrow Input	120	—	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	—		ns	See Note 4

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC CHA	RACTERIS	TICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic ⁽²⁾	Min. Typ. Max. Units Conditions				
VR310	TSET	Settling Time ⁽¹⁾	_	—	10	μS	

TABLE 32-63: COMPARATOR REFERENCE VOLTAGE SETTLING TIME SPECIFICATIONS

Note 1: Setting time measured while CVRR = 1 and CVR<3:0> bits transition from '0000' to '1111'.

2: These parameters are characterized, but not tested in manufacturing.

3: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 32-11 for the minimum and maximum BOR values.

TABLE 32-64: COMPARATOR REFERENCE VOLTAGE SPECIFICATIONS

DC CHAI	RACTERIS	TICS	Standard Operating Conditions: 3.0V to 3.6V (see Not (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industr $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extend			85°C for Industrial	
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
VRD310	CVRES	Resolution	CVRSRC/24	_	CVRSRC/32	LSb	
VRD311	CVRAA	Absolute Accuracy	—	—	0.5	LSb	
VRD312	CVRL	Maximum Load on CVREF Output Pin	_		0.75	μΑ	AVDD = 3.6V, CVRSS = 0, CVRR = 0, CVR<3:0> = 1111

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, Comparator and DAC will have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 32-11 for the minimum and maximum BOR values.</p>

Revision F (February 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

Throughout the document, references to the package formerly known as XBGA where changed to TFBGA.

In addition, where applicable, new sections were added to each peripheral chapter that provide information and links to related resources, as well as helpful tips. For examples, see **Section 18.1 "SPI Helpful Tips"** and **Section 18.2 "SPI Resources"**. The major changes are referenced by their respective section in Table A-4.

TABLE A-4: MAJOR SECTION UPDATES

Section Name	Update Description
"16-Bit Microcontrollers and Digital Signal Controllers with High-Speed PWM, USB and Advanced Analog"	The content on the first page of this section was extensively reworked to provide the reader with the key features and functionality of this device family in an "at-a-glance" format.
	The following devices were added to the Controller Families table (see Table 1 and the "Pin Diagrams" section):
	 dsPIC33EP512MC806 dsPIC33EP512GP806 PIC24EP512GP806
Section 2.0 "Guidelines for Getting Started with 16-Bit Digital Signal Controllers and Microcontrollers"	Added Section 2.9 "Application Examples"
Section 3.0 "CPU"	Updated the Status Register information in the Programmer's Model (see Figure 3-2).
Section 4.0 "Memory Organization"	Added Interrupt Controller Register Maps (see Table 4-6 and Table 4-7).
	Added Peripheral Pin Select Output Register Map (see Table 4-39).
	Added PMD Register Maps (see Table 4-50 and Table 4-51).
	Added PORTF Register Map (see Table 4-64).
	Added PORTG Register Map (see Table 4-67).
	Updated the second note in Section 4.7 "Bit-Reversed Addressing (dsPIC33EPXXXMU806/810/814 Devices Only)".
Section 11.0 "I/O Ports"	Added RPOR10: Peripheral Pin Select Output Register 10 (see Register 11-54).
Section 14.0 "Input Capture"	Updated the Input Capture Module Block Diagram (see Figure 14-1).
Section 15.0 "Output Compare"	Updated the Output Compare Module Block Diagram (see Figure 15-1).
Section 25.0 "Comparator Module"	Updated the User-programmable Blanking Function Block Diagram (see Figure 25-3).
	Updated the bit definitions in the Comparator Mask Gating Control Register (see Register 25-4).
Section 29.0 "Special Features"	Added Note 3 to the Configuration Bits Description (see Table 29-2).
Section 32.0 "Electrical Characteristics"	Updated the I/O pin Absolute Maximum Ratings.
	Updated Note 1 in the DC Characteristics: Operating Current (see Table 32-5).
	Updated Note 1 in the DC Characteristics: Idle Current (see Table 32-6).
	Updated Note 1 in the DC Characteristics: Power-down Current (see Table 32-7).
	Updated Note 1 in the DC Characteristics: Doze Current (see Table 32-8).
	Removed parameters DO16 and DO26, added parameter DO26a, updated parameters DO10 and DO20, and added Note 1 in the DC Characteristics: I/O Pin Output Specifications (see Table 32-10).