

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	12KB (4K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj12gp201-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-4:	INTERRUPT CONTROLLER REGISTER M	IAP
------------	---------------------------------	-----

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	-	—	-	-	—	—	-	-	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	—		—	_	—			_	—	_		INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_		AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	—	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	_		INT2IF		—	_	_		IC8IF	IC7IF	—	INT1IF	CNIF	—	MI2C1IF	SI2C1IF	0000
IFS4	008C	_		—		—	_	_			—	—	—		—	U1EIF	—	0000
IEC0	0094	_		AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	_		INT2IE		—	_	_		IC8IE	IC7IE	—	INT1IE	CNIE	—	MI2C1IE	SI2C1IE	0000
IEC4	009C	_		—		—	_	_			—	—	—		—	U1EIE	—	0000
IPC0	00A4	_		T1IP<2:0>		—	(OC1IP<2:0)>			IC1IP<2:0>			11	NT0IP<2:0>	•	4444
IPC1	00A6	—		T2IP<2:0>		—	(OC2IP<2:0)>	_		IC2IP<2:0>		_	—	—	—	4440
IPC2	00A8	_	L	J1RXIP<2:()>	—	5	SPI1IP<2:0)>			SPI1EIP<2:0)>			T3IP<2:0>		4444
IPC3	00AA	_		—		—	_	_				AD1IP<2:0	>		U	1TXIP<2:0	>	0044
IPC4	00AC	_		CNIP<2:0>	>	—	_	_				MI2C1IP<2:0)>		SI	2C1IP<2:0	>	4044
IPC5	00AE	_		IC8IP<2:0	>	—		IC7IP<2:0	>		—	—	—		11	NT1IP<2:0>	•	4404
IPC7	00B2	_		—		—	_	_				INT2IP<2:0	>		—	—	—	0040
IPC16	00C4	_	_	_	_	_	_	_	_	_		U1EIP<2:0>	>	_	_	_	_	0040
INTTREG	00E0	_	_	_	_		ILR<	3:0>		_			VE	CNUM<6:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

;	Set up NVMCO	N for row programming opera	ıti	ons
	MOV	#0x4001, W0	;	
	MOV	W0, NVMCON	;	Initialize NVMCON
;	Set up a poir	nter to the first program m	nem	nory location to be written
;	program memo:	ry selected, and writes ena	bl	.ed
	MOV	#0x0000, W0	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	;	An example program memory address
;	Perform the	TBLWT instructions to write	e t	the latches
;	0th_program_	word		
	MOV	#LOW_WORD_0, W2	;	
	MOV	<pre>#HIGH_BYTE_0, W3</pre>	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	lst_program_v	word		
	MOV	#LOW_WORD_1, W2	;	
	MOV	#HIGH_BYTE_1, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	2nd_program	_word		
	MOV	#LOW_WORD_2, W2	;	
	MOV	#HIGH_BYTE_2, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
	•			
	•			
	•			
;	63rd_program	_word		
	MOV	#LOW_WORD_31, W2	;	
	MOV	#HIGH_BYTE_31, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; ;	Block all interrupts with priority <7 for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	Insert two NOPs after the
NOP		;	erase command is asserted

6.1 System Reset

The PIC24HJ12GP201/202 family of devices have two types of Reset:

- Cold Reset
- Warm Reset

A cold Reset is the result of a Power-on Reset (POR) or a BOR. On a cold Reset, the FNOSC configuration bits in the FOSC device configuration register selects the device clock source.

A warm Reset is the result of all other Reset sources, including the RESET instruction. On warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection (COSC<2:0>) bits in the Oscillator Control (OSCCON<14:12>) register.

Oscillator Mode	Oscillator Startup Delay	Oscillator Startup Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd		_	Toscd
FRCPLL	Toscd	—	TLOCK	TOSCD + TLOCK
XT	Toscd	Tost	—	Toscd + Tost
HS	Toscd	Tost	—	Toscd + Tost
EC	—	—	—	—
XTPLL	Toscd	Tost	TLOCK	TOSCD + TOST + TLOCK
HSPLL	Toscd	Tost	TLOCK	TOSCD + TOST + TLOCK
ECPLL	—	—	TLOCK	TLOCK
SOSC	Toscd	Tost	—	Toscd + Tost
LPRC	Toscd	—	—	Toscd

TABLE 6-1:OSCILLATOR DELAY

Note 1: ToscD = Oscillator Start-up Delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal Oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer Delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal), if PLL is enabled.

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is detailed below and is shown in Figure 6-2.

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
	—	INT2IF	—	—	—	—	—	
bit 15							bit 8	
R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
IC8IF	IC7IF	—	INT1IF	CNIF	—	MI2C1IF	SI2C1IF	
bit 7							bit 0	
Legend:								
R = Readable	hit	W = Writable	hit	U = Unimpler	mented hit read	1 as '0'		
-n = Value at F	POR	'1' = Bit is set	bit	'0' = Bit is cle	ared	x = Bit is unkr	nown	
				0 21110 010				
bit 15-14	Unimplemer	ted: Read as '	0'					
bit 13	INT2IF: Exter	rnal Interrupt 2	Flag Status b	it				
	1 = Interrupt	request has occ	curred					
h# 40.0	0 = Interrupt	request has not						
DIT 12-8	Unimplemented: Read as '0'							
DIT 7	IC8IF: Input Capture Channel 8 Interrupt Flag Status bit							
	1 = Interrupt 0 = Interrupt	request has oct	toccurred					
bit 6	IC7IF: Input (Capture Channe	el 7 Interrupt	Flag Status bit				
	1 = Interrupt	request has occ	curred					
	0 = Interrupt	request has not	t occurred					
bit 5	Unimplemen	nted: Read as ')' Flas Otatus h	:1				
DIT 4	1 = Interrupt	rnal Interrupt 1	Flag Status D	It				
	1 = Interrupt 0 = Interrupt	request has oct	toccurred					
bit 3	CNIF: Input (Change Notifica	tion Interrupt	Flag Status bit				
	1 = Interrupt	request has occ	curred					
	0 = Interrupt	request has not	toccurred					
bit 2	Unimplemer	ted: Read as '	D'	.				
bit 1	MI2C1IF: I2C	C1 Master Even	ts Interrupt FI	ag Status bit				
	\perp = Interrupt 0 = Interrupt	request has occ request has not	currea t occurred					
bit 0	SI2C1IF: 12C	1 Slave Events	Interrupt Flag	a Status bit				
	1 = Interrupt	request has occ	curred	,				
	0 = Interrupt	request has not	occurred					

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

REGISTER 8-2:	CLKDIV: CLOCK DIVISOR REGISTER ⁽²⁾
REGISTER 8-2:	CLKDIV: CLOCK DIVISOR REGISTER ⁽²

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>	
bit 15							bit 8
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPOS	ST<1:0>	—		F	PLLPRE<4:()>	
bit 7							bit 0
Legend:		y = Value set f	from Configur	ration bits on POI	R		
R = Readable	bit	W = Writable I	oit	U = Unimpleme	ented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unkno	own
bit 15 ROI: Recover on Interrupt bit 1 = Interrupts will clear the DOZEN bit and the processor clock/peripheral clock ratio is set to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE<2:0>: Processor Clock Reduction Select bits						set to 1:1	
	111 = FcY/128 110 = FcY/64 101 = FcY/32 100 = FcY/16 011 = FcY/8 (default) 010 = FcY/4 001 = FcY/2 000 = FcY/1						
bit 11	DOZEN: DOZ 1 = DOZE<2: 0 = Processo	E Mode Enable 0> field specified field specified	e bit ⁽¹⁾ es the ratio b ral clock ratio	etween the perip o forced to 1:1	heral clocks	and the processo	or clocks
bit 10-8	FRCDIV<2:0> 111 = FRC di 110 = FRC di 101 = FRC di 100 = FRC di 011 = FRC di 010 = FRC di 001 = FRC di 000 = FRC di	 Internal Fast vide by 256 vide by 64 vide by 32 vide by 16 vide by 8 vide by 4 vide by 2 vide by 1 (defa 	RC Oscillato	r Postscaler bits			
bit 7-6	PLLPOST<1: 00 = Output/2 01 = Output/4 10 = Reserve 11 = Output/8	0>: PLL VCO ((default) d	Dutput Divide	r Select bits (also	o denoted as	3 'N2', PLL postsc	aler)
bit 5	Unimplement	ted: Read as 'o)'				
bit 4-0	PLLPRE<4:0: 00000 = Inpu 00001 = Inpu	>: PLL Phase [t/2 (default) t/3	Detector Inpu	t Divider bits (als	o denoted a	s 'N1', PLL presca	iler)
		033					

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

2: This register is reset only on a Power-on Reset (POR).

9.2.2 IDLE MODE

The following occur in Idle mode:

- The CPU stops executing instructions
- The WDT is automatically cleared
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled
- · Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

9.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

9.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this may not be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the UART module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the UART module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

9.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific PIC24H variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

REGISTER 10-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			OCFAR<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-5	Unimplemen	ted: Read as '	0'				
bit 4-0	OCFAR<4:0>	: Assign Outpu	ut Capture A (OCFA) to the c	orresponding R	Pn pin bits	
	11111 = Inpu	t tied to Vss					
	01111 = Inpu	t tied to RP15					
	•						
	•						
	•						
	00001 = Inpu	t tied to RP1					

00000 = Input tied to RP0

PIC24HJ12GP201/202

13.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the PIC24HJ12GP201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 12. Input Capture" (DS70198) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement. The PIC24HJ12GP201/202 devices support up to eight input capture channels.

The Input Capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

- Simple Capture Event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin
- Capture timer value on every edge (rising and falling)
- Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each Input Capture channel can select one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- · Interrupt on Input Capture event
- · 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3, or 4 buffer locations are filled
- Use of Input Capture to provide additional sources of external interrupts

16.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the PIC24HJ12GP201/202 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 19. Inter-Integrated Circuit™ (I²C™)" (DS70195) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit TM (I²CTM) module provides complete hardware support for both Slave and Multi-Master modes of the I²C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation
- I²C Slave mode supports 7-bit and 10-bit addresses
- I²C Master mode supports 7-bit and 10-bit addresses
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly

16.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7-bit and 10-bit addressing.

The l^2C module can operate either as a slave or a master on an l^2C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-bit address
- I²C slave operation with 10-bit address
- I²C master operation with 7-bit or 10-bit address

For details about the communication sequence in each of these modes, refer to the Microchip web site (www.microchip.com) for the latest *"dsPIC33F/PIC24H Family Reference Manual"* sections.

16.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write.

- · I2CxRSR is the shift register used for shifting data
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read
- I2CxTRN is the transmit register to which bytes are written during a transmit operation
- · I2CxADD register holds the slave address
- · ADD10 status bit indicates 10-bit Address mode
- I2CxBRG acts as the Baud Rate Generator (BRG) reload value

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated.

REGISTER 16-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

R/W-0 AMSK7 bit 7	AMSK6	AWSRJ					bit 0
R/W-0 AMSK7	AMSK6	AWSRU	,	,			,
R/W-0		AMSKE	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
	R/W-0						
bit 15							bit 8
—		—	_	_	—	AMSK9	AMSK8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSKx: Mask for Address bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

18.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the PIC24HJ12GP201/202 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 16. Analog-to-Digital Converter (ADC) with DMA" (DS70183) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24HJ12GP201/202 devices have up to 10 ADC module input channels.

The AD12B bit (AD1CON1<10>), allows each of the ADC modules to be configured as either a 10-bit, 4-sample-and-hold ADC (default configuration) or a 12-bit, 1-sample-and-hold ADC.

Note: The ADC module must be disabled before the AD12B bit can be modified.

18.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to 10 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- · Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Operation during CPU Sleep and Idle modes
- · 16-word conversion result buffer

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one sample-and-hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported

Depending on the particular device pinout, the ADC can have up to 10 analog input pins, designated AN0 through AN9. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins.

The actual number of analog input pins and external voltage reference input configuration will depend on the specific device. Refer to the device data sheet for further details.

Block diagrams of the ADC module are shown in Figure 18-1 and Figure 18-2.

18.2 ADC Initialization

To configure the ADC module:

- 1. Select port pins as analog inputs (AD1PCFGH<15:0> or AD1PCFGL<15:0>).
- 2. Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>).
- Select the analog conversion clock to match desired data rate with processor clock (AD1CON3<7:0>).
- 4. Determine how many sample-and-hold channels will be used (AD1CON2<9:8> and AD1PCFGH<15:0> or AD1PCFGL<15:0>).
- 5. Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>).
- 6. Select the way conversion results are presented in the buffer (AD1CON1<9:8>).
 - a) Turn on the ADC module (AD1CON1<15>).
- 7. Configure ADC interrupt (if required):
 - a) Clear the AD1IF bit.
 - b) Select ADC interrupt priority.

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADRC	_	_			SAMC<4:0>(1)				
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			ADCS	<7:0> ⁽²⁾						
bit 7	bit 7 bit 0									
· · ·										
Legend:	Legend:									
R = Readable	bit	W = Writable b	it	U = Unimplei	mented bit, rea	ad as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	ADRC: ADC	Conversion Cloo	ck Source bit							
	1 = ADC inter 0 = Clock der	nal RC clock ived from syster	n clock							
bit 14-13	Unimplemen	ted: Read as '0	,							
bit 12-8	SAMC<4:0>:	Auto Sample Ti	me bits ⁽¹⁾							
	11111 = 31 T	ĀD								
	•									
	•									
	00001 = 1 TA 00000 = 0 TA	D D								
bit 7-0	ADCS<7:0>:	ADC Conversio	n Clock Sele	ct bits ⁽²⁾						
	11111111 =	Reserved								
	•									
	•									
	•									
	•									
	01000000 = 00111111 =	Reserved TCY · (ADCS<7	:0> + 1) = 64	• TCY = TAD						
	•									
	•									
	•									
	00000010 = 0000000000000000000000000000	TCY · (ADCS<7 TCY · (ADCS<7 TCY · (ADCS<7	(0> + 1) = 3 (0> + 1) = 2 (0> + 1) = 1	 TCY = TAD TCY = TAD TCY = TAD 						

REGISTER 18-3: AD1CON3: ADC1 CONTROL REGISTER 3

- **Note 1:** These bits are used only if the SSRC<2:0> bits (AD1CON1<7:5>) = 111.
 - 2: These bits are not used if the ADRC bit (AD1CON3<15>) = 1.

20.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of this group of PIC24HJ12GP201/202 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.

The PIC24H instruction set is identical to that of the PIC24F, and is a subset of the dsPIC30F/33F instruction set.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- · DSP operations
- · Control operations

Table 20-1 shows the general symbols used in describing the instructions.

The PIC24H instruction set summary in Table 20-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand which is typically a register 'Wb' without any address modifier
- The second source operand which is typically a register 'Ws' with or without an address modifier
- The destination of the result which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value 'f'
- The destination, which could either be the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand which is a register 'Wb' without any address modifier
- The second source operand which is a literal value
- The destination of the result (only if not the same as the first source operand) which is typically a register 'Wd' with or without an address modifier

The control instructions may use some of the following operands:

- A program memory address
- The mode of the table read and table write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or doubleword instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

Note: For more details on the instruction set, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157).

TABLE 22-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions	
Operati	Operating Voltage							
DC10	10 Supply Voltage							
	Vdd		3.0	—	3.6	V	Industrial and Extended	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	—	—	V	—	
DC16	VPOR	VDD Start Voltage⁽³⁾ to ensure internal Power-on Reset signal	_	—	Vss	V	_	
DC17	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.03			V/ms	0-3.0V in 0.1s	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD can be lowered without losing RAM data.

3: VDD voltage must remain at Vss for a minimum of 200 µs to ensure POR.

TABLE 22-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARAC	TERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended						
Parameter No.	Typical ⁽¹⁾	Мах	Units	s Conditions					
Power-Down Current (IPD) ⁽²⁾									
DC60d	55	500	μA	-40°C					
DC60a	63	500	μA	+25°C	2 21/	Base Power-Down Current ^(3,4)			
DC60b	85	500	μA	+85°C	3.3V				
DC60c	146	1000	μA	+125°C					
DC61d	8	13	μA	-40°C					
DC61a	10	15	μA	+25°C	2.21/	λ			
DC61b	12	20	μA	+85°C	3.3V				
DC61c	13	25	μA	+125°C					

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss, WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.

3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

4: These currents are measured on the device containing the most memory in this family.

5: These parameters are characterized, but are not tested in manufacturing.

TABLE 22-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Parameter No.	Typical ⁽¹⁾	Max	Doze Ratio ⁽²⁾	Units		Cor	nditions
DC73a	11	35	1:2	mA			
DC73f	11	30	1:64	mA	-40°C	3.3V	40 MIPS
DC73g	11	30	1:128	mA			
DC70a	11	50	1:2	mA			
DC70f	11	30	1:64	mA	+25°C	3.3V	40 MIPS
DC70g	11	30	1:128	mA			
DC71a	12	50	1:2	mA			
DC71f	12	30	1:64	mA	+85°C	3.3V	40 MIPS
DC71g	12	30	1:128	mA			
DC72a	12	50	1:2	mA			
DC72f	12	30	1:64	mA	+125°C	3.3V	40 MIPS
DC72g	12	30	1:128	mA			

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

2: Parameters with DOZE ratios of 1:2 and 1:64 are characterized, but are not tested in manufacturing.

AC CHARACTERISTICS			Standard Oper (unless otherw Operating temp	rating Co vise state perature	nditions: ed) -40°C ≤ -40°C ≤	3.0V to Га ≤+85°(Га ≤+125°	3.6V C for Indu °C for Ex	ıstrial tended
Param No.	Symbol	Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions
DO31	TioR	Port Output Rise Time		_	10	25	ns	
DO32	TIOF	Port Output Fall Time	_	10	25	ns	—	
DI35	TINP	INTx Pin High or Low Time (input)		25	_	_	ns	
DI40	Trbp	CNx High or Low Tim	ne (input)	2	—	_	TCY	—

TABLE 22-20: I/O TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: These parameters are characterized, but are not tested in manufacturing.

TABLE 22-34:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency	_		15	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—		_	ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—			ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—			ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—		_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30		_	ns	_	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	Ι		ns	_	
SP51	TssH2doZ	SSx	10	_	50	ns	_	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	_	_	ns	See Note 4	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 22-38: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended							
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions			
	Device Supply									
AD01	AVdd	Module VDD Supply ⁽²⁾	Greater of VDD – 0.3 or 3.0	_	Lesser of VDD + 0.3 or 3.6	V	—			
AD02	AVss	Module Vss Supply ⁽²⁾	Vss – 0.3		Vss + 0.3	V	—			
			Referer	nce Inpu	its					
AD05	VREFH	Reference Voltage High	AVss + 2.5		AVdd	V	See Note 1			
AD05a			3.0		3.6	V	VREFH = AVDD VREFL = AVSS = 0, See Note 2			
AD06	VREFL	Reference Voltage Low	AVss		AVDD - 2.5	V	See Note 1			
AD06a			0		0	V	VREFH = AVDD VREFL = AVSS = 0, See Note 2			
AD07	Vref	Absolute Reference Voltage ⁽²⁾	2.5		3.6	V	VREF = VREFH - VREFL			
AD08	IREF	Current Drain	—	250 —	550 10	μΑ μΑ	ADC operating, See Note 1 ADC off, See Note 1			
AD08a	IAD	Operating Current	_	7.0 2.7	9.0 3.2	mA mA	10-bit ADC mode, See Note 2 12-bit ADC mode, See Note 2			
			Analo	og Input						
AD12	VINH	Input Voltage Range VINH ⁽²⁾	Vinl		Vrefh	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), positive input			
AD13	VINL	Input Voltage Range VINL ⁽²⁾	VREFL	—	AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), negative input			
AD17	RIN	Recommended Imped- ance of Analog Voltage Source ⁽³⁾	—	_	200 200	Ω Ω	10-bit ADC 12-bit ADC			

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized, but are not tested in manufacturing.

3: These parameters are assured by design, but are not characterized or tested in manufacturing.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trader Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fl Temperature Ran Package — Pattern —	nark — nmily - v Size (ag (if a nge	(KB)	PIC 24 HJ 12 GP2 02 T E / SP - XXX	Examples: a) PIC24HJ12GP202-E/SP: General purpose PIC24H, 12 KB program memory, 28-pin, Extended temp., SPDIP package.
Architecture:	24	=	16-bit Microcontroller	
Flash Memory Family:	HJ	=	Flash program memory, 3.3V	
Product Group:	GP2	=	General purpose family	
Pin Count:	01 02	= =	18-pin 28-pin	
Temperature Range:	I E	= =	-40° C to +85° C (Industrial) -40° C to +125° C (Extended)	
Package:	P SP SO ML SS	= = =	Plastic Dual In-Line - 300 mil body (PDIP) Skinny Plastic Dual In-Line - 300 mil body (SPDIP) Plastic Small Outline - Wide, 7.50 mil body (SOIC) Plastic Quad, No Lead Package - 6x6 mm body (QFN) Plastic Shrink Small Outline - 5.3 mm body (SSOP)	