

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	12KB (4K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj12gp201-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR		_	—	—	
bit 15	I	I					bit 8
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
—	ERASE	—			NVMOF	⊳<3:0>(2)	
bit 7							bit 0
Legend:		SO = Settable	only bit				
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	lown
bit 15	WR: Write Contr 1 = Initiates a F cleared by h 0 = Program or	ol bit Flash memory hardware when erase operatio	program or e operation is c n is complete	rase operatior complete. and inactive	n. The operatio	n is self-timed	and the bit is
bit 14	WREN: Write Er	nable bit					
	1 = Enable Flas 0 = Inhibit Flash	h program/eras program/eras	se operations e operations				
bit 13	WRERR: Write S	Sequence Erro	r Flag bit				
	 1 = An improper automaticall 0 = The program 	r program or er ly on any set ai n or erase ope	ase sequence tempt of the V ration complet	e attempt or te VR bit) ted normally	rmination has o	ccurred (bit is s	et
bit 12-7	Unimplemented	l: Read as '0'					
bit 6	ERASE: Erase/F	Program Enabl	e bit				
	1 = Perform the0 = Perform the	erase operation program operation	on specified by ation specified	/ NVMOP<3:0 l by NVMOP<:	> on the next W 3:0> on the nex	/R command t WR command	
bit 5-4	Unimplemented	l: Read as '0'					
bit 3-0	NVMOP<3:0>: N If ERASE = 1: 1111 = Memory 1101 = Erase G 1100 = Erase Se 0011 = No opera 0010 = Memory 0001 = No opera 0000 = Erase a	VVM Operation bulk erase ope eneral Segmen ecure Segmen ation page erase op ation single Configu	Select bits ⁽²⁾ eration ht t eration ration register	byte			
	If ERASE = 0: 1111 = No operation 1101 = No operation 1100 = No operation 0011 = Memory 0010 = No operation 0001 = Memory 0000 = Program	ation ation ation word program ation row program c a single Confi	operation operation guration regis	ter byte			

Note 1: These bits can only be Reset on POR.

2: All other combinations of NVMOP<3:0> are unimplemented.

6.1 System Reset

The PIC24HJ12GP201/202 family of devices have two types of Reset:

- Cold Reset
- Warm Reset

A cold Reset is the result of a Power-on Reset (POR) or a BOR. On a cold Reset, the FNOSC configuration bits in the FOSC device configuration register selects the device clock source.

A warm Reset is the result of all other Reset sources, including the RESET instruction. On warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection (COSC<2:0>) bits in the Oscillator Control (OSCCON<14:12>) register.

Oscillator Mode	Oscillator Startup Delay	Oscillator Startup Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd		_	Toscd
FRCPLL	Toscd	—	TLOCK	TOSCD + TLOCK
XT	Toscd	Tost	—	Toscd + Tost
HS	Toscd	Tost	—	Toscd + Tost
EC	—	—	—	—
XTPLL	Toscd	Tost	TLOCK	TOSCD + TOST + TLOCK
HSPLL	Toscd	Tost	TLOCK	TOSCD + TOST + TLOCK
ECPLL	—	—	TLOCK	TLOCK
SOSC	Toscd	Тоѕт	—	Toscd + Tost
LPRC	Toscd	—	—	Toscd

TABLE 6-1:OSCILLATOR DELAY

Note 1: ToscD = Oscillator Start-up Delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal Oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer Delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal), if PLL is enabled.

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is detailed below and is shown in Figure 6-2.

Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source
8	0	0x000014	0x000114	INT0 – External Interrupt 0
9	1	0x000016	0x000116	IC1 – Input Capture 1
10	2	0x000018	0x000118	OC1 – Output Compare 1
11	3	0x00001A	0x00011A	T1 – Timer1
12	4	0x00001C	0x00011C	Reserved
13	5	0x00001E	0x00011E	IC2 – Input Capture 2
14	6	0x000020	0x000120	OC2 – Output Compare 2
15	7	0x000022	0x000122	T2 – Timer2
16	8	0x000024	0x000124	T3 – Timer3
17	9	0x000026	0x000126	SPI1E – SPI1 Error
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter
21	13	0x00002E	0x00012E	ADC1 – ADC1
22	14	0x000030	0x000130	Reserved
23	15	0x000032	0x000132	Reserved
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Events
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Events
26	18	0x000038	0x000138	Reserved
27	19	0x00003A	0x00013A	Change Notification Interrupt
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1
29	21	0x00003E	0x00013E	Reserved
30	22	0x000040	0x000140	IC7 – Input Capture 7
31	23	0x000042	0x000142	IC8 – Input Capture 8
32	24	0x000044	0x000144	Reserved
33	25	0x000046	0x000146	Reserved
34	26	0x000048	0x000148	Reserved
35	27	0x00004A	0x00014A	Reserved
36	28	0x00004C	0x00014C	Reserved
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2
38	30	0x000050	0x000150	Reserved
39	31	0x000052	0x000152	Reserved
40	32	0x000054	0x000154	Reserved
41	33	0x000056	0x000156	Reserved
42	34	0x000058	0x000158	Reserved
43	35	0x00005A	0x00015A	Reserved
44	36	0x00005C	0x00015C	Reserved
45	37	0x00005E	0x00015E	Reserved
40	38	0x000060	UXUUU160	Reserved
47	39	0x000062	0x000162	Reserved
48	40	0x000064	0x000164	Reserved
49	41		0x000166	Reserved
50	42		0x000168	Reserved
51	43	0x00006A	0x00016A	Reserved
52	44	0x00006C	0x00016C	Reserved
53	45	0X00006E	UXUUU16E	Reserved

TABLE 7-1: INTERRUPT VECTORS

REGISTER 7-8: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

- bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 0 INTOIE: External Interrupt 0 Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

REGISTER 7-12: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		T2IP<2:0>				OC2IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		IC2IP<2:0>		—	_	—	—
bit 7							bit 0
1							
Legend:	. L.H.		.:.		a a meta di biti ya a d		
R = Readable			DIT		mented bit, read		
-n = value at	PUR	"I" = Bit is set		$0^{\circ} = Bit is cle$	ared	x = Bit is unknown	own
bit 15	Unimpleme	nted: Read as '0	,				
bit 14-12	T2IP<2:0>:	Timer2 Interrupt I	Priority bits				
	111 = Interro	upt is priority 7 (h	ighest priorit	v interrupt)			
	•		0	,			
	•						
	• 001 = Interri	int is priority 1					
	000 = Interru	upt source is disa	abled				
bit 11	Unimpleme	nted: Read as '0	,				
bit 10-8	OC2IP<2:0>	: Output Compar	re Channel 2	Interrupt Prior	ity bits		
	111 = Interro	upt is priority 7 (h	ighest priorit	y interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
	000 = Interru	upt source is disa	abled				
bit 7	Unimpleme	nted: Read as '0	,				
bit 6-4	IC2IP<2:0>:	Input Capture C	hannel 2 Inte	errupt Priority b	its		
	111 = Interro	upt is priority 7 (h	ighest priorit	y interrupt)			
	•						
	•						
	001 = Interro	upt is priority 1					
	000 = Interru	upt source is disa	abled				
bit 3-0	Unimpleme	nted: Read as '0	3				

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
—		COSC<2:0>		_		NOSC<2:0>(2)	
bit 15							bit 8
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0
CLKLOO	CK IOLOCK	LOCK	—	CF	—	LPOSCEN	OSWEN
bit 7							bit 0
Langua				ation bits on D		0 01	
Legena:	hla hit	y = value set		ration bits on P	'UR mantad hituraa		adie dit
R = Reada		vv = vvritable	DIT		mented bit, rea		
-n = value	at POR	"I" = Bit is set		$0^{\circ} = Bit is cle$	eared	x = Bit is unkno	own
bit 15	Unimplemen	ted: Read as '	י'				
bit 14-12	COSC-2:05:	Current Oscilla	tor Selection	hits (read-only	y)		
	111 = Fast R	C oscillator (FF	C) with Divid	e-bv-n)		
	110 = Fast R	C oscillator (FF	C) with Divid	e-by-16			
	101 = Low-Po	ower RC oscilla	tor (LPRC)				
	100 = Second	dary oscillator (SOSC)				
	011 = Primar	y oscillator (XT,	HS EC) WIL	IPLL			
	001 = Fast R	C oscillator (FF	C) with Divid	e-by-n plus PL	L		
	000 = Fast R	C oscillator (FF	RC)	<i>.</i>			
bit 11	Unimplemen	ted: Read as ')'				
bit 10-8	NOSC<2:0>:	New Oscillator	Selection bits	S ⁽²⁾			
	111 = Fast R	C oscillator (FF	C) with Divid	e-by-n			
	110 = Fast R	C oscillator (FH	C) with Divid	e-by-16			
	100 = Second	darv oscillator (SOSC)				
	011 = Primar	y oscillator (XT,	HS, EC) with	ו PLL			
	010 = Primar	y oscillator (XT,	HS, EC)				
	001 = Fast R	C oscillator (FF	C) with Divid	e-by-n plus PL	L		
hit 7		C OSCIIIAIOI (FF	(C) bla bit				
	If clock switch	ning is enabled	and FSCM is	disabled (FOS	SC <fcksm> =</fcksm>	0b01)	
	1 = Clock sw	itching is disab	led, system c	lock source is	locked		
	0 = Clock sw	itching is enabl	ed, system cl	lock source car	n be modified b	y clock switching	J
bit 6	IOLOCK: Per	ipheral Pin Sel	ect Lock bit				
	1 = Peripheri	al Pin Select is	locked, write	to peripheral p	oin select regis	ter is not allowed	
hit 5		al Fill Select is	rood oply)	ite to peripriera		gister is allowed	
DIUD	1 = Indicates	that PLL is in I	ock or PIIs	tart-up timer is	satisfied		
	0 = Indicates	that PLL is out	of lock, start	-up timer is in p	progress or PL	L is disabled	
bit 4	Unimplemen	ted: Read as ')'				
Note 1:	Writes to this regis	ter require an ι Η Family Refer	Inlock sequer	nce. Refer to S	ection 7. "Oso	cillator" (DS7018	36) in the
2.	Direct clock switch	es between an	/ primary osci	illator mode wit	h PLL and FR	CPLL mode are n	ot permitted
۷.	This applies to cloom mode as a transition	ck switches in e	between the	n. In these inst two PLL mode	ances, the app	lication must swit	tch to FRC

3: This register is reset only on a Power-on Reset (POR).

PIC24HJ12GP201/202

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
			_		_		
bit 15				÷		•	bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				TUN	<5:0> ⁽¹⁾		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	າown
bit 15-6	Unimplemen	ted: Read as 'o)'				
bit 5-0	TUN<5:0>: F	RC Oscillator T	uning bits ⁽¹⁾				
	011111 = Ce	nter frequency	+ 11.625% (8	3.23 MHz)			
	011110 = Ce	nter frequency	+ 11.25% (8.)	20 MHz)			
	•						
	•						
	000001 = Ce	nter frequency	+ 0.375% (7.	40 MHz)			
	000000 = Ce	nter frequency	(7.37 MHz no	ominal)			
	111111 = Ce	nter frequency	-0.375% (7.3	45 MHz)			
	•						
	•						
	100001 = Ce	nter frequency	-11.625% (6.	52 MHz)			
	100000 = Ce	nter frequency	-12% (6.49 N	1Hz)			

REGISTER 8-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER⁽²⁾

- **Note 1:** OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested.
 - 2: This register is reset only on a Power-on Reset (POR).

8.2 Clock Switching Operation

Applications are free to switch among any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects of this flexibility, PIC24HJ12GP201/202 devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

8.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 19.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

8.2.2 OSCILLATOR SWITCHING SEQUENCE

Performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

When the basic sequence is completed, the system clock hardware responds automatically as follows:

1. The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRC-PLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: Refer to 7. "Oscillator" (DS70186) in the "dsPIC33F/PIC24H Family Reference Manual" for details.

8.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

^{© 2007-2011} Microchip Technology Inc.

10.4 Peripheral Pin Select

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low-pin count devices. In an application where more than one peripheral must be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only option.

Peripheral pin select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral pin select is performed in software, and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, when it has been established.

10.4.1 AVAILABLE PINS

The peripheral pin select feature is used with a range of up to 16 pins. The number of available pins depends on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation 'RPn' in their full pin designation, where 'RP' designates a remappable peripheral and 'n' is the remappable pin number.

10.4.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of SFRs: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

10.4.2.1 Input Mapping

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-9). Each register contains sets of 5-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 5-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.

Figure 10-2 Illustrates remappable pin selection for U1RX input.

Note:	For input mapping only, the Peripheral Pin
	Select (PPS) functionality does not have
	priority over the TRISx settings. There-
	fore, when configuring the RPx pin for
	input, the corresponding bit in the TRISx
	register must also be configured for input
	(i.e., set to '1').

FIGURE 10-2: REMAPPABLE MUX

PIC24HJ12GP201/202

14.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the PIC24HJ12GP201/202 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 13. Output Compare" (DS70209) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The Output Compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The Output Compare module can also generate interrupts on compare match events.

The Output Compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- Delayed One-Shot mode
- · Continuous Pulse mode
- PWM mode without fault protection
- · PWM mode with fault protection

FIGURE 14-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

REGISTER 16-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

R/W-0 AMSK7 bit 7	AMSK6	AWSRJ					bit 0
R/W-0 AMSK7	AMSK6	AWSRU	,	,			,
R/W-0		AMSKE	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
	R/W-0						
bit 15							bit 8
—		—	_	_	—	AMSK9	AMSK8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSKx: Mask for Address bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

19.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC24HJ12GP201/202 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"dsPIC33F/PIC24H Family Reference Manual"*. Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.

PIC24HJ12GP201/202 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- · JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- In-Circuit emulation

19.1 Configuration Bits

PIC24HJ12GP201/202 devices provide nonvolatile memory implementation for device configuration bits. Refer to **Section 25.** "**Device Configuration**" (DS70194) of the "*dsPIC33F/PIC24H Family Reference Manual*", for more information on this implementation.

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The Device Configuration register map is shown in Table 19-1.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 19-2.

Note that address 0xF80000 is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using table reads and table writes.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS	_	—	_	—		BSS<2:0>		BWRP
0xF80002	Reserved	_	—	_	_	—	_		_
0xF80004	FGS	_	—	_	—	—	GSS<1	:0>	GWRP
0xF80006	FOSCSEL	IESO	—			-	FNC)SC<2:0>	•
0xF80008	FOSC	FCKSM	<1:0>	IOL1WAY	—	—	OSCIOFNC	POSCM	1D<1:0>
0xF8000A	FWDT	FWDTEN	WINDIS	_	WDTPRE		WDTPOST	<3:0>	
0xF8000C	FPOR	F	Reserved(1)	ALTI2C	—	FPV	VRT<2:0>	•
0xF8000E	FICD	Reserv	ed ⁽²⁾	JTAGEN	—	—	—	ICS<	:1:0>
0xF80010	FUID0				User Unit ID	Byte 0			
0xF80012	FUID1				User Unit ID	Byte 1			
0xF80014	FUID2		User Unit ID Byte 2						
0xF80016	FUID3				User Unit ID	Byte 3			

TABLE 19-1: DEVICE CONFIGURATION REGISTER MAP⁽²⁾

Legend: — = unimplemented bit, read as '0'.

Note 1: Reserved bits read as '1' and must be programmed as '1'.

2: These bits are reserved for use by development tools and must be programmed as '1'.

19.7 In-Circuit Serial Programming

PIC24HJ12GP201/202 family digital signal controllers can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the *dsPIC30F/33F Flash Programming Specification* (DS70152) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

19.8 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the incircuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, VSS, and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C.Expr	Branch if Carry	1	1 (2)	None
-		BRA	GE, Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT, Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE, Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU, Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT, Expr	Branch if less than	1	1 (2)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N, Expr	Branch if Negative	1	1 (2)	None
		BRA	NC, Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN.Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NZ.Expr	Branch if Not Zero	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA	Z.Expr	Branch if Zero	1	1(2)	None
		BRA	Wn	Computed Branch	1	2	None
7	BSET	BSET	f.#bit4	Bit Set f	1	1	None
	2021	BSET	Ws.#bit4	Bit Set Ws	1	1	None
8	BSW	BSW C	Ws.Wb	Write C bit to Ws <wb></wb>	1	1	None
C C	2011	BSW Z	Ws.Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f.#bit4	Bit Toggle f	1	1	None
°	210	BTG	Ws.#bit4	Bit Toggle Ws	1	1	None
10	DTCC	DTCC	f #bi+4	Bit Tost f Skip if Cloar	1	1	None
10	DIDC	BISC	1, #D114			(2 or 3)	NULLE
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None

TABLE 20-2: INSTRUCTION SET OVERVIEW

21.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

21.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- · Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

PIC24HJ12GP201/202

NOTES:

23.1 Package Marking Information (Continued)

	1	Teal code (last digit of calendar year)		
	YY	Year code (last 2 digits of calendar year)		
	WW	Week code (week of January 1 is week '01')		
	NNN	Alphanumeric traceability code		
	(e3)	Pb-free JEDEC designator for Matte Tin (Sn)		
	*	This package is Pb-free. The Pb-free JEDEC designator ((e3))		
		can be found on the outer packaging for this package.		
Note:	If the full Microchip part number cannot be marked on one line, it is carried over to the next			
	line, thus	limiting the number of available characters for customer-specific information.		

23.2 Package Details

18-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimens	ion Limits	MIN	NOM	MAX
Number of Pins	Ν		18	
Pitch	е	.100 BSC		
Top to Seating Plane	А	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.300	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.880	.900	.920
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.014
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-007B

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	18		
Pitch	е	1.27 BSC		
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	11.55 BSC		
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1	1.40 REF		
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.20	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-051C Sheet 2 of 2