E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	12KB (4K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj12gp202-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	9
2.0	Guidelines for Getting Started with 16-bit Microcontrollers	13
3.0	CPU	
4.0	Memory Organization	25
5.0	Flash Program Memory	45
6.0	Resets	51
7.0	Interrupt Controller	59
8.0	Oscillator Configuration	87
9.0	Power-Saving Features	97
10.0	I/O Ports	. 101
11.0	Timer1	. 119
12.0	Timer2/3 Feature	. 121
13.0	Input Capture	. 127
14.0	Output Compare	. 129
15.0	Serial Peripheral Interface (SPI)	
16.0	Inter-Integrated Circuit [™] (I ² C [™])	. 139
17.0	Universal Asynchronous Receiver Transmitter (UART)	. 147
18.0	10-bit/12-bit Analog-to-Digital Converter (ADC)	. 153
19.0	Special Features	. 167
20.0	Instruction Set Summary	. 175
21.0	Development Support	. 183
	Electrical Characteristics	
23.0	Packaging Information	. 231
Appe	ndix A: Revision History	. 245
Index		255
	ficrochip Web Site	
Custo	mer Change Notification Service	. 259
Custo	mer Support	. 259
Read	er Response	. 260
Produ	Ict Identification System	. 261

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

· Microchip's Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.1 Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPlC33F/PlC24H Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the PIC24HJ12GP202 product page on the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- Section 1. "Introduction" (DS70197)
- Section 2. "CPU" (DS70204)
- Section 3. "Data Memory (DS70202)
- Section 4. "Program Memory" (DS70202)
- Section 5. "Flash Programming" (DS70191)
- Section 6. "Interrupts" (DS70184)
- Section 7. "Oscillator" (DS70186)
- Section 8. "Reset" (DS70192)
- Section 9. "Watchdog Timer and Power-saving Modes" (DS70196)
- Section 10. "I/O Ports" (DS70193)
- Section 11. "Timers" (DS70205)
- Section 12. "Input Capture" (DS70198)
- Section 13. "Output Compare" (DS70209)
- Section 16. "Analog-to-Digital Converter (ADC) with DMA" (DS70183)
- Section 17. "UART" (DS70188)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- Section 23. "CodeGuard Security" (DS70199)
- Section 25. "Device Configuration" (DS70194)

TABLE 4-14 :	ADC1 REGISTER MAP FOR PIC24HJ12GP201
---------------------	--------------------------------------

IADLE 4-	14. /	ADCIN	LOIST		FURFIC	5241151	26720	1										
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300		ADC Data Buffer 0 x												xxxx			
ADC1BUF1	0302		ADC Data Buffer 1 xx												xxxx			
ADC1BUF2	0304		ADC Data Buffer 2 xxx												xxxx			
ADC1BUF3	0306		ADC Data Buffer 3 xxx												xxxx			
ADC1BUF4	0308		ADC Data Buffer 4												xxxx			
ADC1BUF5	030A								ADC Data	Buffer 5								xxxx
ADC1BUF6	030C								ADC Data	Buffer 6								xxxx
ADC1BUF7	030E								ADC Data	Buffer 7								xxxx
ADC1BUF8	0310								ADC Data	Buffer 8								xxxx
ADC1BUF9	0312								ADC Data	Buffer 9								xxxx
ADC1BUFA	0314								ADC Data	Buffer 10								xxxx
ADC1BUFB	0316								ADC Data	Buffer 11								xxxx
ADC1BUFC	0318								ADC Data	Buffer 12								xxxx
ADC1BUFD	031A								ADC Data	Buffer 13								xxxx
ADC1BUFE	031C								ADC Data	Buffer 14								xxxx
ADC1BUFF	031E								ADC Data	Buffer 15								xxxx
AD1CON1	0320	ADON		ADSIDL	_	—	AD12B	FOR	M<1:0>	Ś	SSRC<2:0>		-	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322		VCFG<2:0>	>	—	—	CSCNA	CHF	PS<1:0>	BUFS	—		SMPI	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	_	—		S	SAMC<4:0>	>	1				ADCS	<7:0>	r		I	0000
AD1CHS123	0326	—	_	—	—	—		NB<1:0>	CH123SB	—	_	_	—	—		NA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB		—		С	H0SB<4:0	>		CH0NA	_			-	CH0SA<4:0			0000
AD1PCFGL	032C	_		—	_	_	—		—	PCGG7	PCGF6			PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	—	—	—	_	—	—	—	—	CSS7	CSS6	—	—	CSS3	CSS2	CSS1	CSS0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the PIC24HJ12GP201/202 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 4. Program Memory" (DS70202) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

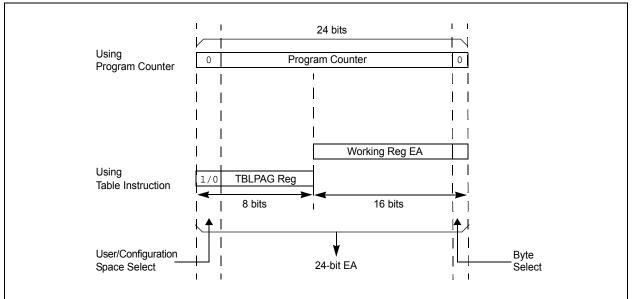
The PIC24HJ12GP201/202 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a PIC24HJ12GP201/202 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows users to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes).


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table-read and tablewrite instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

		-		
;	-	N for row programming opera	ati	zions
	MOV	#0x4001, W0	;	;
	MOV	W0, NVMCON	;	; Initialize NVMCON
				emory location to be written
;	program memo:	ry selected, and writes ena	ab]	pled
		#0x0000, W0	;	;
	MOV	W0, TBLPAG	;	; Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	;	; An example program memory address
;	Perform the	TBLWT instructions to write	e t	the latches
;	0th_program_	word		
	MOV	#LOW_WORD_0, W2	;	;
	MOV	<pre>#HIGH_BYTE_0, W3</pre>	;	;
	TBLWTL	W2, [W0]	;	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	; Write PM high byte into program latch
;	<pre>lst_program_v</pre>	word		
		#LOW_WORD_1, W2	;	;
		#HIGH_BYTE_1, W3	;	;
	TBLWTL	W2, [W0]	;	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	; Write PM high byte into program latch
;	2nd_program	—		
	MOV	#LOW_WORD_2, W2	;	;
	MOV	<pre>#HIGH_BYTE_2, W3</pre>	;	;
		W2, [W0]		; Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	; Write PM high byte into program latch
	•			
	•			
	•			
;	63rd_program			
		#LOW_WORD_31, W2	;	;
		#HIGH_BYTE_31, W3	;	;
		W2, [W0]		; Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	; Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI		Block all interrupts with priority <7
	i	for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY ;	Write the 55 key
MOV	#0xAA, W1 ;	
MOV	W1, NVMKEY ;	Write the AA key
BSET	NVMCON, #WR ;	Start the erase sequence
NOP	;	Insert two NOPs after the
NOP	;	erase command is asserted

REGISTER 7-2: C	ORCON: CORE CONTROL REGISTER ⁽¹⁾
-----------------	---

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	_	—	_	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0	
—	_	—	_	IPL3 ⁽²⁾	PSV	—	—	
bit 7							bit 0	
			1.11					
Legend:		C = Clear only	/ bit					
R = Readable b	bit	W = Writable	bit	-n = Value at				
0' = Bit is cleare	ed	ʻx = Bit is unkr	nown	U = Unimplemented bit, read as '0'				

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU interrupt priority level is greater than 7

0 = CPU interrupt priority level is 7 or less

Note 1: For complete register details, see Register 3-2: "CORCON: Core Control Register".

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER	7-9: IECI:	INTERRUPT			GISTERI								
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0						
_	_	INT2IE	_	—	—	—	—						
bit 15							bit 8						
R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0						
IC8IE	IC7IE	—	INT1IE	CNIE	—	MI2C1IE	SI2C1IE						
bit 7							bit C						
Legend:													
R = Readab	le bit	W = Writable I	bit	U = Unimpler	mented bit, rea	d as '0'							
-n = Value a		'1' = Bit is set	5 N	'0' = Bit is cle		x = Bit is unkr	nown						
bit 15-14	Unimplemen	ted: Read as '0	כי										
bit 13	INT2IE: Exter	nal Interrupt 2	Enable bit										
		request enabled											
	0 = Interrupt r	request not ena	bled										
bit 12-8	Unimplemen	ted: Read as 'd	כ'										
bit 7	IC8IE: Input (Capture Channe	el 8 Interrupt I	Enable bit									
		request enabled request not ena											
bit 6	 0 = Interrupt request not enabled IC7IE: Input Capture Channel 7 Interrupt Enable bit 												
	-	request enabled											
	•	request not ena											
bit 5	Unimplemen	ted: Read as 'd	כי										
bit 4	INT1IE: Exter	nal Interrupt 1	Enable bit										
		request enabled											
	•	request not ena											
bit 3		Change Notifica		Enable bit									
		request enabled											
h # 0	•	request not ena											
bit 2	-	ted: Read as '(aabla bit									
bit 1		1 Master Event	•	Table bit									
		request enableo request not ena											
bit 0	•	1 Slave Events		able bit									
	1 = Interrupt r	request enabled	d										

REGISTER 7-9: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—		_		_		_	
bit 15						bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
—		INT2IP<2:0>			_		—	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable I	bit	U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-7	Unimplemen	ted: Read as 'o)'					
bit 6-4	INT2IP<2:0>:	External Interr	upt 2 Priority	bits				
	111 = Interrup	ot is priority 7 (ł	nighest priorit	ty interrupt)				
	•							
	•							
	•	at ia muiamite d						
	001 = Interrup	ot is priority 1	abled					
bit 3-0	-	ted: Read as '(
		icu. I cau as (

REGISTER 7-17: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits into the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to priority level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE (ISR)

The method used to declare an Interrupt Service Routine (ISR) and initialize the IVT with the correct vector address depends on the programming language (C or Assembler) and the language development toolsuite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the program will re-enter the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE (TSR)

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

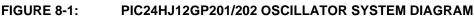
All user interrupts can be disabled using this procedure:

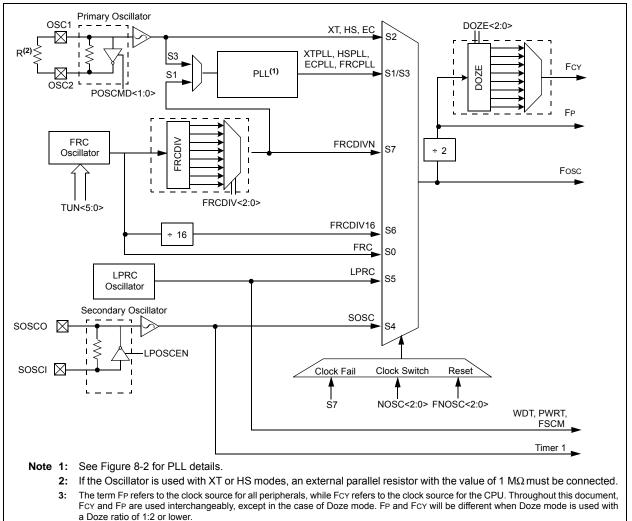
- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the POP instruction can be used to restore the previous SR value.

Note:	Only user interrupts with a priority level of
	7 or lower can be disabled. Trap sources
	(level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.


8.0 OSCILLATOR CONFIGURATION


- Note 1: This data sheet summarizes the features of the PIC24HJ12GP201/202 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 7. Oscillator" (DS70186) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The PIC24HJ12GP201/202 oscillator system provides:

- External and internal oscillator options as clock sources
- An on-chip PLL to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection.

A simplified diagram of the oscillator system is shown in Figure 8-1.

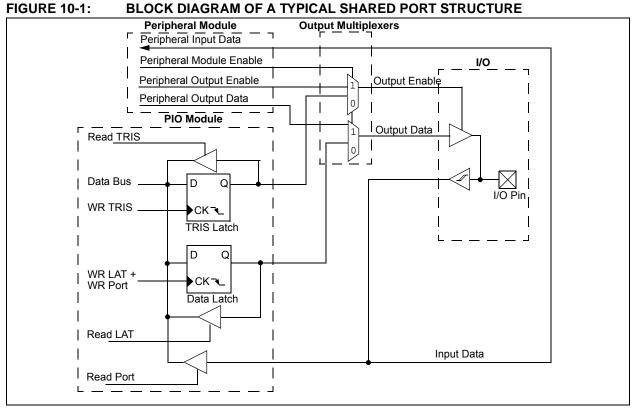
10.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the PIC24HJ12GP201/202 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 10. I/O Ports" (DS70193) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

Parallel I/O (PIO) Ports 10.1

A parallel I/O port that shares a pin with a peripheral is generally subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in


which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch, write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. This means the corresponding LATx and TRISx registers and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

© 2007-2011 Microchip Technology Inc.

REGISTER 10-8: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	_			SCK1R<4:0	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
					SDI1R<4:0	>	
bit 7							bit (
Legend:	- 6:4		L 11				
R = Readable bit W = Writable bit					nented bit, rea		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
	• • 00001 = Inpu						
bit 7-5	00000 = Inpu	it tied to RP0 ited: Read as '	0'				
bit 4-0	•	Assign SPI1		11) to the corre	sponding RPr	nin hits	
	11111 = I npu	-					
	•						
	• 00001 = Inpu 00000 = Inpu						

R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0				
I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN				
bit 7	onten	, long i	, lonent	ROLI		noen	bit 0				
Legend:		U = Unimpler	nented bit, rea	d as '0'							
R = Readable	bit	W = Writable		HS = Set in h	ardware	HC = Cleared	in hardware				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr					
in value at i	ÖN			o Biclo dio							
bit 15	12CEN: 12Cx	Enable bit									
						as serial port pi	าร				
				are controlled	by port functio	ns					
bit 14	Unimplemen	ted: Read as '	0'								
bit 13		p in Idle Mode									
			eration when de		n Idle mode						
bit 12	SCLREL: SCLx Release Control bit (when operating as I ² C slave)										
	1 = Release SCLx clock 0 = Hold SCLx clock low (clock stretch)										
	If STREN = 1:										
	Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception.										
	If STREN = 0	:									
	Bit is R/S (i.e. transmission.		only write '1' t	o release cloc	k). Hardware cl	ear at beginnin	g of slave				
bit 11		le is enabled; a	al Managemer all addresses A	•	MI) Enable bit						
bit 10	A10M: 10-bit Slave Address bit										
		is a 10-bit slav is a 7-bit slave									
bit 9	DISSLW: Disa	able Slew Rate	e Control bit								
		control disable									
bit 8	SMEN: SMBL	us Input Levels	bit								
		O pin threshold MBus input the	ls compliant wi resholds	ith SMBus spe	cification						
bit 7	GCEN: General Call Enable bit (when operating as I ² C slave)										
	(module i	nterrupt when a is enabled for call address di	reception)	iddress is rece	ived in the I2C	xRSR					
hit 6				hon onoration	a_{12}						
bit 6		x Clock Stretcr	n Enable bit (w LREL bit.	nen operating	as i⁻u siave)						

REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC					SAMC<4:0>(1)	
bit 15							bit
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
0-0	0-0	N/VV-0	ADCS<	-	N/W-U	FV/VV-0	N/ W-U
bit 7			7.200				bit
Legend:							
R = Readable	e bit	W = Writable bi	t	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at		'1' = Bit is set	•	'0' = Bit is cle		x = Bit is unkr	nown
							-
bit 15	1 = ADC inte	Conversion Cloc rnal RC clock rived from system					
bit 14-13		ted: Read as '0'					
bit 12-8	SAMC<4:0>	Auto Sample Tir	ne bits ⁽¹⁾				
	11111 = 31 ⁻	TAD					
	•						
	•						
	00001 = 1 TA 00000 = 0 TA						
bit 7-0	ADCS<7:0>:	ADC Conversion	n Clock Seled	ct bits ⁽²⁾			
	11111111 =	Reserved					
	•						
	•						
	•						
	•	_					
	01000000 =	TCY · (ADCS<7:	0> + 1) = 64	. Toy = Tad			
	•		0, 1) – 04				
	•						
	•						
	00000010 =	TCY · (ADCS<7:	0> + 1) = 3 ·	Tcy = Tad			
	00000001 =	TCY · (ADCS<7:	0> + 1) = 2 ·	TCY = TAD			
	00000000 =						

REGISTER 18-3: AD1CON3: ADC1 CONTROL REGISTER 3

- **Note 1:** These bits are used only if the SSRC<2:0> bits (AD1CON1<7:5>) = 111.
 - 2: These bits are not used if the ADRC bit (AD1CON3<15>) = 1.

REGISTER		150: ADCT IN												
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
CHONB		—			CH0SB<4:0>									
bit 15							bit							
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
CH0NA	—	—			CH0SA<4:0>									
bit 7							bit							
Legend:														
R = Readable	e bit	W = Writable b	it	U = Unimpler	mented bit, rea	d as '0'								
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown							
	1 = Channel (0 = Channel (nnel 0 Negative) negative input) negative input	is AN1 is VREF-											
bit 14-13	Unimplemen	ted: Read as '0	3											
bit 12-8	CH0SB<4:0>: Channel 0 Positive Input Select for Sample B bits													
	00111 = Cha 00110 = Cha 00101 = Res 00100 = Res 00011 = Cha 00010 = Cha 00001 = Cha		nput is AN7 nput is AN6 nput is AN3 nput is AN2 nput is AN1											
	PIC24HJ12GP202 devices only: 01001 = Channel 0 positive input is AN9													
	•													
	00001 = Cha	nnel 0 positive i nnel 0 positive i nnel 0 positive i	nput is AN1											
bit 7	CHONA: Channel 0 Negative Input Select for Sample A bit 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREF-													
bit 6-5		ted: Read as '0												

REGISTER 18-5: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

IADE	L 20-2.											
Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles	Status Flags Affected					
66	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None					
67	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None					
68	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None					
69	ULNK	ULNK		Unlink Frame Pointer	1	1	None					
70	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z					
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z					
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z					
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z					
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z					
71	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N					

TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)

21.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit™ 2 enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

21.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

21.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

АС СНА	ARACTERIST	TICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscP	Maximum SCK Frequency		_	15	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	_	_	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	—	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 22-35:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

АС СНА	ARACTERIS	TICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency	—	—	11	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—	—		ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns	—	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow to SCKx \uparrow or SCKx Input$	120	_		ns	—	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	_	50	ns	—	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—		ns	See Note 4	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 22-38: ADC MODULE SPECIFICATIONS

AC CHA		ISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended								
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions				
	Device Supply										
AD01	AVDD	Module VDD Supply ⁽²⁾	Greater of VDD – 0.3 or 3.0	—	Lesser of VDD + 0.3 or 3.6	V	_				
AD02	AVss	Module Vss Supply ⁽²⁾	Vss – 0.3	_	Vss + 0.3	V	_				
			Referer	nce Inpu	Its						
AD05	VREFH	Reference Voltage High	AVss + 2.5	_	AVdd	V	See Note 1				
AD05a			3.0	-	3.6	V	VREFH = AVDD VREFL = AVSS = 0, See Note 2				
AD06	VREFL	Reference Voltage Low	AVss	_	AVDD – 2.5	V	See Note 1				
AD06a			0	_	0	V	VREFH = AVDD VREFL = AVSS = 0, See Note 2				
AD07	VREF	Absolute Reference Voltage ⁽²⁾	2.5		3.6	V	VREF = VREFH - VREFL				
AD08	IREF	Current Drain		250 —	550 10	μΑ μΑ	ADC operating, See Note 1 ADC off, See Note 1				
AD08a	IAD	Operating Current	_	7.0 2.7	9.0 3.2	mA mA	10-bit ADC mode, See Note 2 12-bit ADC mode, See Note 2				
			Analo	og Input							
AD12	VINH	Input Voltage Range VINH ⁽²⁾	Vinl	_	VREFH	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), positive input				
AD13	VINL	Input Voltage Range VINL ⁽²⁾	VREFL	_	AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), negative input				
AD17	RIN	Recommended Imped- ance of Analog Voltage Source ⁽³⁾	_	_	200 200	Ω Ω	10-bit ADC 12-bit ADC				

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized, but are not tested in manufacturing.

3: These parameters are assured by design, but are not characterized or tested in manufacturing.