

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	12KB (4K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj12gp202t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC24HJ12GP201/202 Product Families

The device names, pin counts, memory sizes and peripheral availability of each family are listed below, followed by their pinout diagrams.

		ory			Re	mappa	ble Pe	ripher	als					
Device	Pins	Program Flash Memory (Kbyte)	RAM (Kbyte)	Remappable Pins	16-bit Timer	Input Capture	Output Compare Std. PWM	UART	External Interrupts ⁽²⁾	IdS	10-Bit/12-Bit ADC	Ι²Οτω	I/O Pins (Max)	Packages
PIC24HJ12GP201	18	12	1	8	3(1)	4	2	1	3	1	1 ADC, 6 ch	1	13	PDIP SOIC
PIC24HJ12GP202	28	12	1	16	3 ⁽¹⁾	4	2	1	3	1	1 ADC, 10 ch	1	21	SPDIP SOIC SSOP QFN

TABLE 1: PIC24HJ12GP201/202 CONTROLLER FAMILIES

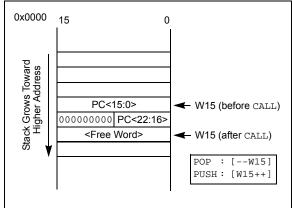
Note 1: Only two out of three timers are remappable.

2: Only two out of three interrupts are remappable.

4.2.5 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the PIC24HJ12GP201/202 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-4. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.

Note:	A PC push during exception processing
	concatenates the SRL register to the MSB
	of the PC prior to the push.


The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word-aligned.

When an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. However, the stack error trap will occur on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x0C00 in RAM, initialize the SPLIM with the value 0x0BFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the SFR space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-4: CALL STACK FRAME

4.2.6 DATA RAM PROTECTION FEATURE

The PIC24H product family supports Data RAM protection features that enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code, when it is enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code, when it is enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs.

4.3 Instruction Addressing Modes

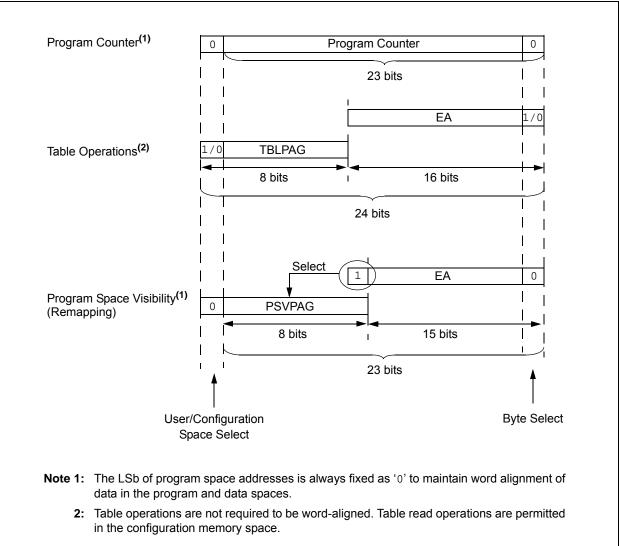
The addressing modes shown in Table 4-22 form the basis of the addressing modes that are optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those provided by other instruction types.

4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.3.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:


Operand 3 = Operand 1 < function > Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be register direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- · Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

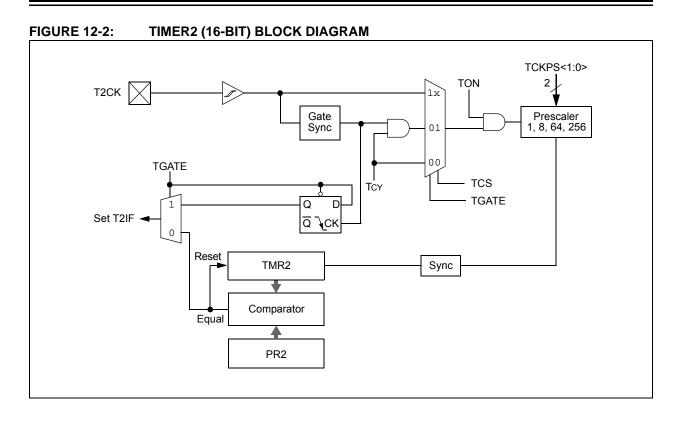
FIGURE 4-5: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
TRAPR	IOPUWR					СМ	VREGS	
bit 15	•			·			bit	
5.444	D # 4 4 A	5444.0	5444.0		5444.6	-		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	
EXTR	SWR SWDTEN ⁽²⁾ WDTO SLEEP IDLE BOR PO							
bit 7							bit	
Legend:								
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'								
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown	
bit 15	TRAPR. Tran	Reset Flag bit						
		onflict Reset ha						
		onflict Reset ha		d				
bit 14	IOPUWR: Ille	egal Opcode or	Uninitialized	W Access Rese	et Flag bit			
		al opcode dete		gal address mo	ode or uninitial	ized W registe	er used as a	
	,	Pointer caused		locat has not a	oourrod			
bit 13-10	-	I opcode or unin ited: Read as '0		leset has not o	ccurreu			
	-							
bit 9		ration Mismatch		occurred				
	 1 = A configuration mismatch Reset has occurred 0 = A configuration mismatch Reset has not occurred 							
bit 8	VREGS: Volta	age Regulator S	Standby Durir	ng Sleep bit				
		egulator is activ						
=	-	regulator goes i		node during Sl	еер			
bit 7		nal Reset (MCL	,	no d				
		Clear (pin) Res Clear (pin) Res						
bit 6		are Reset (Instru						
		instruction has						
	0 = A RESET instruction has not been executed							
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾				
	1 = WDT is e							
L:1 4	0 = WDT is d			1				
bit 4		hdog Timer Tim e-out has occur	-	t				
		e-out has occur						
bit 3	SLEEP: Wak	e-up from Sleep	Flag bit					
		as been in Slee						
		as not been in S						
bit 2		up from Idle Fla	g bit					
	1 = Device wa							

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

cause a device Reset. 2: If the EWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.


FIGURE 7-1:	PIC24HJ12GP201/202 INTERRUPT VECTOR TABLE

I		7	
	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	Reserved		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
	Interrupt Vector 53	0x00007E	
Drity	Interrupt Vector 54	0x000080	
Pric	~		
er H	~	_	
Drd	~	0.000050	
	Interrupt Vector 116	0x0000FC	
tura	Interrupt Vector 117	0x0000FE	
Nat	Reserved	0x000100	
Decreasing Natural Order Priority	Reserved	0x000102	1
asir	Reserved	_	
Cre	Oscillator Fail Trap Vector Address Error Trap Vector	-	
)ec	Stack Error Trap Vector	-	
	Math Error Trap Vector	-	
	Reserved		
	Reserved	-	
	Reserved	-	
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~		
	~		
	~		Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	,
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~		
	~		
	~		
	Interrupt Vector 116		
4	Interrupt Vector 117	0x0001FE	
V	Start of Code	0x000200	
Note 1: See	e Table 7-1 for the list of impleme	ented interrupt v	vectors.

REGISTER 7-16: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
		IC8IP<2:0>		—		IC7IP<2:0>					
bit 15							bit				
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
_	_	_	_	_		INT1IP<2:0>					
bit 7			bit								
l agend:											
Legend: R = Readable bit W = Writable bit			U = Unimplen	nented hit re	n, as ,0,						
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	-w/n				
					urcu		00011				
bit 15	Unimplemer	nted: Read as '	0'								
bit 14-12	IC8IP<2:0>:	Input Capture	Channel 8 Inte	rrupt Priority bi	ts						
		pt is priority 7 (
	•		3	,							
	•										
	•	•									
	001 = Interru	001 = Interrupt is priority 1 000 = Interrupt source is disabled									
bit 11		nted: Read as '									
	-										
bit 10-8		Input Capture			ts						
	111 = Interru	pt is priority 7 (nignest priorit	y interrupt)							
	•										
	•										
		pt is priority 1									
		ipt is priority 1 ipt source is dis	sabled								
bit 7-3	000 = Interru										
	000 = Interru Unimplemer	pt source is dis	0'	bits							
	000 = Interru Unimplemer INT1IP<2:0>	ipt source is dis nted: Read as '	0' rupt 1 Priority								
	000 = Interru Unimplemer INT1IP<2:0>	ipt source is dis nted: Read as ' : External Inter	0' rupt 1 Priority								
bit 7-3 bit 2-0	000 = Interru Unimplemer INT1IP<2:0>	ipt source is dis nted: Read as ' : External Inter	0' rupt 1 Priority								
	000 = Interru Unimplemen INT1IP<2:0> 111 = Interru • •	ipt source is dis nted: Read as ' : External Inter	0' rupt 1 Priority								

NOTES:

REGISTER 15-2: SPIxCON1: SPIx CONTROL REGISTER
--

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit
R/W-0	0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN	⁽²⁾ CKP	MSTEN SPRE<2:0> ⁽³⁾ PPR					
bit 7						1	bit
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown)							
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	1 = Internal S	able SCKx pin PI clock is disa PI clock is ena	abled, pin func				
bit 11	1 = SDOx pin	able SDOx pin is not used by is controlled b	v module; pin f	unctions as I/C)		
bit 10	1 = Communi	ord/Byte Comm ication is word- ication is byte-	wide (16 bits)	ect bit			
bit 9	Master mode: 1 = Input data 0 = Input data <u>Slave mode:</u>	ata Input Samp a sampled at en a sampled at m cleared when	nd of data outr iiddle of data c	output time			
bit 8	1 = Serial out		ges on transitio		clock state to Id ock state to activ		
bit 7	SSEN: Slave 1 = <u>SSx</u> pin u	Select Enable sed for Slave i ot used by mo	bit (Slave mo mode	de) ⁽²⁾			·
bit 6	1 = Idle state	Polarity Select I for clock is a h for clock is a lo	igh level; activ				
oit 5		ter Mode Enat ode		C			
Note 1:	The CKE bit is not (FRMEN = 1).	used in the Fr	amed SPI mod	des. Program t	his bit to '0' for	the Framed SP	'l modes
2:	This bit must be cl						
3.	Do not set both Pr	imary and Sec	ondary presca	lers to a value	of 1.1		

3: Do not set both Primary and Secondary prescalers to a value of 1:1.

16.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the PIC24HJ12GP201/202 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 19. Inter-Integrated Circuit™ (I²C™)" (DS70195) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit TM (I²CTM) module provides complete hardware support for both Slave and Multi-Master modes of the I²C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation
- I²C Slave mode supports 7-bit and 10-bit addresses
- I²C Master mode supports 7-bit and 10-bit addresses
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly

16.1 Operating Modes

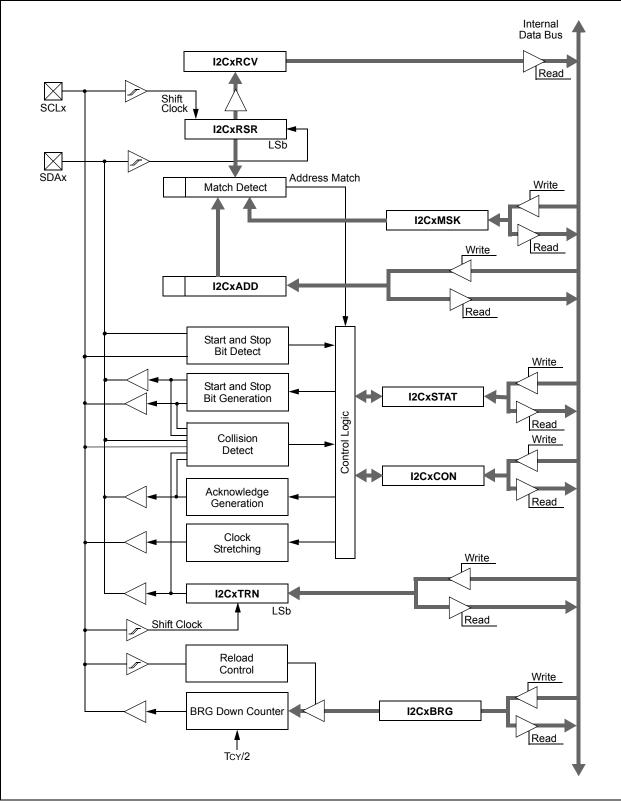
The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7-bit and 10-bit addressing.

The l^2C module can operate either as a slave or a master on an l^2C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-bit address
- I²C slave operation with 10-bit address
- I²C master operation with 7-bit or 10-bit address

For details about the communication sequence in each of these modes, refer to the Microchip web site (www.microchip.com) for the latest *"dsPIC33F/PIC24H Family Reference Manual"* sections.


16.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write.

- · I2CxRSR is the shift register used for shifting data
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read
- I2CxTRN is the transmit register to which bytes are written during a transmit operation
- · I2CxADD register holds the slave address
- · ADD10 status bit indicates 10-bit Address mode
- I2CxBRG acts as the Baud Rate Generator (BRG) reload value

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated.

REGISTER 17-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	 BRGH: High Baud Rate Enable bit 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect. 0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	1 = Parity error has been detected for the current character (character at the top of the receive FIFO)0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (read-only/clear-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 →0 transition) will reset the receiver buffer and the UxRSR to the empty state.
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

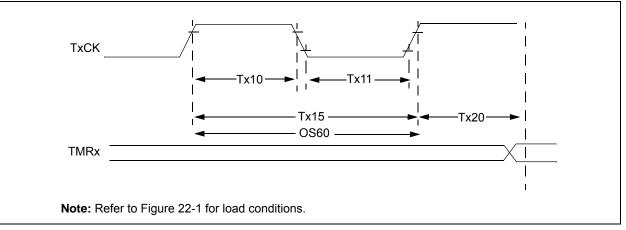
TABLE 19-2:	PICZ4HJ1Z		2 CONFIGURATION BITS DESCRIPTION
Bit Field	Register	RTSP Effect	Description
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection 1 = Boot segment may be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Immediate	Boot Segment Program Flash Code Protection Size x11 = No Boot program Flash segment
			Boot space is 256 Instruction Words (except interrupt vectors) 110 = Standard security; boot program Flash segment ends at 0x0003FE 010 = High security; boot program Flash segment ends at 0x0003FE
			Boot space is 768 Instruction Words (except interrupt vectors) 101 = Standard security; boot program Flash segment, ends at 0x0007FE 001 = High security; boot program Flash segment ends at 0x0007FE
			Boot space is 1792 Instruction Words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x000FFE 000 = High security; boot program Flash segment ends at 0x000FFE
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security 0x = High security
GWRP	FGS	Immediate	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	Immediate	 Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	If clock switch is enabled, RTSP effect is on any device Reset; otherwise, Immediate	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator
FCKSM<1:0>	FOSC	Immediate	Clock Switching Mode bits 1x = Clock switching is disabled, fail-safe clock monitor is disabled 01 = Clock switching is enabled, fail-safe clock monitor is disabled 00 = Clock switching is enabled, fail-safe clock monitor is enabled
IOL1WAY	FOSC	Immediate	Peripheral Pin Select Configuration 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	FOSC	Immediate	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Immediate	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode

TABLE 19-2: PIC24HJ12GP201/202 CONFIGURATION BITS DESCRIPTION

TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr # Assembly Mnemonic		Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
47	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
48	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
49	RESET	RESET		Software device Reset	1	1	None
50	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
51	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
52	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
53	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
54	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
55	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
56	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
57	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
58	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
59	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
60	SUB	SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,
61	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,2
		SUBB	f,WREG	WREG = f – WREG – (\overline{C})	1	1	C,DC,N,OV,2
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,2
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,2
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,2
62	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
02	JUBR	SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wite - Wite - T	1	1	C,DC,N,OV,
		SUBR		Wd = 105 - Wb	1	1	C,DC,N,OV,Z
63	CUIDDD		Wb,#lit5,Wd	_		1	
63	SUBBR	SUBBR	f	f = WREG - f - (C)	1		C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG - f - (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	Wd = Ws - Wb - (C)	1	1	C,DC,N,OV,2
	ļ	SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
64	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
65	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
DI60a	licl	Input Low Injection Current	0	_	₋₅ (5,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, and SOSCO	
DI60b	Іісн	Input High Injection Current	0	_	+5 ^(6,7,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, and digital 5V-tolerant designated pins	
DI60c	Σlict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾		+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT	

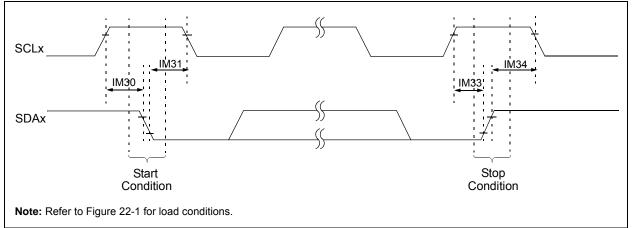

TABLE 22-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

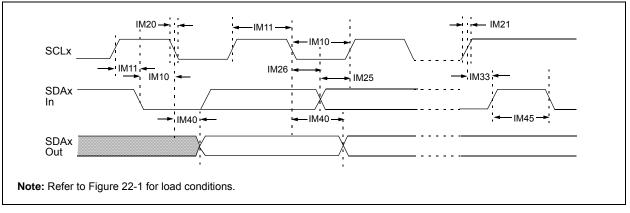
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for a list of 5V tolerant pins.
- **5:** VIL source < (VSS 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.
- **10:** These parameters are characterized, but not tested.

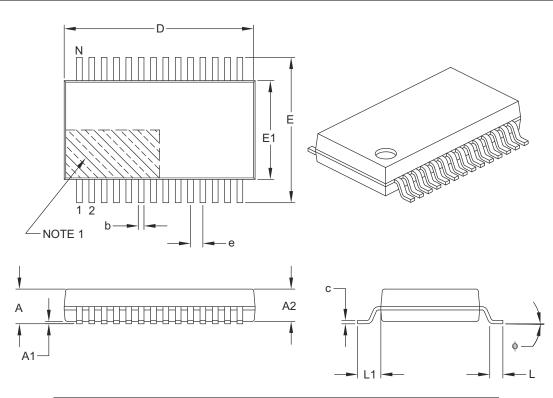
FIGURE 22-5: TIMER1, 2, 3 AND 4 EXTERNAL CLOCK TIMING CHARACTERISTICS



AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Charact		Min	Тур	Мах	Units	Conditions		
TA10	ТтхН	TxCK High Time	Synchronous, no prescaler		Тсү + 20		_	ns	Must also meet parameter TA15.	
			Synchronous, with prescaler		(Tcy + 20)/N		_	ns	N = prescale value	
			Asynchronous		20	_	—	ns	(1, 8, 64, 256)	
TA11	T⊤xL	TxCK Low Time	Synchronous, no prescaler		(Tcy + 20)	_	—	ns	Must also meet parameter TA15. N = prescale value	
			Synchronous, with prescaler		(Tcy + 20)/N	_	—	ns		
			Asynchronous		20		_	ns	(1, 8, 64, 256)	
TA15	ΤτχΡ	TxCK Input Period	Synchronous, no prescaler		2 Tcy + 40	_	—	ns	—	
			Synchronous, with prescaler		Greater of: 40 ns or (2 TCY + 40)/ N	_	_	_	N = prescale value (1, 8, 64, 256)	
			Asynchronous		40	_	_	ns	—	
OS60	Ft1	SOSCI/T1CK Oscillator Input frequency Range (oscillator enabled by setting bit TCS (T1CON<1>))			DC		50	kHz	—	
TA20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment			0.75 Tcy + 40		1.75 Tcy + 40		_	


TABLE 22-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A.



28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimensior	n Limits	MIN	NOM	MAX		
Number of Pins	Ν	28				
Pitch	е	0.65 BSC				
Overall Height	Α	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	_		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	9.90	10.20	10.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1	1.25 REF				
Lead Thickness	с	0.09	_	0.25		
Foot Angle	¢	0°	4°	8°		
Lead Width	b	0.22	-	0.38		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

APPENDIX A: REVISION HISTORY

Revision A (February 2007)

This is the initial released version of this document.

Revision B (May 2007)

This revision includes the following corrections and updates:

- Minor typographical and formatting corrections throughout the data sheet text.
- New content:
 - Addition of bullet item (16-word conversion result buffer) (see Section 17.1 "Key Features")
- · Figure update:
 - Oscillator System Diagram (see Figure 7-1)
 - WDT Block Diagram (see Figure 18-2)
- Equation update:
 - Serial Clock Rate (see Equation 15-1)
- Register updates:
 - Clock Divisor Register (see Register 7-2)
 - PLL Feedback Divisor Register (see Register 7-3)
 - Peripheral Pin Select Input Registers (see Register 9-1 through Register 9-9)
 - ADC1 Input Channel 1, 2, 3 Select Register (see Register 17-4)
 - ADC1 Input Channel 0 Select Register (see Register 17-5)
- Table updates:
 - CNEN2 (see Table 3-2 and Table 3-3)
 - Reset Flag Bit Operation (see Table 5-1)
 - Configuration Bit Values for Clock Operation (see Table 7-1)
- Operation value update:
 - IOLOCK set/clear operation (see Section 9.4.3.1 "Control Register Lock")
- The following tables in **Section 21.0** "**Electrical Characteristics**" have been updated with preliminary values:
 - Updated Max MIPS for -40°C to +125°C Temp Range (see Table 21-1)
 - Added new parameters for +40°C and updated Typical and Max values for most parameters (see Table 21-5)
 - Added new parameters for +40°C and updated Typical and Max values for most parameters (see Table 21-6)

- Added new parameters for +40°C and updated Typical and Max values for most parameters (see Table 21-7)
- Added new parameters for +40°C and updated Typical and Max values for most parameters (see Table 21-8)
- Updated parameter DI51, added parameter DI51a (see Table 21-9)
- Added Note 1 (see Table 21-11)
- Updated parameter OS30 (see Table 21-16)
- Updated parameter OS52 (see Table 21-17)
- Updated parameter F20, added Note 2 (see Table 21-18)
- Updated parameter TA15 (see Table 21-22)
- Updated parameter TB15 (see Table 21-23)
- Updated parameter TC15 (see Table 21-24)
- Updated parameters AD05, AD06, AD07, AD08, AD10, and AD11; added parameters AD05a and AD06a; added Note 2; modified ADC Accuracy headings to include measurement information (see Table 21-34)
- Separated the ADC Module Specification table in to three tables (see Table 21-34, Table 21-35, and Table 21-36)
- Updated parameter AD50 (see Table 21-37)
- Updated parameters AD50 and AD57 (see Table 21-38)