

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	12KB (4K x 24)
Program Memory Type	FLASH
EEPROM Size	<u>.</u>
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj12gp202t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1 Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPlC33F/PlC24H Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the PIC24HJ12GP202 product page on the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- Section 1. "Introduction" (DS70197)
- Section 2. "CPU" (DS70204)
- Section 3. "Data Memory (DS70202)
- Section 4. "Program Memory" (DS70202)
- Section 5. "Flash Programming" (DS70191)
- Section 6. "Interrupts" (DS70184)
- Section 7. "Oscillator" (DS70186)
- Section 8. "Reset" (DS70192)
- Section 9. "Watchdog Timer and Power-saving Modes" (DS70196)
- Section 10. "I/O Ports" (DS70193)
- Section 11. "Timers" (DS70205)
- Section 12. "Input Capture" (DS70198)
- Section 13. "Output Compare" (DS70209)
- Section 16. "Analog-to-Digital Converter (ADC) with DMA" (DS70183)
- Section 17. "UART" (DS70188)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- Section 23. "CodeGuard Security" (DS70199)
- Section 25. "Device Configuration" (DS70194)

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

- bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 INTOIF: External Interrupt 0 Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 10-10: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

R = Readable	bit	W = Writable I	oit	U = Unimpler	nented bit, rea	ad as '0'	
Legend:							
bit 7							bit 0
bit 7							hit 0
			— RP0R<4:0>				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15		•					bit 8
_	_				RP1R<4:0>	>	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

- bit 15-13 **Unimplemented:** Read as '0'
- bit 12-8 **RP1R<4:0>:** Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 10-2 for peripheral function numbers)
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-11: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	RP3R<4:0>					
bit 15							bit 8	

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP2R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-2 for peripheral function numbers)

12.0 TIMER2/3 FEATURE

- Note 1: This data sheet summarizes the features of the PIC24HJ12GP201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 11. Timers" (DS70205) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3 feature has 32-bit timers that can also be configured as two independent 16-bit timers with selectable operating modes.

As a 32-bit timer, the Timer2/3 feature permits operation in three modes:

- Two Independent 16-bit timers (Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit timer (Timer2/3)
- Single 32-bit synchronous counter (Timer2/3)

The Timer2/3 feature also supports:

- Timer gate operation
- Selectable Prescaler Settings
- · Timer operation during Idle and Sleep modes
- Interrupt on a 32-bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON and T3CON registers. T2CON registers are shown in generic form in Register 12-1. T3CON registers are shown in Register 12-2.

For 32-bit timer/counter operation, Timer2 is the lsw, and Timer3 is the msw of the 32-bit timers.

Note: For 32-bit operation, T3CON control bits are ignored. Only T2CON control bit is used for setup and control. Timer2 clock and gate inputs are used for the 32-bit timer modules, but an interrupt is generated with the Timer3 interrupt flags.

12.1 32-bit Operation

To configure the Timer2/3 feature for 32-bit operation:

- 1. Set the corresponding T32 control bit.
- 2. Select the prescaler ratio for Timer2 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3 contains the msw of the value, while PR2 contains the lsw.
- 5. If interrupts are required, set the interrupt enable bit, T3IE. Use the priority bits T3IP<2:0> to set the interrupt priority. While Timer2 controls the timer, the interrupt appears as a Timer3 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair TMR3:TMR2. TMR3 always contains the msw of the count, while TMR2 contains the lsw.

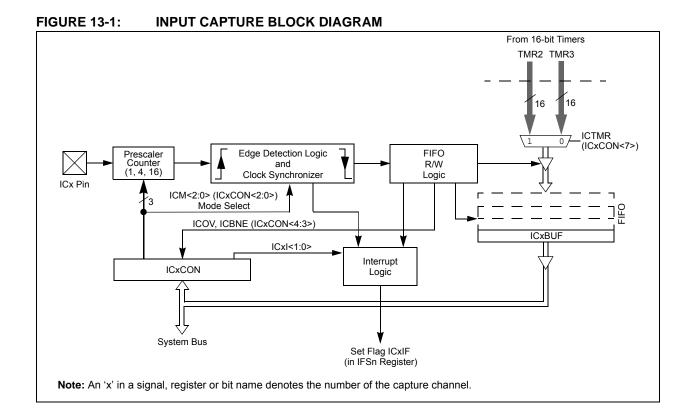
To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

13.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the PIC24HJ12GP201/202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 12. Input Capture" (DS70198) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement. The PIC24HJ12GP201/202 devices support up to eight input capture channels.


The Input Capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

- Simple Capture Event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin
- Capture timer value on every edge (rising and falling)
- Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

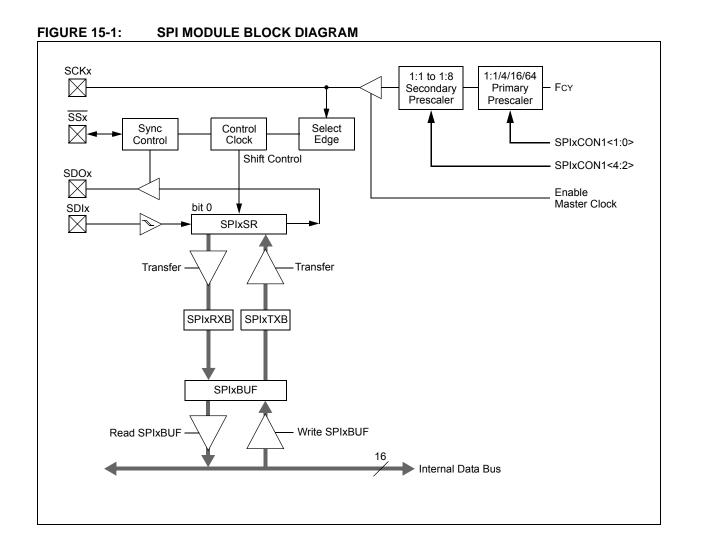
Each Input Capture channel can select one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- · Interrupt on Input Capture event
- · 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3, or 4 buffer locations are filled
- Use of Input Capture to provide additional sources of external interrupts

15.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the PIC24HJ12GP201/202 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 18. Serial Peripheral Interface (SPI)" (DS70206) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, analog-to-digital (A/D) converters, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of 4 pins:

- · SDIx (serial data input)
- · SDOx (serial data output)
- SCKx (shift clock input or output)
- · SSx (active low slave select).

In Master mode operation, SCK is a clock output. In Slave mode, it is a clock input.

R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0	R-1			
UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT			
pit 15							bit			
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0			
		ADDEN	RIDLE	PERR	FERR	OERR	1			
URXISE	L<1.0>	ADDEN	RIDLE	PERK	FERR	UERR	URXDA			
_egend:		HC = Hardwar	e cleared							
R = Readable	bit	W = Writable b	pit	U = Unimpler	nented bit, read	as '0'				
n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15,13	11 = Reserve 10 = Interrupt	0>: Transmissio ed; do not use t when a charac t buffer become	ter is transfe		bits nsmit Shift Regi	ster, and as a r	esult, the			
	01 = Interrupt operatio 00 = Interrupt	t when the last ons are complete	character is s ed ter is transfe	rred to the Trar	e Transmit Shift nsmit Shift Regi	-				
pit 14			•							
JIL 14	If IREN = 0 :	nsmit Polarity In								
	1 = UxTX Idl	e state is '0'								
	0 = UxTX Idl									
	If IREN = 1:									
		oded UxTX Idle	state is '1'							
	0 = IrDA enc	oded UxTX Idle	state is '0'							
bit 12	Unimplemen	ted: Read as '0)'							
pit 11	UTXBRK: Transmit Break bit									
	cleared b	nc Break on nex by hardware upo eak transmissior	on completion	า	llowed by twelve	e '0' bits, follow	ed by Stop b			
bit 10	•	smit Enable bit		· · · · · ·						
	1 = Transmit	enabled, UxTX	pin controlle		rted and buffer	is reset. UxTX	pin controlle			
oit 9	• •	smit Buffer Full	Status bit (re	ead-only)						
	1 = Transmit		·	•						
	0 = Transmit	buffer is not ful	l, at least one	e more characte	er can be writter	ו				
oit 8	TRMT: Trans	mit Shift Registe	er Empty bit	(read-only)						
					s empty (the last is in progress o		as completed			
oit 7-6	URXISEL<1:	0>: Receive Inte	errupt Mode	Selection bits						
JIL 7-0			-							

REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Note 1: Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

REGISTER 18-4: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

	Legend: R = Readable bit W = Writable bit			U = Unimpler	nented bit read	1 as '0'	
							bit 0
	_	—	—	—	CH123N	IA<1:0>	CH123SA
 bit 15	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
							DILO
—							bit 8
	_	—	_	—	CH123NB<1:0>		CH123SB
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-9 CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits PIC24HJ12GP201 devices only: If AD12B = 1:

11 = Reserved

10 = Reserved

01 = Reserved

00 = Reserved

If AD12B = 0:

11 = Reserved

10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is not connected

01 = CH1, CH2, CH3 negative input is VREF-

00 = CH1, CH2, CH3 negative input is VREF-

PIC24HJ12GP202 devices only:

<u>If AD12B = 1:</u> 11 = Reserved 10 = Reserved

01 = Reserved

01 - Reserved

00 = Reserved

If AD12B = 0:

11 = CH1 negative input is AN9, CH2 and CH3 negative inputs are not connected

10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8

01 = CH1, CH2, CH3 negative input is VREF-

00 = CH1, CH2, CH3 negative input is VREF-

REGISTER 18-5: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER (CONTINUED)

bit 4-0 CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits

PIC24HJ12GP201 devices only:

- 00111 = Channel 0 positive input is AN7
- 00110 = Channel 0 positive input is AN6
- 00101 = Reserved
- 00100 = Reserved
- 00011 = Channel 0 positive input is AN3
- 00010 = Channel 0 positive input is AN2
- 00001 = Channel 0 positive input is AN1
- 00000 = Channel 0 positive input is AN0

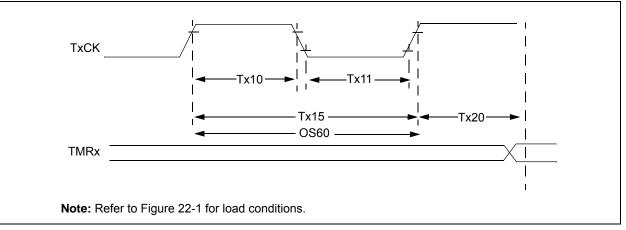
PIC24HJ12GP202 devices only:

01001 = Channel 0 positive input is AN9

- •
- 00010 = Channel 0 positive input is AN2 00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0

PIC24HJ12GP201/202

TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)


Base Instr #	Assembly Mnemonic Assembly Syntax Description		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	СОМ	f	$f = \overline{f}$	1	1	N,Z
		СОМ	f,WREG	WREG = \overline{f}	1	1	N,Z
				$Wd = \overline{Ws}$	1	1	N,Z
18	CP	COM	Ws,Wd f		1	1	,
10	CP	CP		Compare f with WREG			C,DC,N,OV,Z
		CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
10		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CPO	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if \neq	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
31	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	C
32	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	C
33	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	C
34	GOTO	GOTO	Expr	Go to address	2	2	None
• •		GOTO	Wn	Go to indirect	1	2	None

IABL	E 20-2:	INSTRUCTION SET OVERVIEW (CONTINUED)									
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected				
35	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z				
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z				
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z				
36	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z				
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z				
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z				
37	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z				
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z				
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z				
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z				
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z				
38	LNK	LNK	#lit14	Link Frame Pointer	1	1	None				
39	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z				
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z				
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z				
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z				
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z				
40	MOV	MOV	f,Wn	Move f to Wn	1	1	None				
		MOV	f	Move f to f	1	1	N,Z				
		MOV	f,WREG	Move f to WREG	1	1	None				
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None				
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None				
		MOV	Wn,f	Move Wn to f	1	1	None				
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None				
		MOV	WREG, f	Move WREG to f	1	1	None				
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None				
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None				
41	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None				
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None				
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None				
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None				
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None				
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None				
		MUL	f	W3:W2 = f * WREG	1	1	None				
42	NEG	NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z				
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z				
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z				
43	NOP	NOP		No Operation	1	1	None				
		NOPR		No Operation	1	1	None				
44	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None				
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None				
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None				
		POP.S		Pop Shadow Registers	1	1	All				
45	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None				
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None				
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None				
		PUSH.S		Push Shadow Registers	1	1	None				
46	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep				

TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUED)

PIC24HJ12GP201/202

FIGURE 22-5: TIMER1, 2, 3 AND 4 EXTERNAL CLOCK TIMING CHARACTERISTICS

АС СНА	ARACTERIS	TICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Charact	eristic		Min	Тур	Мах	Units	Conditions
TA10	ТтхН	TxCK High Time	Synchron no presc		Тсү + 20		_	ns	Must also meet parameter TA15.
			Synchron with pres		(Tcy + 20)/N		_	ns	N = prescale value
			Asynchro	onous	20	_	—	ns	(1, 8, 64, 256)
TA11			Synchroi no presc		(Tcy + 20)	_	—	ns	Must also meet parameter TA15.
		Synchronous, with prescaler		(Tcy + 20)/N	_	—	ns	N = prescale value	
			Asynchro	onous	20		_	ns	(1, 8, 64, 256)
TA15	ΤτχΡ	TxCK Input Period	Synchroi no presc		2 Tcy + 40	_	—	ns	—
			Synchroi with pres		Greater of: 40 ns or (2 TCY + 40)/ N	_	_	_	N = prescale value (1, 8, 64, 256)
			Asynchro	onous	40	_	_	ns	—
OS60	Ft1	SOSCI/T1CK Oscillator Input frequency Range (oscillator enabled by setting bit TCS (T1CON<1>))			DC		50	kHz	—
TA20	TCKEXTMRL	Delay from Extern Edge to Timer Inc		Clock	0.75 Tcy + 40		1.75 Tcy + 40		_

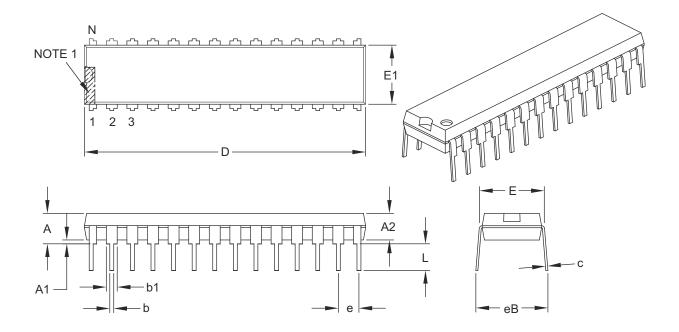
TABLE 22-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A.

TABLE 22-34:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

АС СНА	AC CHARACTERISTICS			erating erwise st mperatur	ated) e -40°	C ≤TA ≤+	V to 3.6V 85°C for Industrial 125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	—	—	15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	—		ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow to SCKx \uparrow or SCKx Input$	120	_	—	ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	_	50	ns	—
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—		ns	See Note 4

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

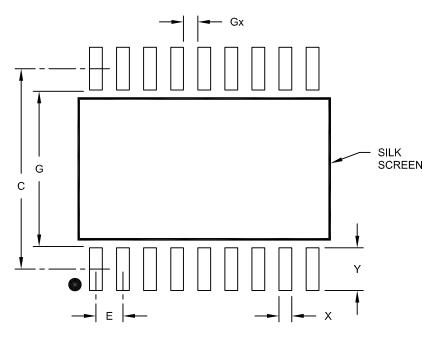
Units		INCHES		
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν	28		
Pitch	е	.100 BSC		
Top to Seating Plane	Α	-	_	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

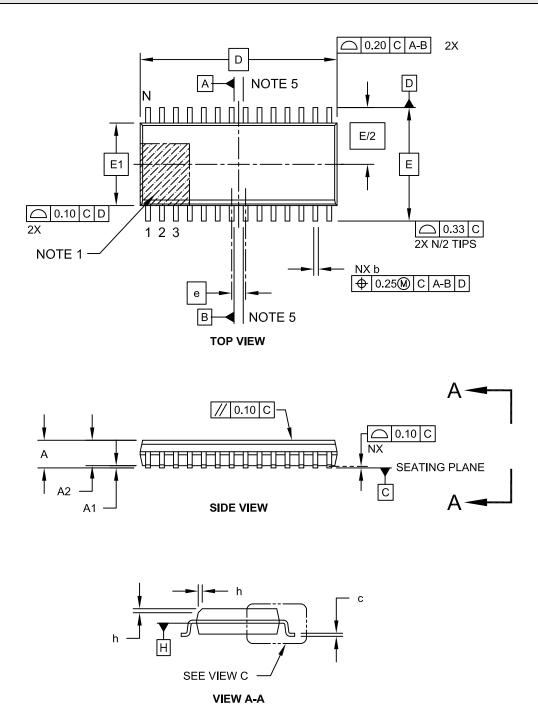
18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	Units MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width	X			0.60
Contact Pad Length	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

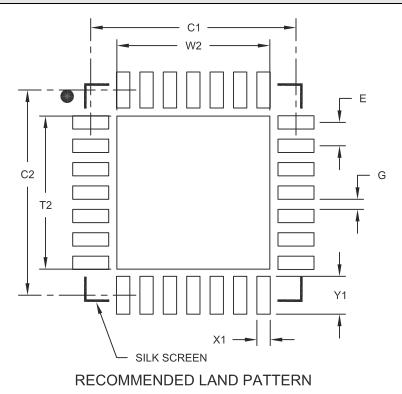
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2051A

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	W2			4.25	
Optional Center Pad Length	T2			4.25	
Contact Pad Spacing	C1		5.70		
Contact Pad Spacing	C2		5.70		
Contact Pad Width (X28)	X1			0.37	
Contact Pad Length (X28)	Y1			1.00	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

PIC24HJ12GP201/202

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3180 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

05/02/11