

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	Coldfire V4
Core Size	32-Bit Single-Core
Speed	250MHz
Connectivity	1-Wire®, CANbus, EBI/EMI, Ethernet, I ² C, SmartCard, SPI, SSI, UART/USART, USB, USB OTG
Peripherals	DMA, PWM, WDT
Number of I/O	87
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	64K × 8
Voltage - Supply (Vcc/Vdd)	1.14V ~ 1.32V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-MAPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf54418cmj250r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Hardware design considerations

Figure 5 shows an example for bypassing the FlexBus power supply for the MPU. This bypass should be applied to as many FB VDD signals as routing allows. Each one should be placed as close to the ball as possible.

Figure 5. FB_VDD power filter

2.2 Supply voltage sequencing

Figure 6 shows requirements in the sequencing of the I/O V_{DD} (EV_{DD}), FlexBus V_{DD} (FBV_{DD}), SDRAM V_{DD} (SDV_{DD}), PLL V_{DD} (VDD_OSC_A_PLL), and internal logic/core V_{DD} (IV_{DD}).

Notes:

- Input voltage must not be greater than the supply voltage (EV_{DD} , FBV_{DD} , SDV_{DD} , IV_{DD} , or PV_{DD}) by more than 0.5V at any time, including during power-up.
- ² Use 25 V/millisecond or slower rise time for all supplies.

Figure 6. Supply voltage sequencing and separation cautions

The relationships between FBV_{DD}, SDV_{DD} and EV_{DD} are non-critical during power-up and power-down sequences. FBV_{DD} (1.8 - 3.3V), SDV_{DD} (2.5V or 1.8V) and EV_{DD} are specified relative to IV_{DD}.

NOTE

All I/O VDD pins must be powered on when the device is functioning, except when in standby mode.

In standby mode, all I/O VDD pins, except VSTBY_RTC (battery), can be switched off.

Characteristic	Symbol	Typical	Unit
External I/O pad operating supply current (nominal 3.3 V)	EVDD	3	mA
USB operating supply current (nominal 3.3 V)	VDD_USBO, VDD_USBH	30	mA
ADC operating supply current (nominal 3.3 V) Speed mode 00 Speed mode 01	VDDA_ADC	14 22	mA
DAC operating supply current (nominal 3.3 V)	VDDA_DAC_ADC	11	mA
RTC standby supply current ISTBY	VSTBY_RTC	17	μA

Tabl	e 3.	Estimated	power	consumption	specifications	(continued)
------	------	-----------	-------	-------------	----------------	------------	---

¹ Current measured at maximum system clock frequency, all modules active, and default drive strength with matching load.

² DDR2 interface power is estimated from the Micron DDR2 data sheet. The numbers given in this table do not include the actual power consumption of the memory itself. The current drawn by the memory needs to be added to the values in this table and may be several hundred mA.

³ EVDD values depend on the application, with the restrictions that any single pin cannot exceed 25 mA and that the total power does not exceed the thermal characteristics.

3 Pin assignments and reset states

3.1 Signal multiplexing

The following table lists all the MCF5441*x* pins grouped by function. The Dir column is the direction for the primary function of the pin only. Refer to the following sections for package diagrams. For a more detailed discussion of the MCF5441*x* signals, consult the *MCF5441x Reference Manual* (MCF54418RM).

NOTE

In this table and throughout this document a single signal within a group is designated without square brackets (i.e., FB_AD23), while designations for multiple signals within a group use brackets (i.e., FB_AD[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.

NOTE

The primary functionality of a pin is not necessarily its default functionality. Most pins that are muxed with GPIO default to their GPIO functionality. See the following table for a list of the exceptions.

Table 5. MCF5441*x* Signal information and muxing (continued)

Signal name	GPIO	Alternate 1	Alternate 2	Pullup (U) ¹ Pulldown (D)	Direction ²	Voltage domain	Pad type ³	196 MAPBGA	256 MAPBGA
		F	lexCAN 1			L		I	•
CAN1_TX	PB0	UART9_TXD	I2C1_SCL	—	I/O	EVDD	ssr	—	D14
CAN1_RX	PC7	UART9_RXD	I2C1_SDA	_	I/O	EVDD	ssr	—	D15
		SDR	AM controller						
SD_A14				_	0	SDVDD	st_dec ap	_	P6
SD_A[13:0]	_	_	_		0	SDVDD	st_dec ap	P3, M1, M3, L2, L1, N4, M2, P2, L3, L4, N1, N2, K1, N3	R4, R1, R3, N4, P3, T4, R2, T2, N3, P5, P4, N5, P2, T3
SD_BA[2:0]	—	_	—	—	0	SDVDD	st_dec ap	M6, J4, P4	P7, N6, R5
SD_CAS			_	_	0	SDVDD	st_dec ap	K4	N8
SD_CKE	_		_	—	0	SDVDD	st_dec ap	N6	R7
SD_CLK	—	_			0	SDVDD	st_ck	P6	T5
SD_CLK	—	_	_		0	SDVDD	st_ck	P7	Т6
SD_CS	—	_	_	_	0	SDVDD	st_dec ap	M5	N7
SD_D[7:0]	—	-	—	_	I/O	SDVDD	st_odt	P11, M10, N10, M9, P10, M8, N8, M7	T12, R11, T11, R10, N9, T10, P9, R9
SD_DM	—		_		0	SDVDD	st_odt	N7	T7
SD_DQS	—		_	—	I/O	SDVDD	st_dqs	P8	Т8
SD_DQS	—	_	—		I/O	SDVDD	st_dqs	P9	Т9
SD_ODT	_	_	—	_	0	SDVDD	st_dec ap	P5	P8
SD_RAS					0	SDVDD	st_dec ap	M4	R6
SD_WE	—	_	—	_	0	SDVDD	st_dec ap	N5	R8
SD_VREF	—	—	—	—	—	SDVDD	st_vref	N9	P10
SD_VTT	—		—	—	—	SDVDD	st_vtt	L8	N10

Pin assignments and reset states

Signal name	GPIO	Alternate 1	Alternate 2	Pullup (U) ¹ Pulldown (D)	Direction ²	Voltage domain	Pad type ³	196 MAPBGA	256 MAPBGA
		Externa	l interrupts port						
IRQ7	PC6	—	—		Ι	EVDD	ssr	G10	F12
IRQ6	PC5	_	USB_CLKIN ¹¹	-	Ι	EVDD	ssr	_	N1
IRQ4	PC4	DREQ0	—	_	I	EVDD	ssr	E11	F14
IRQ3	PC3	DSPI0_PCS3	USBH_VBUS_EN		I	EVDD	ssr		M1
IRQ2	PC2	DSPI0_PCS2	USBH_VBUS_OC	12	Ι	EVDD	ssr	_	M2
IRQ1	PC1	_	—	_	I	EVDD	ssr	E13	F13
	USB On-the-Go								
USBO_DM		_		—	I/O	VDD_ USB0	ae	B13	A14
USBO_DP	—				I/O	VDD_ USB0	ae	A13	B14
		l	JSB host						
USBH_DM	_	_	_	—	I/O	VDD_ USBH	ae	—	A15
USBH_DP	—	_			I/O	VDD_ USBH	ae		B15
			ADC		•				•
ADC_IN7/ DAC1_OUT	_	_	_	_	I	VDDA_ DAC_ ADC	ae		КЗ
ADC_IN[6:4]				_	Ι	VDDA_ ADC	ae		H2, J3, G4
ADC_IN3/ DAC0_OUT	_	—	—	_	I	VDDA_ DAC_ ADC	ae		К4
ADC_IN[2:0]				_	Ι	VDDA_ ADC	ae		J2, J1, H1
		Rea	I time clock		•				
RTC_EXTAL	—	—	_		ı ⁴	VSTBY	ae	B14	B16
RTC_XTAL	—	—	—	—	0	VSTBY	ae	C14	C16
		DS	SPI0/SBF ¹³		•				
DSPI0_PCS1/ SBF_CS	PC0	_	_		I/O	EVDD	msr	КЗ	L1

Table 5. MCF5441*x* Signal information and muxing (continued)

Pin assignments and reset states

Signal name	GPIO	Alternate 1	Alternate 2	Pullup (U) ¹ Pulldown (D)	Direction ²	Voltage domain	Pad type ³	196 MAPBGA	256 MAPBGA
		Enhanced secu	re digital host contr	oller					
SDHC_DAT3	PF2	PWM_A1	DSPI1_PCS0		I/O	EVDD	msr	_	B13
SDHC_DAT2	PF1	PWM_B1	DSPI1_PCS2	—	I/O	EVDD	msr	—	E14
SDHC_DAT1	PF0	PWM_A2	DSPI1_PCS1	—	I/O	EVDD	msr	—	D12
SDHC_DAT0	PG7	PWM_B2	DSPI1_SOUT	—	I/O	EVDD	msr	—	B12
SDHC_CMD	PG6	PWM_B0	DSPI1_SIN	—	I/O	EVDD	msr	—	C11
SDHC_CLK	PG5	PWM_A0	DSPI1_SCK		0	EVDD	msr		A10
		Smart o	card interface 0						
SIM0_DATA	RGPIO13/PG4	PWM_FAULT2	SDHC_DAT7		I/O	EVDD	msr	—	E12
SIM0_VEN	RGPIO12/PG3	PWM_FAULT0	_	—	0	EVDD	msr	—	D13
SIM0_RST	RGPIO11/PG2	PWM_FORCE	SDHC_DAT6	—	0	EVDD	msr	—	C15
SIM0_PD	RGPIO10/PG1	PWM_SYNC	SDHC_DAT5	—	I	EVDD	msr	—	C14
SIM0_CLK	RGPIO9/PG0	PWM_FAULT1	SDHC_DAT4		0	EVDD	msr	—	A11
		Synchronou	s serial interface 0 ¹	9					
SSI0_RXD	PH7	I2C2_SDA	SIM1_VEN	—	I	EVDD	msr	B12	C12
SSI0_TXD	PH6	I2C2_SCL	SIM1_DATA	_	0	EVDD	msr	A11	C13
SSI0_FS	PH5	UART7_TXD	SIM1_RST	_	I/O	EVDD	msr	C13	E15
SSI0_MCLK	PH4	SSI_CLKIN	SIM1_CLK		0	EVDD	msr	A12	A12
SSI0_BCLK	PH3	UART7_RXD	SIM1_PD		I/O	EVDD	msr	D13	A13
		Etherr	net subsystem						
MII0_MDC	PI1	RMII0_MDC ²⁰			0	EVDD	fsr	N14	P16
MII0_MDIO	PI0	RMII0_MDIO ²⁰	_	—	I/O	EVDD	fsr	M14	N16
MII0_RXDV	PJ7	RMII0_CRS_DV ²⁰	_	—	I	EVDD	fsr	M13	P14
MII0_RXD[1:0]	PJ[6:5]	RMII0_RXD[1:0] ²⁰	_	—	Ι	EVDD	fsr	P13, N13	R15, T15
MII0_RXER	PJ4	RMII0_RXER ²⁰	_	_	I	EVDD	fsr	M12	N14
MII0_TXD[1:0]	PJ[3:2]	RMII0_TXD[1:0] ²⁰	_		0	EVDD	fsr	L12, L11	R13, P13
MII0_TXEN	PJ1	RMII0_TXEN ²⁰	_	D ²¹	0	EVDD	fsr	N12	P12
MII0_COL	PJ0	RMII1_MDC	ULPI_STP		Ι	EVDD	fsr	—	R12
MII0_TXER	PK7	RMII1_MDIO	ULPI_DATA4		0	EVDD	fsr	—	R14
MII0_CRS	PK6	RMII1_CRS_DV	ULPI_DATA5		I	EVDD	fsr	—	P11
MII0_RXD[3:2]	PK[5:4]	RMII1_RXD[1:0]	ULPI_DATA[1:0]	—	Ι	EVDD	fsr	_	P15, N13

Table 5. MCF5441*x* Signal information and muxing (continued)

Table 5. MCF5441 x Signal	information and	muxing	(continued)
---------------------------	-----------------	--------	-------------

Signal name	GPIO	Alternate 1	Alternate 2	Pullup (U) ¹ Pulldown (D)	Direction ²	Voltage domain	Pad type ³	196 MAPBGA	256 MAPBGA
MII0_RXCLK	PK3	RMII1_RXER	ULPI_DATA6	_	I	EVDD	fsr	—	M14
MII0_TXD[3:2]	PK[2:1]	RMII1_TXD[1:0]	ULPI_DATA[3:2]		0	EVDD	fsr	—	T13, N12
MII0_TXCLK	PK0	RMII1_TXEN	ULPI_DATA7	D ²¹	I	EVDD	fsr	—	T14
		В	DM/JTAG						
ALLPST ²²	PH2	_			0	EVDD	fsr	K12	—
DDATA[3:2]	PH[1:0]	_	_		0	EVDD	fsr	—	L15, M13
DDATA[1:0]	PI[7:6]	_	—	_	0	EVDD	fsr	—	M15, L14
PST[3:0]	PI[5:2]	_	_	—	0	EVDD	fsr	—	J13, J16, J15, J14
JTAG_EN	—	—	—	D	Ι	EVDD	msr	N11	N15
PSTCLK	—	TCLK ²³	—	—	I	EVDD	fsr	L14	M16
DSI	_	TDI ²³	—	U	I	EVDD	msr	L10	L13
DSO	—	TDO ²³	—	_	0	EVDD	msr	L13	K14
BKPT	—	TMS ²³	—	U	I	EVDD	msr	K13	K16
DSCLK		TRST ²³		U	Ι	EVDD	msr	L9	K13
		(this signal	Test must be grounded)						
TEST	_	_	_	D	I	EVDD	ssr	K10	R16
		Pow	ver supplies						
IVDD	_	_	_	_	_	_	_	D9, D10, E9, E10, F9, F10, F12	E9–E11, F9–F11
EVDD	_	_	_	_	—	—		F4–F7, G6, G7, H6, H7, J5, J6	H8, J7–J10, K6–K11, L6
FB_VDD	_		_	—	_	—		D5–D7, E4–E7	E5–E7, F5, F6, G5
SD_VDD	_	_					_	K7–K9, L5–L7	M7-M12
VDD_OSC_A_PLL			_	_	—	—	vddint	F14	F15
VSS_OSC_A_PLL	_	_	_	_	—	—	vddint	F13	F16
VDD_USBO		—	_		—	_	vdde	F11	G12
VDD_USBH		_		—	—	—	vdde	_	H12
VDDA_ADC	—			—	—	—	—	_	H4

Pin assignments and reset states

3.2 Pinout—196 MAPBGA

The pinout for the MCF54410 package is shown below.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
A	GND	FB_ AD10	FB_ AD14	FB_ AD16	FB_ AD18	FB_ AD19	FB_ AD24	FB_ AD27	FB_ AD30	FB_ AD31	SSI0_ TXD	SSI0_ MCLK	USB_ DPLS	GND	•
в	FB_ AD6	FB_ AD9	FB_ AD11	FB_ AD13	FB_ AD17	FB_ AD20	FB_ AD23	FB_ AD26	FB_ AD29	U1_ RXD	U0_ TXD	SSI0_ RXD	USB_ DMNS	RTC_ EXTAL	в
с	FB_ AD3	FB_ AD5	FB_ AD8	FB_ AD12	FB_ AD15	FB_ AD21	FB_ AD22	FB_ AD25	FB_ AD28	U1_ TXD	U0_ RXD	U0RTS_ B	SSI0_ FS	RTC_ XTAL	с
D	FB_ AD0	FB_ AD2	FB_ AD4	FB_ AD7	FBVDD	FBVDD	FBVDD	GND	CVDD	CVDD	U1RTS_ B	U1CTS_ B	SSI0_ BCLK	GND	D
E	FB_BE2 _B	FB_ALE	FB_ AD1	FBVDD				GND	CVDD	CVDD	IRQ4_B	U0CTS_ B	IRQ1_B	VSTBY	E
F	FB_BE0 _B	FB_BE1 _B	FB_BE3 _B	EVDD	EVDD	EVDD	EVDD	GND	CVDD	CVDD	VDD_ USBO	CVDD	VSS_OS C_A_PL L	VDD_OS C_A_PL L	F
G	FB_CLK	FB_CS0 _B	FB_CS1 _B	GND	BOOT MOD1	EVDD	EVDD	GND	GND	IRQ7_B	GND	I2C0_ SDA	T3IN	EXTAL	G
н	FB_OE_ B	FB_RW_ B	FB_TA_ B	GND	BOOT MOD0	EVDD	EVDD	GND	GND	GND	GND	I2C0_ SCL	T1IN	XTAL	н
J	DSPI0_ PCS0	DSPI0_ SOUT	DSPI0_ SCK	SD_BA1	EVDD	EVDD	GND	GND	GND	GND	GND	T2IN	TOIN	GND	J
к	SD_A1	DSPI0_ SIN	DSPI0_ PCS1	SD_CAS _B	GND	GND	SDVDD	SDVDD	SDVDD	TEST	GND	ALLPST	TMS	RSTIN_ B	к
L	SD_A9	SD_A10	SD_A5	SD_A4	SDVDD	SDVDD	SDVDD	SD_VTT	TRST_B	TDI	RM110_ TXD0	RM110_ TXD1	TDO	TCLK	L
м	SD_A12	SD_A7	SD_A11	SD_RAS _B	SD_CS_ B	SD_BA2	SD_D0	SD_D2	SD_D4	SD_D6	OWIO	RMII0_ RXER	RMII0_ CRS_DV	RMII0_ MDIO	м
N	SD_A3	SD_A2	SD_A0	SD_A8	SD_WE_ B	SD_CKE	SD_DQM	SD_D1	SD_VRE F	SD_D5	JTAG_E N	RMII0_ TXEN	RMII0_ RXD0	RMII0_ MDC	N
Ρ	GND	SD_A6	SD_A13	SD_BA0	SD_ODT	SD_CLK	SD_CLK_ B	SD_DQS	SD_DQS _B	SD_D3	SD_D7	RSTOUT _B	RMII0_ RXD1	GND	Р
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	•

Figure 7. MCF54410 Pinout (196 MAPBGA)

4 Electrical characteristics

This document contains electrical specification tables and reference timing diagrams for the MCF5441x microprocessor. This section contains detailed information on AC/DC electrical characteristics and AC timing specifications.

NOTE

The specifications for this device in any other document are superseded by the specifications in this document.

4.1 Absolute maximum ratings

Table 6.	Absolute	maximum	ratings ¹	1, 2	2
----------	----------	---------	----------------------	------	---

Rating	Symbol	Pin name	Value	Units
External I/O pad supply voltage	EV _{DD}	EVDD	-0.3 to +4.0	V
Internal logic supply voltage	IV _{DD}	IVDD	-0.5 to +2.0	V
FlexBus I/O pad supply voltage	FBV _{DD}	FB_VDD	-0.3 to +4.0	V
SDRAM I/O pad supply voltage	SDV _{DD}	SD_VDD	-0.3 to +4.0	V
PLL supply voltage	PV _{DD}	VDD_OSC_A_PLL	-0.3 to +4.0	V
USB OTG supply voltage	USBV _{DD}	VDD_USBO	-0.3 to +4.0	V
USB host supply voltage	USBV _{DD}	VDD_USBH	-0.3 to +4.0	V
ADC supply voltage	AV _{DD}	VDDA_ADC	-0.3 to +4.0	V
DAC and ADC supply voltage	—	VDDA_DAC_ADC	-0.3 to +4.0	V
RTC standby supply voltage	RTCV _{STBY}	VSTBY_RTC	-0.3 to +4.0	V
Digital input voltage ³	V _{IN}	—	-0.3 to +3.6	V
Instantaneous maximum current Single pin limit (applies to all pins) ^{3, 4, 5}	I _{DD}		25	mA
Operating temperature range (packaged)	T_{A} $(T_{L} - T_{H})$	—	-40 to +85	°C
Storage temperature range	T _{stg}		-55 to +150	°C

¹ Functional operating conditions are given in Table 11. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device.

- ² This device contains circuitry protecting against damage due to high static voltage or electrical fields. However, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Immunity to static and electrical fields is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., V_{SS} or EV_{DD}).
- ³ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, and then use the larger of the two values.
- $^4\,$ All functional non-supply pins are internally clamped to V_{SS} and EV_{DD} .
- ⁵ Power supply must maintain regulation within operating EV_{DD} , FBV_{DD} , and SDV_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > EV_{DD}$, FBV_{DD} , or SDV_{DD}) is greater than I_{DD} , the injection current may flow out of EV_{DD} , FBV_{DD} , or SDV_{DD} and could result in external power supply going out of regulation. Ensure the external EV_{DD} , FBV_{DD} , or SDV_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MPU is not consuming power (for example, no clock).

Characteristic	Symbol	Pin Name	Min	Мах	Units
External I/O pad supply voltage, nominal 3.3 V	EV _{DD}	EVDD	3.135	3.63	V
USB supply voltage, nominal 3.3 V	USBV _{DD}	VDD_USBO VDD_USBH	3.135	3.63	V
ADC supply voltage	AV _{DD}	VDDA_ADC	3.135	3.63	V
DAC supply voltage	—	VDDA_DAC_ ADC	3.135	3.63	V
RTC standby supply voltage	RTCV _{STBY}	VSTBY_RTC	1.6	EV _{DD} – 0.2V	V

Table 10. Power supply specifications (continued)

Characteristic	Symbol	Min	Мах	Units
CMOS input high voltage	EVIH	$0.65 \times EV_{DD}$	EV _{DD} + 0.3	V
CMOS input low voltage	EVIL	V _{SS} – 0.3	$0.35 \times EV_{DD}$	V
CMOS output high voltage $I_{OH} = -2.0 \text{ mA}$	EV _{OH}	$0.8 \times EV_{DD}$		V
CMOS output low voltage I _{OL} = 2.0 mA	EV _{OL}		$0.2 \times EV_{DD}$	V
SDRAM input high voltage DDR2 @ 1.8V	SDV _{IH}	SDV _{REF} + 0.125	SDV _{DD} + 0.3	V
SDRAM input low voltage DDR2 @ 1.8V	SDV _{IL}	-0.3	SDV _{REF} - 0.125	V
SDRAM output high voltage DDR2@ 1.8V I _{OH} = -13.4 mA	SDV _{OH}	$SDV_{DD} \times 0.9$	_	V
SDRAM output low voltage DDR2@ 1.8V I _{OH} = 13.4 mA	SDV _{OL}	_	$SDV_{DD} imes 0.1$	V
ElexBus input high voltage	FBV	0.51 × FBV	EBV ± 0.3	V
@ 1.8V-3.3V	I DAIH	0.51 × 1 DVDD	1 D V DD + 0.3	v
FlexBus input low voltage @ 1.8V-3.3V	FBV _{IL}	V _{SS} – 0.3	$0.42 \times FBV_{DD}$	V
FlexBus output high voltage @ 1.8V–3.3V I _{OH} = –5.0 mA for all modes	FBV _{OH}	$0.8 \times FBV_{DD}$	_	V
FlexBus output low voltage @ 1.8V–3.3V I _{OL} = 5.0 mA for all modes	FBV _{OL}	_	$0.2 \times FBV_{DD}$	V
Input Leakage Current $V_{in} = V_{DD}$ or V_{SS} , Input-only pins	l _{in}	-2.5	2.5	μA

Table 11. I/O electrical specifications

4.8 Oscillator and PLL electrical characteristics

Reference Figure 9 for crystal circuits.

Num	Characteristic	Symbol	Min	Max	Unit
1	PLL Reference Frequency Range ¹ Crystal reference External reference	f _{ref_crystal} f _{ref_ext}	14 ¹ 14 ¹	50 ¹ 50 ¹	MHz MHz
2	Core frequency FB_CLK frequency ² (MISCCR2[FBHALF] = 0)	f _{sys} f _{sys/2}	120 60	250 100	MHz MHz
3	VCO frequency	f _{vco}	240	500	MHz
4	DCC frequency ³	f _{DCC}	300	500	MHz
5	Crystal start-up time ^{4, 5}	t _{cst}	_	10	ms
6	EXTAL input high voltage External and limp modes	V _{IHEXT}	EV _{IH}	EVDD	V
7	EXTAL input low voltage External and limp modes	V _{ILEXT}	0	EV _{IL}	V
8	PLL lock time ^{4, 6}	t _{lpll}	_	50	ms
9	Duty cycle of reference ⁴	t _{dc}	-45%	+45%	%
10	Crystal capacitive load	CL	_	From crystal spec	pF
11	Feedback resistor	R _F	10	—	MΩ
12	Series resistor	R _S	0	200	Ω
13	Discrete load capacitance for XTAL	C _{L_XTAL}	_	$\begin{array}{c} 2 \times C_L - \\ C_{S_XTAL} - \\ C_{PCB_XTAL}^{7} \end{array}$	pF
14	Discrete load capacitance for EXTAL	C _{L_EXTAL}	_	$\begin{array}{c} 2 \times C_L - \\ C_{S_EXTAL} - \\ C_{PCB_EXTAL}^{7} \end{array}$	pF
15	FB_CLK period jitter, ^{4, 5, 7, 8,} Measured at f _{SYS} Max Peak-to-peak jitter (clock edge to clock edge) Long term jitter	C _{jitter}		10 0.1	% f _{sys/3} % f _{sys/3}

Table 14. PLL electrical characteristics

These reference value ranges are for after a PLL predivider (PREDIV), which can be programmed to 1, 2, 4, 8, or 16. The PREDIV value can be set while booting from serial flash. In parallel reset configuration, the PREDIV value is set to one. In this mode, if the input frequency results in an out of range reference frequency, boot the processor in limp mode, set the proper PREDIV and multiplier settings, and switch to PLL mode.

² All internal registers retain data at 0 Hz.

³ Required only for DDR2 memory.

- ⁴ This parameter is guaranteed by characterization before qualification rather than 100% tested.
- ⁵ Proper PC board layout procedures must be followed to achieve specifications.
- ⁶ This specification is the PLL lock time only and does not include oscillator start-up time.

⁷ C_{PCB_EXTAL} and C_{PCB_XTAL} are the measured PCB stray capacitances on EXTAL and XTAL, respectively.

⁸ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via PLL V_{DD}, EV_{DD}, and V_{SS} and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval.

Figure 14. Address latch cycle timing

Figure 15. Write data latch timing

- ³ This specification relates to the required input setup time of DDR memories. The microprocessor's output setup should be larger than the input setup of the DDR memories. If it is not larger, then the input setup on the memory is in violation. SD_D[31:24] is relative to SD_DQS[3]; SD_D[23:16] is relative to SD_DQS[2]
- ⁴ The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats are valid for each subsequent DQS edge.
- ⁵ This specification relates to the required hold time of DDR memories. SD_D[31:24] is relative to SD_DQS[3]; SD_D[23:16] is relative to SD_DQS[2]
- ⁶ Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors).
- ⁷ Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes invalid.

4.15.2 eSDHC electrical DC characteristics

Table 21 lists the eSDHC electrical DC characteristics.

Table 21. MM	C/SD interface	electrical s	pecifications
--------------	----------------	--------------	---------------

Num	Parameter	Design value	Min	Max	Unit	Condition/remark
Bus sigr	nal line load					
7	Pull-up resistance	47	10	100	kΩ	Internal PU
8	Open drain resistance	NA	NA	NA	kΩ	For MMC cards only
Open dra	ain signal level					For MMC cards only
9	Output high voltage		V _{DD} – 0.2		V	I _{OH} = −100 μA
10	Output low voltage			0.3	V	I _{OL} = 2 mA
Bus sigr	nal levels					
11	Output high voltage		0.75 x V _{DD}		V	$I_{OH} = -100 \ \mu A \ @V_{DD} \ min$
12	Output low voltage			0.125 x V _{DD}	V	I _{OL} = 100 μA @V _{DD} min
13	Input high voltage		0.625 x V _{DD}	V _{DD} + 3	V	
14	Input low voltage		V _{SS} – 0.3	0.25 x V _{DD}	V	

4.16 SIM timing specifications

Each SIM card interface consist of a total of 12 pins (two separate ports of six pins each. Mostly one port with 5 pins is used).

The interface is meant to be used with synchronous SIM cards. This means that the SIM module provides a clock for the SIM card to use. The frequency of this clock is normally 372 times the data rate on the TX/RX pins, however SIM module can work with CLK equal to 16 times the data rate on TX/RX pins.

There is no timing relationship between the clock and the data. The clock that the SIM module provides to the SIM card is used by the SIM card to recover the clock from the data, like a standard UART. All six (or five when a bidirectional TXRX is used) of the pins for each half of the SIM module are asynchronous to each other. There are no required timing relationships between the signals in normal mode. However, there are some in reset and power down sequences.

All SIM signals use pad type pad_msr. SIM timing is fairly relaxed compared to other interfaces and can be met at 50 pF loading with any slew rate setting other than $00.^{1}$

^{1.} These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting (11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to increase edge rise and fall times, thus reducing EMI.

4.16.2.2 Cards with active-low reset

The sequence of reset for this kind of card is as follows (see Figure 23):

- 1. After powerup, the clock signal is enabled on SIM_CLK (time T0)
- 2. After 200 clock cycles, RX must be high.
- 3. SIM_RST must remain low for at least 40,000 clock cycles after T0 (no response is to be received on RX during those 40,000 clock cycles)
- 4. SIM_RST is set high (time T1)
- 5. SIM_RST must remain high for at least 40,000 clock cycles after T1 and a response must be received on RX between 400 and 40,000 clock cycles after T1.

4.16.3 Power-down sequence

Power down sequence for SIM interface is as follows:

- 1. SIM_PD port detects the removal of the SIM card
- 2. SIM_RST goes low
- 3. SIM_CLK goes low
- 4. SIM_TX goes low
- 5. SIM_VEN goes low

Each of these steps is completed in one CKIL period (usually 32 kHz). Power-down may be started in response to a card-removal detection or launched by the processor. Figure 24 and Table 23 show the usual timing requirements for this sequence, with Fckil = CKIL frequency value.

Num	Description	Symbol	Min	Мах	Unit
1	SIM reset to SIM clock stop	S _{rst2clk}	0.9 ÷ f _{CKIL}	0.8	μs
2	SIM reset to SIM TX data low	S _{rst2dat}	1.8 ÷ f _{CKIL}	1.2	μs
3	SIM reset to SIM voltage enable low	S _{rst2ven}	2.7 ÷ f _{CKIL}	1.8	μs
4	SIM presence detect to SIM reset low	S _{pd2rst}	0.9 ÷ f _{CKIL}	25	ns

Table 23. Timing requirements for power-down sequence

Figure 24. SmartCard interface power-down AC timing

4.17 SSI timing specifications

This section provides the AC timings for the SSI in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (SSI_TCR[TSCKP] = 0, SSI_RCR[RSCKP] = 0) and a non-inverted frame sync (SSI_TCR[TFSI] = 0, SSI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SSI_BCLK) and/or the frame sync (SSI_FS) shown in the figures below.

All SSI signals use pad type pad_msr. The following timing specifications assume a pad slew rate setting of 11 and a load of 50 pF. When the SSI_MCLK output is not used, the maximum SSI bit clock (SSI_BCLK) frequency is such that timing can also be met at slew rate settings 10 and $01.^{1}$

^{1.} These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting (11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to increase edge rise and fall times, thus reducing EMI.

Figure 31. MDIO serial management channel timing diagram

4.23 32-bit timer module timing specifications

Table 35 lists timer module AC timings.

Table 35. Timer module AC timing specifications

Name	Characteristic		Max	Unit
T1	DTnIN cycle time ($n = 0.3$)	3		1/f _{SYS/2}
T2	DTnIN pulse width ($n = 0.3$)	1		1/f _{SYS/2}

4.24 DSPI timing specifications

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. Table 36 provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the *MCF54418 Reference Manual* for information on the modified transfer formats used for communicating with slower peripheral devices.

All DSPI signals use pad type pad_msr. The following timing specifications assume a pad slew rate setting of 11 and a load of 50 pF.^1

Name	Characteristic	Symbol	Min	Max	Unit	Notes
Master M	lode	•				
—	DSPI_SCK frequency	f _{SCK}		50	MHz	
DS1	DSPI_SCK cycle time	t _{SCK}	20	—	ns	2
DS2	DSPI_SCK duty cycle	—	$(t_{sck} \div 2) - 2.0$	$(t_{sck} \div 2) + 2.0$	ns	3
DS3	DSPI_PCS <i>n</i> to DSPI_SCK delay	t _{CSC}	$(t_{sck} \div 2) - 2.0$	—	ns	4
DS4	DSPI_SCK to DSPI_PCS <i>n</i> delay	t _{ASC}	$(t_{sck} \div 2) - 3.0$	—	ns	5
DS5	DSPI_SCK to DSPI_SOUT valid	—	—	5	ns	

Table 36. DSPI module AC timing specifications¹

^{1.} These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting (11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to increase edge rise and fall times, thus reducing EMI.

4.30 Debug AC timing specifications

Table 41 lists specifications for the debug AC timing parameters shown in Figure 41 and Table 42.

All debug signals use pad type pad_msr except for PSTCLK which use pad type pad_fsr. The following timing specifications assume a pad slew rate setting of 11 and a load of 50 pF.¹

Num	Characteristic	Min	Мах	Units
D0	PSTCLK cycle time	0.5	0.5	1/f _{SYS}
D1	PSTCLK rising to PSTDDATA valid	—	3.0	ns
D2	PSTCLK rising to PSTDDATA invalid	0.5	—	ns
D3	DSI-to-DSCLK setup	1	—	PSTCLK
D4 ¹	DSCLK-to-DSO hold	4	—	PSTCLK
D5	DSCLK cycle time	5	—	PSTCLK
D6	BKPT assertion time	1	—	PSTCLK

Table 41. Debug AC timing specification

¹ DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of PSTCLK.

Figure 41. Real-time trace AC timing

Figure 42. BDM serial port AC timing

^{1.} These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting (11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to increase edge rise and fall times, thus reducing EMI.

Revision history

Rev. No.	Date	Summary of changes
3	31 July 2009	Changed 169MAPBGA package to 196MAPBGA throughout. MCF54410 device now supports a single SSI module and one Ethernet controller with IEEE 1588 support
4	17 Aug 2009	Updated MCF5441 <i>x</i> Signal Information and Muxing table with 196MAPBGA pin locations Changed SD_D <i>n</i> pin locations on 256 MAPBGA package Added note to Section 4.6, "Output pad loading and slew rate"
5	29 Jan 2010	Added orderable part numbers
6		Swapped locations of RTC_EXTAL and RTC_XTAL pins in Table 5, Figure 7, and Figure 8 Corrected instances of MCF5445 <i>x</i> to MCF5441 <i>x</i> Added thermal characteristic s to Table 7 Added case outline numbers to Table 42 Changed PLL supply voltage from "–0.5 to +2.0" to "–0.3 to +4.0" in Table 6 Miscellaneous corrections based on information from shared review comments by team members
7	October 2011	 Updated the pinouts in Table 5, "MCF5441x Signal information and muxing". Updated the Figure 7, "MCF54410 Pinout (196 MAPBGA)". Removed the symbol ADC_IN7/DAC1_OUT from Table 9, "Latch-up results". Updated Table 11, "I/O electrical specifications". Updated Table 13, "DDR pad drive strengths".
8	June 2012	 In Table 7, added the thermal characteristics for the 196 MAPBGA package. In Table 42, updated the case outline number for the 196 MAPBGA package from "98ARH98217" to "98ASA00321D".

Table 43. Revision history (continued)