

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	31
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-XFQFN Exposed Pad
Supplier Device Package	40-HXQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f213j5tnnp-w4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R8C/3JT Group 1. Overview

1.2 Product List

Table 1.3 lists Product List for R8C/3JT Group. Figure 1.1 shows a Part Number, Memory Size, and Package of R8C/3JT Group.

Table 1.3 Product List for R8C/3JT Group

Current of Apr 2011

Part No.	ROM C	apacity	RAM	Package Type	Remarks
rait NO.	Program ROM	Data flash	Capacity	Fackage Type	Remarks
R5F213J4TNNP	16 Kbytes	1 Kbyte x 4	1.5 Kbytes	PXQN0040LA-A	N version
R5F213J5TNNP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PXQN0040LA-A	
R5F213J6TNNP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PXQN0040LA-A	

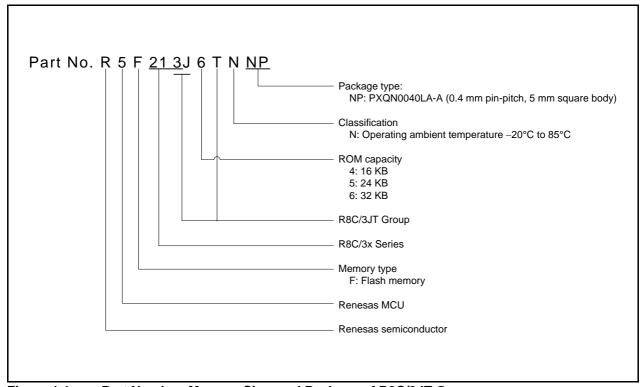


Figure 1.1 Part Number, Memory Size, and Package of R8C/3JT Group

R8C/3JT Group 1. Overview

Table 1.4 Pin Name Information by Pin Number

Pin Number	Control Pin	Port		I/O Pin Functions for Peripheral Modules			
			Interrupt	Timer	Serial Interface	A/D Converter	Sensor Control Uni
1	11005	P4_2				VREF	
2	MODE						
3	RESET						
4	XOUT	P4_7					
5	VSS/AVSS						
6	XIN	P4_6					
7	VCC/AVCC						
8		P3_7	(INT3)	TRAO/ (TRCCLK)	(RXD2/SCL2/ TXD2/SDA2)		
9		P3_5	(INT1)	TRAIO/ (TRCIOD)	(CLK2)		
11		P3_4	ĪNT2	(TRCIOC)	(RXD2/SCL2/ TXD2/SDA2)		
12		P3_3	ĪNT3	TRBO/ (TRCCLK)	(CTS2/RTS2)		SCUTRG
13		P2_6					CH21
14		P2_5					CH20
15		P2_4					CH19
16		P2_3					CH18
17		P2_2		(TRCIOD)	(RXD2/TXD2/ SCL2/SDA2)		CH17
18		P2_1		(TRCIOC)	(CLK2)		CH16
19		P2_0	(INT1)	(TRCIOB)	(RXD2/TXD2/ SCL2/SDA2)		CH15
21		P3_1		TRBO/ (TRCTRG/ TRCIOA)	(CTS2/RTS2)		CH14
22		P4_5	ĪNT0		(RXD2/SCL2)	ADTRG	CH13
23		P1_7	INT1	(TRAIO)			CH12
24		P1_6		,	(CLK0)		CH11
25		P1_5	(INT1)	(TRAIO)	(RXD0)		CH10
26		P1_4	(1141-1)	(TRCCLK)	(TXD0)		CH9
27		P1_3	KI3	TRBO (/TRCIOC)	(TADO)	AN11	CH8
28		P1_2	KI2	(TRCIOB)		AN10	CH7
29		P1_1	KI2 KI1	(TRCIOA/ TRCTRG)		AN9	CH6
30		P1_0	KI0	(TRCIOD)		AN8	CH5
			NIU				CH4
32		P0_7		(TRCIOC)		ANO	
33		P0_6		(TRCIOD)		AN1	CH3 CH2
34 35		P0_5		(TRCIOB)		AN2 AN3	CH2 CH1
		P0_4 P0_3		(TRCIOB)		AN3 AN4	CH1
36				(TRCIOB)			
37		P0_2		(TRCIOA/ TRCTRG)		AN5	CHxA
38		P0_1		(TRCIOA/ TRCTRG)		AN6	СНхВ
39		P0_0		(TRCIOA/ TRCTRG)		AN7	CHxC

Note:

1. Can be assigned to the pin in parentheses by a program.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the starting address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 **Zero Flag (Z)**

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupts are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1.

The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

Table 4.11 SFR Information (11) (1)

Table 4.11	Of it information (11)		
Address	Register	Symbol	After Reset
2C90h	DTC Control Data 10	DTCD10	XXh
2C91h			XXh
2C92h			XXh
2C93h			XXh
2C94h			XXh
2C95h			XXh
2C96h			XXh
2C97h			XXh
2C98h	DTC Control Data 11	DTCD11	XXh
2C99h			XXh
2C9Ah			XXh
2C9Bh			XXh
2C9Ch			XXh
2C9Dh			XXh
2C9Eh			XXh
2C9Fh			XXh
2CA0h	DTC Control Data 12	DTCD12	XXh
	DTC Control Data 12	DICDIZ	
2CA1h			XXh
2CA2h			XXh
2CA3h			XXh
2CA4h			XXh
2CA5h			XXh
2CA6h			XXh
2CA7h			XXh
2CA8h	DTC Control Data 13	DTCD13	XXh
2CA9h	2 1 0 00 min 2 ata 10	2.62.6	XXh
2CAAh			XXh
2CABh			XXh
2CACh			XXh
2CADh			XXh
2CAEh			XXh
2CAFh			XXh
2CB0h	DTC Control Data 14	DTCD14	XXh
2CB1h			XXh
2CB2h			XXh
2CB3h			XXh
2CB4h			XXh
2CB5h			XXh
2CB6h			XXh
2CB7h			XXh
2CB8h	DTC Control Data 15	DTCD15	XXh
2CB9h			XXh
2CBAh			XXh
2CBBh			XXh
2CBCh	1		XXh
2CBDh	†		XXh
2CBEh	1		XXh
2CBFh			XXh
	DTC Control Data 46	DTODAG	
2CC0h	DTC Control Data 16	DTCD16	XXh
2CC1h			XXh
2CC2h			XXh
2CC3h			XXh
2CC4h			XXh
2CC5h			XXh
2CC6h	1		XXh
2CC7h	1		XXh
2CC8h	DTC Control Data 17	DTCD17	XXh
2CC9h	DTO CONTROL Data 17	010017	
			XXh
2CCAh			XXh
2CCBh			XXh
2CCCh			XXh
2CCDh			XXh
2CCEh			XXh
2CCFh			XXh
X: Undefined	l .	<u> </u>	1

X: Undefined

Note:

1. The blank areas are reserved and cannot be accessed by users.

Table 4.12 SFR Information (12) (1)

Address	Register	Symbol	After Reset
2CD0h	DTC Control Data 18	DTCD18	XXh
2CD1h	1		XXh
2CD2h	1		XXh
2CD3h	1		XXh
2CD4h	1		XXh
2CD5h	1		XXh
2CD6h	1		XXh
2CD7h	1		XXh
2CD8h	DTC Control Data 19	DTCD19	XXh
2CD9h	1		XXh
2CDAh	1		XXh
2CDBh	1		XXh
2CDCh			XXh
2CDDh	1		XXh
2CDEh	†		XXh
2CDFh	†		XXh
2CE0h	DTC Control Data 20	DTCD20	XXh
2CE1h	1		XXh
2CE2h	†		XXh
2CE3h	†		XXh
2CE4h	+		XXh
2CE5h	+		XXh
2CE6h	+		XXh
2CE7h	-		XXh
2CE8h	DTC Control Data 21	DTCD21	XXh
2CE9h	- Dio Gonii oi Bala 21	316321	XXh
2CEAh	-		XXh
2CEBh	-		XXh
2CECh	+		XXh
2CEDh	-		XXh
2CEEh	-		XXh
2CEFh	-		XXh
2CF0h	DTC Control Data 22	DTCD22	XXh
2CF1h	B 10 doint of Bata 22	D10022	XXh
2CF2h	-		XXh
2CF3h	-		XXh
2CF4h	-		XXh
2CF5h	-		XXh
2CF6h	-		XXh
2CF7h	-		XXh
2CF7fi 2CF8h	DTC Control Data 23	DTCD23	XXh
2CF8h	DIO CONTION DATA 23	D1CD23	XXh
2CF9fi 2CFAh	-		XXh
	-		
2CFBh	-		XXh
2CFCh 2CFDh	4		XXh
ZUFUN	-		XXh
2000			XXh
2CFEh			V/VI-
2CFEh 2CFFh 2D00h			XXh

X: Undefined

^{1.} The blank areas are reserved and cannot be accessed by users.

5. Electrical Characteristics

Table 5.1 Absolute Maximum Ratings

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
Vı	Input voltage		-0.3 to Vcc + 0.3	V
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	-20°C ≤ Topr ≤ 85°C	500	mW
Topr	Operating ambient temperature		-20 to 85 (N version)	°C
Tstg	Storage temperature		-65 to 150	°C

Table 5.2 Recommended Operating Conditions

Command and	Parameter		Conditions Standard			d	I lait		
Symbol		Ра	irameter		Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage					1.8	_	5.5	V
Vss/AVss	Supply voltage					_	0	_	V
VIH	Input "H" voltage	Other th	nan CMOS ir			0.8 Vcc	_	Vcc	V
		CMOS	Input level	Input level selection	4.0 V ≤ Vcc ≤ 5.5 V	0.5 Vcc	_	Vcc	V
		switching	: 0.35 Vcc	$2.7~\textrm{V} \leq \textrm{Vcc} < 4.0~\textrm{V}$	0.55 Vcc	1	Vcc	V	
			function (I/O port)		$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	0.65 Vcc	1	Vcc	V
			(I/O port)	Input level selection	4.0 V ≤ Vcc ≤ 5.5 V	0.65 Vcc	1	Vcc	V
				: 0.5 Vcc	$2.7~\textrm{V} \leq \textrm{Vcc} < 4.0~\textrm{V}$	0.7 Vcc	1	Vcc	V
					1.8 V ≤ Vcc < 2.7 V	0.8 Vcc	_	Vcc	V
				Input level selection	4.0 V ≤ Vcc ≤ 5.5 V	0.85 Vcc	_	Vcc	V
				: 0.7 Vcc	2.7 V ≤ Vcc < 4.0 V	0.85 Vcc	_	Vcc	V
					1.8 V ≤ Vcc < 2.7 V	0.85 Vcc		Vcc	V
			I clock input	, ,		1.2		Vcc	V
VIL	Input "L" voltage		nan CMOS ir	•		0		0.2 Vcc	V
		CMOS	Input level	Input level selection	4.0 V ≤ Vcc ≤ 5.5 V	0		0.2 Vcc	V
		input	switching function	: 0.35 Vcc	2.7 V ≤ Vcc < 4.0 V	0		0.2 Vcc	V
			(I/O port)		1.8 V ≤ Vcc < 2.7 V	0		0.2 Vcc	V
			(" 6 60.1)	Input level selection	4.0 V ≤ Vcc ≤ 5.5 V	0		0.4 Vcc	V
				: 0.5 Vcc	2.7 V ≤ Vcc < 4.0 V	0		0.3 Vcc	V
					1.8 V ≤ Vcc < 2.7 V	0		0.2 Vcc	V
				Input level selection	4.0 V ≤ Vcc ≤ 5.5 V	0		0.55 Vcc	V
				: 0.7 Vcc	2.7 V ≤ Vcc < 4.0 V	0		0.45 Vcc	V
					1.8 V ≤ Vcc < 2.7 V	0		0.35 Vcc	V
			I clock input	, ,		0		0.4 Vcc	V
IOH(sum)	Peak sum output "H" current		all pins Іон(р			_		-160	mA
IOH(sum)	Average sum output "H" current	Sum of	all pins IOH(a	avg)		_	_	-80	mA
IOH(peak)	Peak output "H"	Drive ca	apacity Low			_	_	-10	mA
	current	Drive ca	apacity High			_	1	-40	mA
IOH(avg)	Average output	Drive ca	apacity Low			_	1	-5	mA
	"H" current		apacity High			_	1	-20	mA
IOL(sum)	Peak sum output "L" current	Sum of	all pins IOL(p	eak)		_	_	160	mA
IOL(sum)	Average sum output "L" current	Sum of	all pins IOL(a	vg)		_	_	80	mA
IOL(peak)	Peak output "L"	Drive ca	apacity Low			_	_	10	mA
	current	Drive ca	apacity High			_	_	40	mA
IOL(avg)	Average output	Drive ca	apacity Low			_	_	5	mA
	"L" current	Drive ca	apacity High			_	_	20	mΑ
f(XIN)	XIN clock input osc	cillation fr	equency		2.7 V ≤ Vcc ≤ 5.5 V	_	I	20	MHz
					1.8 V ≤ Vcc < 2.7 V	_	_	5	MHz
fOCO40M	When used as the	count so	urce for time	er RC ⁽³⁾	2.7 V ≤ Vcc ≤ 5.5 V	32	_	40	MHz
fOCO-F	fOCO-F frequency				2.7 V ≤ Vcc ≤ 5.5 V	_	_	20	MHz
					1.8 V ≤ Vcc < 2.7 V	_	_	5	MHz
_	System clock frequ	iency			2.7 V ≤ Vcc ≤ 5.5 V	_	_	20	MHz
					1.8 V ≤ Vcc < 2.7 V	_		5	MHz
f(BCLK)	CPU clock frequen	су			2.7 V ≤ Vcc ≤ 5.5 V	_	_	20	MHz
					1.8 V ≤ Vcc < 2.7 V	_	_	5	MHz

- 1. Vcc = 1.8 V to 5.5 V at Topr = -20°C to 85°C (N version), unless otherwise specified.
- 2. The average output current indicates the average value of current measured during 100 ms.
- 3. fOCO40M can be used as the count source for timer RC in the range of Vcc = 2.7 V to 5.5 V.

Table 5.3 A/D Converter Characteristics

Symbol	Parameter		Conditions			Standard		Unit
Symbol	Paramete	1	Conditions		Min.	Тур.	Max.	Unit
_	Resolution		Vref = AVcc		_		10	Bit
_	Absolute accuracy	10-bit mode	Vref = AVcc = 5.0 V	AN0 to AN7 input AN8 to AN11 input	_	_	±3	LSB
			Vref = AVcc = 3.3 V	AN0 to AN7 input AN8 to AN11 input	_	_	±5	LSB
			Vref = AVcc = 3.0 V	AN0 to AN7 input AN8 to AN11 input	_	_	±5	LSB
			Vref = AVcc = 2.2 V	AN0 to AN7 input AN8 to AN11 input	_	_	±5	LSB
		8-bit mode	Vref = AVcc = 5.0 V	AN0 to AN7 input AN8 to AN11 input	_	_	±2	LSB
			Vref = AVcc = 3.3 V	AN0 to AN7 input AN8 to AN11 input	_	_	±2	LSB
			Vref = AVcc = 3.0 V	AN0 to AN7 input AN8 to AN11 input	_	_	±2	LSB
			Vref = AVcc = 2.2 V	AN0 to AN7 input AN8 to AN11 input	_	_	±2	LSB
φAD	A/D conversion clock		4.0 V ≤ Vref = AVcc ≤	5.5 V ⁽²⁾	2	_	20	MHz
			3.2 V ≤ Vref = AVcc ≤	5.5 V ⁽²⁾	2	_	16	MHz
			2.7 V ≤ Vref = AVcc ≤	5.5 V ⁽²⁾	2	_	10	MHz
			2.2 V ≤ Vref = AVcc ≤	5.5 V ⁽²⁾	2	_	5	MHz
_	Tolerance level impedan	се			_	3	_	kΩ
tconv	Conversion time	10-bit mode	Vref = AVcc = 5.0 V,	AD = 20 MHz	2.2	_	_	μS
		8-bit mode	Vref = AVcc = 5.0 V,	AD = 20 MHz	2.2			ms
tsamp	Sampling time		φAD = 20 MHz		0.75	_		μS
lVref	Vref current		Vcc = 5.0 V, XIN = f1	= φAD = 20 MHz	_	45		μА
Vref	Reference voltage				2.2	_	AVcc	V
VIA	Analog input voltage (3)				0	_	Vref	V
OCVREF	On-chip reference voltag	e	$2 \text{ MHz} \le \phi \text{AD} \le 4 \text{ MH}$	Z	1.19	1.34	1.49	V

- 1. Vcc/AVcc = Vref = 2.2 V to 5.5 V, Vss = 0 V at Topr = -20°C to 85°C (N version), unless otherwise specified.
- 2. The A/D conversion result will be undefined in wait mode, stop mode, when the flash memory stops, and in low-current-consumption mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.
- 3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Table 5.6 Voltage Detection 0 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Syllibol	Faranietei	Condition	Min.	Тур.	Max.	Offic
Vdet0	Voltage detection level Vdet0_0 (2)		1.80	1.90	2.05	V
	Voltage detection level Vdet0_1 (2)		2.15	2.35	2.50	V
	Voltage detection level Vdet0_2 (2)		2.70	2.85	3.05	V
	Voltage detection level Vdet0_3 (2)		3.55	3.80	4.05	V
_	Voltage detection 0 circuit response time (4)	At the falling of Vcc from 5 V to (Vdet0_0 - 0.1) V	_	6	150	μS
_	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	_	1.5		μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts (3)		_	_	100	μS

Notes:

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = $-20^{\circ}C$ to $85^{\circ}C$ (N version).
- 2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.
- 3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.
- 4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdet0.

Table 5.7 Voltage Detection 1 Circuit Electrical Characteristics

Cumbal	Doromotor	Condition		Standard		Unit
Symbol	Parameter	Condition	Min.	Тур.	Max.	Offic
Vdet1	Voltage detection level Vdet1_0 (2)	At the falling of Vcc	2.00	2.20	2.40	V
	Voltage detection level Vdet1_1 (2)	At the falling of Vcc	2.15	2.35	2.55	V
	Voltage detection level Vdet1_2 (2)	At the falling of Vcc	2.30	2.50	2.70	V
	Voltage detection level Vdet1_3 (2)	At the falling of Vcc	2.45	2.65	2.85	V
	Voltage detection level Vdet1_4 (2)	At the falling of Vcc	2.60	2.80	3.00	V
	Voltage detection level Vdet1_5 (2)	At the falling of Vcc	2.75	2.95	3.15	V
	Voltage detection level Vdet1_6 (2)	At the falling of Vcc	2.85	3.10	3.40	V
	Voltage detection level Vdet1_7 (2)	At the falling of Vcc	3.00	3.25	3.55	V
	Voltage detection level Vdet1_8 (2)	At the falling of Vcc	3.15	3.40	3.70	V
	Voltage detection level Vdet1_9 (2)	At the falling of Vcc	3.30	3.55	3.85	V
	Voltage detection level Vdet1_A (2)	At the falling of Vcc	3.45	3.70	4.00	V
	Voltage detection level Vdet1_B (2)	At the falling of Vcc	3.60	3.85	4.15	V
	Voltage detection level Vdet1_C (2)	At the falling of Vcc	3.75	4.00	4.30	V
	Voltage detection level Vdet1_D (2)	At the falling of Vcc	3.90	4.15	4.45	V
	Voltage detection level Vdet1_E (2)	At the falling of Vcc	4.05	4.30	4.60	V
	Voltage detection level Vdet1_F (2)	At the falling of Vcc	4.20	4.45	4.75	V
_	Hysteresis width at the rising of Vcc in voltage	Vdet1_0 to Vdet1_5 selected	_	0.07	_	V
	detection 1 circuit	Vdet1_6 to Vdet1_F selected	_	0.10	_	V
_	Voltage detection 1 circuit response time (3)	At the falling of Vcc from 5 V to (Vdet1_0 - 0.1) V	_	60	150	μS
_	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	_	1.7	_	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾		_	_	100	μS

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and $Topr = -20 ^{\circ}\text{C}$ to $85 ^{\circ}\text{C}$ (N version).
- 2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.
- 3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes V_{det1}.
- 4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Table 5.8 Voltage Detection 2 Circuit Electrical Chara
--

Symbol	Parameter	Condition		Unit		
Symbol	Faranielei	Condition	Min.	Тур.	Max.	Offic
Vdet2	Voltage detection level Vdet2_0	At the falling of Vcc	3.70	4.00	4.30	V
_	Hysteresis width at the rising of Vcc in voltage detection 2 circuit		_	0.10	_	V
_	Voltage detection 2 circuit response time (2)	At the falling of Vcc from 5 V to (Vdet2_0 - 0.1) V	_	20	150	μS
_	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	_	1.7	_	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		_	_	100	μS

Notes:

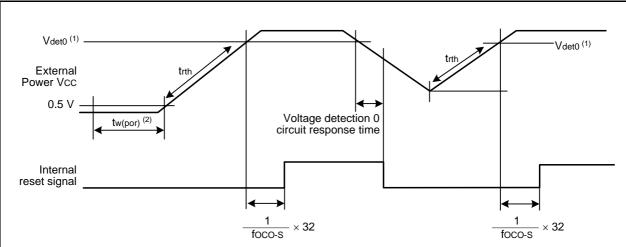

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and $Topr = -20 ^{\circ}\text{C}$ to $85 ^{\circ}\text{C}$ (N version).
- 2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.
- 3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

Table 5.9 Power-on Reset Circuit (2)

Symbol	Parameter	Parameter Condition Standard			Unit	
Symbol	Farameter	Condition	Min.	Тур.	Max.	UIIIL
t rth	External power Vcc rise gradient	(Note 1)	0	_	50000	mV/msec

Notes:

- 1. The measurement condition is Topr = -20° C to 85°C (N version), unless otherwise specified.
- 2. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

- Vdeto indicates the voltage detection level of the voltage detection 0 circuit. Refer to 6. Voltage Detection Circuit of User's Manual: Hardware for details.
- 2. tw(por) indicates the duration the external power Vcc must be held below the valid voltage (0.5 V) to enable a power-on reset. When turning on the power after it falls with voltage monitor 0 reset disabled, maintain tw(por) for 1 ms or more.

Figure 5.3 Power-on Reset Circuit Electrical Characteristics

Table 5.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics

Cumbal	Parameter	Condition			Unit	
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
_	High-speed on-chip oscillator frequency after reset	Vcc = 1.8 V to 5.5 V -20°C ≤ Topr ≤ 85°C	37.8	40	42.6	MHz
	High-speed on-chip oscillator frequency when the FRA4 register correction value is written into the FRA1 register and the FRA5 register correction value into the FRA3 register (2)	Vcc = 1.8 V to 5.5 V -20°C ≤ Topr ≤ 85°C	34.836	36.864	39.261	MHz
	High-speed on-chip oscillator frequency when the FRA6 register correction value is written into the FRA1 register and the FRA7 register correction value into the FRA3 register	Vcc = 1.8 V to 5.5 V -20°C ≤ Topr ≤ 85°C	30.24	32	34.08	MHz
_	Oscillation stability time	Vcc = 5.0 V, Topr = 25°C	_	0.5	3	ms
_	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	_	400	_	μΑ

Notes:

- 1. Vcc = 1.8 V to 5.5 V, $Topr = -20^{\circ}\text{C}$ to 85°C (N version), unless otherwise specified.
- 2. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

Table 5.11 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Cymbol	Falameter		Min.	Тур.	Max.	Offic
fOCO-S	Low-speed on-chip oscillator frequency		60	125	250	kHz
_	Oscillation stability time	Vcc = 5.0 V, Topr = 25°C	_	30	100	μS
_	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	_	2	_	μΑ

Note:

1. Vcc = 1.8 V to 5.5 V, Topr = -20°C to 85°C (N version), unless otherwise specified.

Table 5.12 Power Supply Circuit Timing Characteristics

Symbol	Symbol Parameter	Condition		Standard		Unit
Symbol		Condition	Min.	Тур.	Max.	Offic
td(P-R)	Time for internal power supply stabilization during power-on (2)		_	_	2000	μS

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = 25°C.
- 2. Waiting time until the internal power supply generation circuit stabilizes during power-on.

Table 5.13 Electrical Characteristics (1) [4.2 V \leq Vcc \leq 5.5 V]

Symbol		Parameter	Condition		St	tandard		Unit	
Syllibol		raiaillelei	Condition		Min.	Тур.	Max.	Uiiii	
Vон	Output "H"	Other than XOUT	Drive capacity High Vcc = 5 V	Iон = −20 mA	Vcc - 2.0	_	Vcc	V	
	voltage		Drive capacity Low Vcc = 5 V	Iон = −5 mA	Vcc - 2.0	_	Vcc	V	
		XOUT	Vcc = 5 V	IOH = -200 μA	1.0	_	Vcc	V	
Vol	Output "L"	Other than XOUT	Drive capacity High Vcc = 5 V	IoL = 20 mA	_	_	2.0	V	
	voltage		Drive capacity Low Vcc = 5 V	IoL = 5 mA	_	_	2.0	V	
		XOUT	Vcc = 5 V	IoL = 200 μA	_	_	0.5	V	
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, KIO, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRCTRG, TRCCLK, ADTRG, RXD0, RXD2, CLK0, CLK2, SCL2, SDA2			0.1	1.2		V	
		RESET			0.1	1.2	_	V	
lін	Input "H" cu	rrent	$V_1 = 5 \text{ V}, \text{ Vcc} = 5.0 \text{ V}$		_		5.0	μΑ	
lı∟	Input "L" current		$V_{I} = 0 V, V_{CC} = 5.0 V$				-5.0	μΑ	
RPULLUP	Pull-up resis	stance	VI = 0 V, Vcc = 5.0 V		25	50	100	kΩ	
RfXIN	Feedback resistance	XIN				0.3		ΜΩ	
VRAM	RAM hold v	oltage	During stop mode		1.8	_	_	V	

^{1.} $4.2 \text{ V} \le \text{Vcc} \le 5.5 \text{ V}$ at Topr = -20°C to 85°C (N version), f(XIN) = 20 MHz, unless otherwise specified.

Timing Requirements

(Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C)

Table 5.15 External Clock Input (XOUT)

Symbol	Parameter		Standard	
	Falameter	Min.	Max.	Unit
tc(XOUT)	XOUT input cycle time	50	_	ns
twh(xout)	XOUT input "H" width	24	_	ns
tWL(XOUT)	XOUT input "L" width	24	_	ns

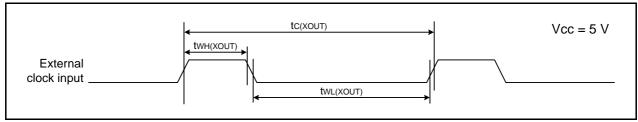


Figure 5.4 External Clock Input Timing Diagram when Vcc = 5 V

Table 5.16 TRAIO Input

Symbol	Parameter	Stan	Unit	
		Min.	Max.	UIIII
tc(TRAIO)	TRAIO input cycle time	100	_	ns
twh(traio)	TRAIO input "H" width	40	_	ns
tWL(TRAIO)	TRAIO input "L" width	40	_	ns

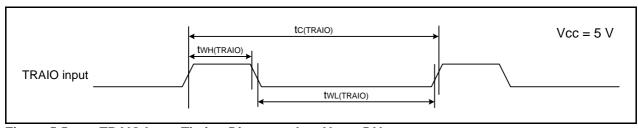


Figure 5.5 TRAIO Input Timing Diagram when Vcc = 5 V

Timing requirements

(Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C)

Table 5.21 External Clock Input (XOUT)

Symbol	Parameter		Standard	
	Falameter	Min.	Max.	Unit
tc(XOUT)	XOUT input cycle time	50	_	ns
twh(xout)	XOUT input "H" width	24	_	ns
tWL(XOUT)	XOUT input "L" width	24	_	ns

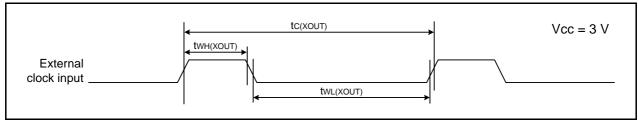


Figure 5.8 External Clock Input Timing Diagram when Vcc = 3 V

Table 5.22 TRAIO Input

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Offic
tc(TRAIO)	TRAIO input cycle time	300	_	ns
tWH(TRAIO)	TRAIO input "H" width	120	_	ns
tWL(TRAIO)	TRAIO input "L" width	120	_	ns

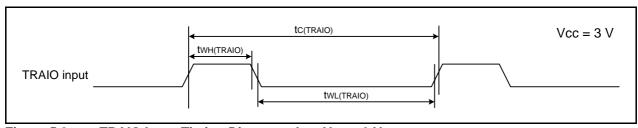


Figure 5.9 TRAIO Input Timing Diagram when Vcc = 3 V

Table 5.23 Serial Interface	Table	5.23	Serial	Interface
-----------------------------	--------------	------	--------	-----------

Symbol	Parameter	Stan	Unit	
	Farameter	Min.	Max.	Offic
tc(CK)	CLKi input cycle time	300	_	ns
tW(CKH)	CLKi input "H" width	150	_	ns
tW(CKL)	CLKi Input "L" width	150	_	ns
td(C-Q)	TXDi output delay time	_	80	ns
th(C-Q)	TXDi hold time	0	_	ns
tsu(D-C)	RXDi input setup time	70		ns
th(C-D)	RXDi input hold time	90	_	ns

i = 0, 2

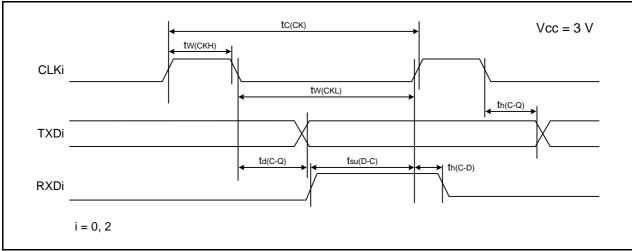


Figure 5.10 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.24 External Interrupt $\overline{\text{INTi}}$ (i = 0 to 3) Input, Key Input Interrupt $\overline{\text{Kli}}$ (i = 0 to 3)

Symbol	Parameter	Stan	dard	Unit
Symbol	Falanielei	Min.	Max.	Oill
tW(INH)	INTi input "H" width, Kli input "H" width	380 (1)	-	ns
tW(INL)	INTi input "L" width, Kli input "L" width	380 (2)	-	ns

- 1. When selecting the digital filter by the $\overline{\text{INTi}}$ input filter select bit, use an $\overline{\text{INTi}}$ input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

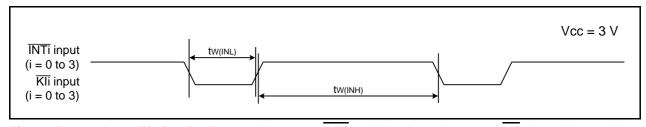


Figure 5.11 Input Timing for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 3 V

Table 5.25 Electrical Characteristics (5) [1.8 V \leq Vcc < 2.7 V]

Symbol	Parameter		Condition		Standard			Unit
Syllibol					Min.	Тур.	Max.	UIIIL
Vон	Output "H"	Other than XOUT	Drive capacity High	Iон = −2 mA	Vcc - 0.5	_	Vcc	V
	voltage		Drive capacity Low	Iон = −1 mA	Vcc - 0.5	_	Vcc	V
		XOUT		Ioн = -200 μA	1.0	_	Vcc	V
Vol	Output "L"	Other than XOUT	Drive capacity High	IoL = 2 mA	_	_	0.5	V
	voltage		Drive capacity Low	IoL = 1 mA	_	_	0.5	V
		XOUT		Ιοι = 200 μΑ	_	_	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, KIO, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRCTRG, TRCCLK, ADTRG, RXD0, RXD2, CLK0, CLK2, SCL2, SDA2			0.05	0.20	_	V
		RESET			0.05	0.20	1	V
Iн	Input "H" current		VI = 2.2 V, Vcc = 2.2 V		_		4.0	μА
lı∟	Input "L" current		VI = 0 V, Vcc = 2.2 V		_	_	-4.0	μΑ
RPULLUP	Pull-up resistance		Vi = 0 V, Vcc = 2.2 V		70	140	300	kΩ
RfXIN	Feedback resistance	XIN			_	0.3	_	ΜΩ
VRAM	RAM hold voltage		During stop mode		1.8	_		V

^{1.} $1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$ at Topr = -20°C to 85°C (N version), f(XIN) = 5 MHz, unless otherwise specified.

Timing requirements

(Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C)

Table 5.27 External Clock Input (XOUT)

Symbol	Parameter		Standard	
			Max.	Unit
tc(XOUT)	XOUT input cycle time	200	_	ns
twh(xout)	XOUT input "H" width	90	_	ns
twl(xout)	XOUT input "L" width	90	_	ns

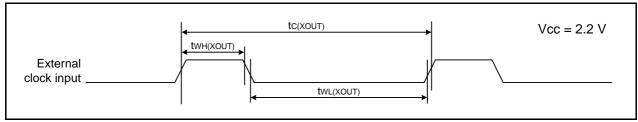


Figure 5.12 External Clock Input Timing Diagram when Vcc = 2.2 V

Table 5.28 TRAIO Input

Symbol	Parameter		Standard	
			Max.	Unit
tc(TRAIO)	TRAIO input cycle time	500	_	ns
twh(traio)	TRAIO input "H" width	200	_	ns
tWL(TRAIO)	TRAIO input "L" width	200	_	ns

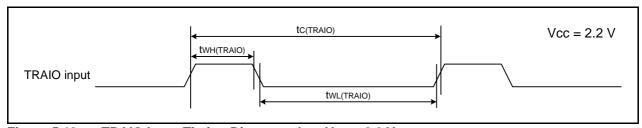


Figure 5.13 TRAIO Input Timing Diagram when Vcc = 2.2 V

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc
 - Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical "Specific": implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

enesas Electronics America Inc. 80 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. dl: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Boume End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-2035-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No. 1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-5887-7589

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2868-9318, Fax: +852-2886-9022/9044

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiv Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bidg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: 482-2-558-3737, Fax: 482-2-558-5141