E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x8b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c782-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
	RB7	TTL	CMOS	Bi-directional I/O
	C2	_	CMOS	Comparator 2 Output
KB7/CZ/F SMICTB/TTG	PSMC1B	—	CMOS	PSMC Output 1B
	T1G	ST	_	Timer 1 Gate Input
AVdd	AVdd	Power	—	Positive Supply for Analog
AVss	AVss	Power	—	Ground Reference for Analog
Vdd	Vdd	Power	—	Positive Supply for Logic and I/O pins
Vss	Vss	Power		Ground Reference for Logic and I/O pins
Legend: ST = Schmitt Trigger XTAL = Crystal	AN = Ar CMOS =	AN = Analog OD = open drain TTL = Logic Level CMOS = CMOS Output Power = Power Supply		

TABLE 1-1: PIC16C781/782 PINOUT DESCRIPTION (CONTINUED)

2.0 MEMORY ORGANIZATION

There are two memory blocks in each of these PIC[®] microcontrollers. Each block (program and data memory) has its own bus, so that concurrent access can occur.

Additional information on device memory may be found in the PIC Mid-Range Reference Manual, (DS33023).

2.1 Program Memory Organization

The PIC16C781/782 devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. The PIC16C781 has 1K x 14 words of program memory. The PIC16C782 has 2K x 14 words of program memory. Accessing a location above the physically implemented address causes a wraparound.

The RESET vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-1: PIC16C781 PROGRAM MEMORY MAP AND STACK

FIGURE 2-2:

PIC16C782 PROGRAM MEMORY MAP AND STACK

2.2 Data Memory Organization

The data memory is partitioned into multiple banks, which contain the General Purpose Registers and the Special Function Registers. Bits RP0 and RP1 are bank select bits.

RP1	RP0	(STATUS<6:5>)
= 00	→ Ba	nk0
= 01	→ Ba	nk1
= 10	→ Ba	nk2
= 11	→ Ba	nk3
Each I	bank e	xtends up to 7Fh (

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are the General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank are mirrored in another bank for code reduction and quicker access.

NOTES:

6.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module timer/counter has the following features:

- 16-bit timer/counter (two 8-bit registers:TMR1H and TMR1L)
- Readable and writable (both registers)
- · Internal or external clock select
- · Interrupt on overflow from FFFFh to 0000h
- External enable input (T1G pin with TMR1GE bit = 1)
- Option for Timer1 to use LP oscillator if device is configured to use INTRC w/o CLKOUT

Timer1 Control register (T1CON) is shown in Register 6-1.

Figure 6-2 is a simplified block diagram of the Timer1 module.

6.1 Timer1 Operation

Timer1 can operate in one of three modes:

- 1. 16-bit timer with prescaler.
- 2. 16-bit synchronous counter.
- 3. 16-bit asynchronous counter.

In Timer mode, Timer1 is incremented on every instruction cycle. In Counter mode, Timer1 is incremented on the rising edge of the external clock input T1CKI (RA6/ OSC2/CLKOUT/T1CKI). In addition, the Counter mode clock can be synchronized to the microcontroller clock or run asynchronously.

In Counter and Timer modes, the counter/timer clock can be gated by the $\overline{T1G}$ input.

If an external clock oscillator is needed (and the microcontroller is using INTRC w/o CLKOUT), Timer1 can use the LP oscillator as a clock source.

Note 1: In Counter mode, the counter increments on the rising edge of the clock.

EXAMPLE 6-1: TIMER1 INITIALIZATION

```
;* This code block will configure Timer1 for
```

- ;* Polling, Ext gate of int clk (Fosc/4), &
 ;* 1:1 prescaler.
- ;*

;

```
;* Wait for TMR1 overflow code included
```

×				
	BANKSEL	TMR1L	;	Select Bank 0
	CLRF	TMR1L	;	Clear TMR1 LSB
	CLRF	TMR1H	;	Clear TMR1 MSB
	MOVLW	B'01000000'	;	Gate, Ps 1:1
	MOVWF	T1CON	;	Int clk
	BSF	T1CON, TMR1ON	;	Enable timer

```
;* Wait for TMR1 overflow
```

T1_OVFL_WAI	ΓT				
BANKSEL	PIR1	;	Select	Bank	C
T1_WAIT		;			
TBFSS	PIR1,TMR1IF	;	Overfl	ow?	
GOTO	T1_WAIT	;	If 0,	again	

BCF PIR1,TMR1IF ; Clear flag

6.2 Control Register T1CON

Control and configuration of Timer1 is by means of the T1CON register shown in Register 6-1.

Timer1 is enabled by setting the TMR1ON bit (T1CON<0>). Clearing TMR1ON stops the timer, but does not clear the Timer1 register.

The TMR1CS bit (T1CON<1>) determines the Timer mode. When TMR1CS is set, the timer is configured as a counter and receives its clock from RA6/OSC2/ CLKOUT/T1CKI. When cleared, the timer is configured as a timer and its clock is derived from FoSC/4.

The T1SYNC bit (T1CON<2>) determines Timer1's synchronization. If cleared, the timer clock is synchronized to the system clock. If set, the timer is asynchronous.

The Timer1 clock gate function is enabled by setting the TMR1GE bit (T1CON<6>). When TMR1GE is set, the T1G input will control the clock input to the timer/ counter. A low on the T1G input will cause Timer1 to increment at the clock rate, a high will hold the timer at its present value.

The T1OSCEN bit (T1CON<3>) enables the LP oscillator as a clock source for Timer1. This mode is a replacement for the regular external oscillator. T1CKPS<1:0> determines the prescaler value for the timer. Available prescaler values are:

T1CKP	S<1:0>	Proscalor Valuo
Bit 1	Bit 0	Flescalel value
1	1	1:8
1	0	1:4
0	1	1:2
0	0	1:1

Note: To use the LP oscillator as the Timer1 oscillator:

- 1. TMR1CS must be set.
- 2. T1OSCEN must be set.
- The Configuration Word must select INTRC w/o CLKOUT.

9.1 Control Registers

The ADC module has three registers. These registers are:

- ADC Result Register: ADRES
- ADC Control Register 0: ADCON0
- ADC Control Register 1: ADCON1

The ADCON0 register, shown in Register 9-1, controls the operations and input channel selection for the ADC module. The ADCON1 register, shown in Register 9-3, selects the voltage reference used by the ADC module. The ADRES register, shown in Register 9-2, holds the 8-bit result of the conversion.

Additional information on using the ADC module can be found in the PIC Mid-Range MCU Family Reference Manual (DS33023) and in Application Note AN546 (DS00546).

9.1.1 ADCON0 REGISTER

The ADCON0 register, shown in Register 9-1, controls the following:

- · Clock source and prescaler
- · Input channel
- · Conversion start/stop
- · Enabling of the ADC module

Setting the ADON bit, ADCON0<0>, enables the ADC module. Clearing ADON disables the module and terminates any conversion in process.

The ADCS<1:0> bits (ADCON0<7:6>) determine the clock source used by the ADC module.

The CHS<3:0> bits (ADCON0<5:3,1>) determine the input channel to the ADC module. CHS<3> specifically determines whether the source is internal or external.

Setting the GO/\overline{DONE} bit (ADCON0<2>) initiates the conversion process. The ADC clears this bit at the completion of the conversion process.

REGISTER 9-1: ADC CONTROL REGISTER 0 (ADCON0: 1Fh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/S-0	R/W-0	R/W-0
	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	CHS3	ADON
	bit 7							bit 0
bit 7-6	ADCS<1:0	0>: ADC Co	nversion C	lock Select	bits			
	00 = Fosc	c/2						
	01 = FOSC	x/8 x/30						
	10 = 1030 11 = ADR	// 32 C (clock der	ived from a	a dedicated	RC oscillato	or)		
bit 5-3	CHS<2:0>	: Analog Cl	nannel Sele	ect bits (sele	ct which ch	annel to conver	t)	
	If CHS3 =	<u>0:</u>		If CHS3	<u>= 1:</u>			
	000 = cha	nnel 0 (ANC))	000 = V	२			
	001 = cha	innel 1 (AN1)	001 = V	DAC			
	010 = cha	nnel 2 (AN2	2)	010 = R	eserved. Do	not use.		
	011 = cha	nnel 3 (AN3	8)	011 = R	eserved. Do	o not use.		
	100 = cha	nnel 4 (AN4	+) -\	100 = R	eserved. Do	not use.		
	101 = cha)) :)	101 = R	eserved. Do	not use.		
	110 = cha	nnel 7 (AN7	?) ()	110 = R 111 = R	eserved Do	not use.		
hit 2			/ vorsion Sta	tue bit		101 030.		
		- ADC COIT	velsion sia	ius dii irace Sattir	a this hit st	arts an ADC cor	warsion cvc	ما
	0 = ADC 0	onversion is	not in progr	ess (this bit i	s cleared by	hardware when	conversion is	s complete)
bit 1	CHS3: An	alog Chann	el Select bi	t				. ,
	1 = Interna	al channel s	elected for	conversion				
	0 = Extern	al channel s	selected for	conversion				
bit 0	ADON: AD	DC On bit						
	1 = ADC e	enabled						
	0 = ADC d	lisabled						
	Legend:							
	S - Settah	le hit						
			14/	Writabla hit	11 - 14	nimplomonted h	it road as "	v
	R = Reada		vv =		0 = 0	nimpiemented b	iii, read as t	
	- n = Value	e at POR	'1' =	Bit is set	'0' = B	it is cleared	x = Bit is ur	known

9.4 ADC Configuration and Conversion

Example 9-2 demonstrates an ADC conversion. The RA0/AN0 pin is configured as the analog input. The reference voltage selected is the device AVDD. The ADC interrupt is enabled, and the ADC conversion clock is ADRC.

Clearing the GO/DONE bit during a conversion aborts the current conversion. The ADRES register is NOT updated with the partially completed ADC conversion sample. That is, the ADRES register continues to contain the value of the last completed conversion (or the last value written to the ADRES register). After the ADC conversion is aborted, a 2TAD wait period is required before the next acquisition is started. After this 2TAD wait period, an acquisition is automatically started on the selected channel.

EXAMPLE 9-2: ADC CONVERSION

- ;* for polling, AVDD as reference, RC clock
- ;* and RAO input.
- ;*
- ;* Conversion start & wait for complete
- ;* polling code included.

*				
	BANKSEL	ADCON1	;	Select Bank 1
	CLRF	ADCON1	;	AVDD as VREF
	BSF	TRISA,0	;	Set RAO as input
	BSF	ANSEL,0	;	Set RA0 as analog
	BANKSEL	ADCON0	;	Select Bank0
	MOVLW	B'11000001'		
	MOVWF	ADCON0	;	RC, Ch 0, ADC on

- ;* Start & Wait for ADC complete, assumes
- ;* minimum acquisition delay from
- ;* configuration.

ADC_	CNVRT			
	BANKSEL	ADCON0	;	Select Bank 0
	BSF	ADCON0,GO	;	Start convert
ADC_	CN_LOOP			
	BTFSC	ADCON0,GO	;	Test for end
	GOTO	ADC_CN_LOOP	;	If not, wait
	MOVF	ADRES,W	;	Get result

9.4.1 FASTER CONVERSION/LOWER RESOLUTION TRADE-OFF

Not all applications require a result having 8-bits of resolution. Some may instead, require a faster conversion time. The ADC module allows users to make a trade-off of conversion speed for resolution. Regardless of the resolution required, the acquisition time is the same. To speed up the conversion, the clock source of the ADC module may be switched during the conversion, so that the TAD time violates the minimum specified time (see the applicable Electrical Specification). Once the switch is made, all the following ADC result bits are invalid (see ADC Conversion Timing in the Electrical Specifications section). The clock source may only be switched between the three oscillator options (it cannot be switched from/to RC). The equation to determine the time before the oscillator must be switched for a desired resolution is as follows:

Conversion time = $2TAD + N \cdot TAD + (8 - N)(2TOSC)$

Where: N = number of bits of resolution required.

Since the TAD is based on the device oscillator, the user must employ some method (such as a timer, software loop, etc.) to determine when the ADC oscillator must be changed.

9.5 ADC Operation During SLEEP

The ADC module can operate during SLEEP mode. This requires that the ADC clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the ADC module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed the GO/DONE bit is cleared, and the result is loaded into the ADRES register. If the ADC interrupt is enabled, the device awakens from SLEEP. If the ADC module is turned off, although the ADON bit remains set.

When the ADC clock source is another clock option (not RC), a SLEEP instruction causes the present conversion to be aborted and the ADC module to be turned off. The ADON bit remains set.

Turning off the ADC places the ADC module in its lowest current consumption state.

Note: For the ADC module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an ADC conversion in SLEEP, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit.

9.6 ADC Accuracy/Error

The absolute accuracy (absolute error) specified for the ADC converter includes the sum of all contributions for:

- Offset error
- Gain error
- Quantization error
- Integral non-linearity error
- · Differential non-linearity error
- Monotonicity

The **absolute error** is defined as the maximum deviation from an actual transition versus an ideal transition for any code. The absolute error of the ADC converter is specified as < \pm 1 LSb for ADCREF = VDD (over the device's specified operating range). However, the accuracy of the ADC converter degrades as VDD diverges from VREF.

For a given range of analog inputs, the output digital code will be the same. This is due to the quantization of the analog input to a digital code. **Quantization error** is typically $\pm 1/2$ LSb and is inherent in the analog to digital conversion process. The only way to reduce quantization error is to use an ADC with greater resolution of the ADC converter.

Offset error measures the first actual transition of a code versus the first ideal transition of a code. Offset error shifts the entire transfer function. Offset error can be calibrated out of a system, or introduced into a system, through the interaction of the total leakage current and source impedance at the analog input.

Gain error measures the maximum deviation of the last actual transition and the last ideal transition adjusted for offset error. This error appears as a change in slope of the transfer function. The difference in gain error to full scale error is that full scale does not take offset error into account. Gain error can be calibrated out in software.

Linearity error refers to the uniformity of the code changes. Linearity errors cannot be calibrated out of the system. Integral non-linearity error measures the actual code transition versus the ideal code transition, adjusted by the gain error for each code. Differential non-linearity measures the maximum actual code width versus the ideal code width. This measure is unadjusted.

If the linearity errors are very large, the ADC may become **non-monotonic**. This occurs when the digital values for one or more input voltages are less than the value for a lower input voltage.

NOTES:

FIGURE 11-2: AUTO CALIBRATION MODULE BLOCK DIAGRAM

REGISTER 11-2: CALIBRATION CONTROL REGISTER (CALCON: 110h)

	R/S-0	R-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	CAL	CALERR	CALREF	_	-		-	—
	bit 7							bit 0
bit 7	CAL: Start and Status bit 1 = Initiates a calibration 0 = Reserved (CAL is cleared by hardware)							
bit 6	CALERR: Calibration Error Indicator bit 1 = Error occurred, OPAMP failed 0 = No error							
bit 5	CALREF: Calibration Voltage Select bit 1 = VDAc set to desired common voltage reference 0 = 1.2V nominal source (internal voltage source)							
	Note:	VDAC must r	not exceed C	PAMP maxi	mum commo	n mode vo	ltage.	
bit 4-0	Reserved:	Do not use						

Legend:			
S = Cleared by hardware			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

11.2 Configuration as OPAMP or Comparator

The following example demonstrates calibration of the OPA module as an Operational Amplifier.

EXAMPLE 11-1: CALIBRATION FOR OPAMP MODE

- ;* This code block will configure the OPA
- ;* module as an Op Amp, 2 MHz GBWP, and
- ;* calibrated for a common mode voltage of
- ;* 1.2V. Routine returns w=0 if
- ;* calibration good.

	BANKSEL MOVLW MOVWF	OPACON B'10000001' OPACON	; ; ;	Select Bank 2 Op Amp mode & 2 MHz GBWP
	BCF BSF	CALCON, CALREF CALCON, CAL	; ;	Set 1.2V Start
CAL	_LOOP			
	BTFSC	CALCON, CAL	;	Test for end
	GOTO	CAL_LOOP	;	If not, wait
	MOVLW	ERROR_FLAG		
	BTFSS	CALCON, CALERR	;	Test for error
	CLRW		;	If no, return 0
	RETURN			

The following example demonstrates how to configure and calibrate the OPA module as a Voltage Comparator.

EXAMPLE 11-2: CALIBRATION FOR COMPARATOR MODE

- ;* This code block will configure the OPA
- ;* module as a voltage comparator, slow
- ;* speed, and calibrated for a common mode
- ;* voltage of 2.5 V (assumes VDD=5V).
- ;* Routine returns w=0 if calibration good.

	BANKSEL	OPACON	;	Select Bank 2
	MOVLW	B'10000000'		
	MOVWF	OPACON	;	Op Amp mode,
			;	slow
	BSF	CALCON, CALREF	;	Common mode=DAC
	MOVLW	H'0x80'		
	MOVWF	DAC	;	DAC at VDD/2
	MOVLW	B'10000000'		
	MOVWF	DACON0	;	enable DAC,
			;	VDD ref
	BSF	CALCON, CAL	;	Start
CAL	LOOP			
	BTFSC	CALCON, CAL	;	Test for end
	GOTO	CAL_LOOP	;	If not, wait
	MOVLW	ERROR_FLAG		
	BTFSS	CALCON, CALERR	;	Test for error
	CLRW		;	If no, return 0
	BSF	OPACON, CMPEN	;	Comparator mode
	RETURN			

11.3 Effects of RESET

A device RESET forces all registers to their RESET state. This disables the OPA module and clears any calibration.

11.4 OPA Module Performance

Common AC and DC performance specifications for the OPA module:

- Common Mode Voltage Range
- Leakage Current
- · Input Offset Voltage
- Open Loop Gain
- · Gain Bandwidth Product

Common mode voltage range is the specified voltage range for the OPA+ and OPA- inputs, for which the OPA module will perform to within its specifications. The OPA module is designed to operate with input voltages between 0 and VDD-1.4V. Behavior for Common mode voltages greater than VDD-1.4V, or below 0V, are not guaranteed.

Leakage current is a measure of the small source or sink currents on the OPA+ and OPA- inputs. To minimize the effect of leakage currents, the effective impedances connected to the OPA+ and OPA- inputs should be kept as small as possible and equal.

Input offset voltage is a measure of the voltage difference between the OPA+ and OPA- inputs in a closed loop circuit with the OPA in its linear region. The offset voltage will appear as a DC offset in the output equal to the input offset voltage, multiplied by the gain of the circuit. The input offset voltage is also affected by the Common mode voltage. The OPA has an automatic calibration module which can minimize the input offset voltage of the module.

Open loop gain is the ratio of the output voltage to the differential input voltage, (OPA+) - (OPA-). The gain is greatest at DC and falls off with frequency.

Gain Bandwidth Product or GBWP is the frequency at which the open loop gain falls off to 0 dB. The lower GBWP is optimized for systems requiring low frequency response and low power consumption.

12.1.2.2 Control Register CM2CON1

Comparator C2 has one additional feature: its output can be synchronized to the Timer1 clock input. Setting C2SYNC (CM2CON1<0>) synchronizes the output of Comparator 2 to the falling edge of Timer 1's clock input (see Figure 12-1 and Register 12-3).

The CM2CON1 register also contains mirror copies of both comparator outputs, MC1OUT and MC2OUT (CM2CON1<7:6>). The ability to read both outputs simultaneously from a single register eliminates the timing skew of reading separate registers.

REGISTER 12-3: COMPARATOR C2 CONTROL REGISTER1 (CM2CON1: 11Bh)

	R-0	R-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	MC1OUT	MC2OUT	—	—	—	—	—	C2SYNC
_	bit 7							bit 0

- bit 7 MC1OUT: Mirror Copy of C1OUT (CM1CON0<6>)
- bit 6 MC2OUT: Mirror Copy of C2OUT (CM2CON0<6>)
- bit 5-1 Unimplemented: Read as '0'
- bit 0 C2SYNC: C2 Output Synchronous Mode bit
 - 1 = C2 output is synchronous to falling edge of TMR1 clock
 - 0 = C2 output is asynchronous

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

EXAMPLE 12-3: WINDOW COMPARATOR

```
;* Example of Low Power Window Comparator C1
;* This code block will configure Comparator
;* C1 and C2 for slow speed, C1 non invert,
;* C2 invert, input on AN4, and external
;* References
; *
;* Interrupt service routine included
; *
   BANKSEL
             TRISA
                         ; Select Bank 1
                       ; RA2 input
; RA3 input
              TRISA,2
   BSF
              TRISA,3
   BSF
   BSF
              TRISB,0
                       ; Set RBO
              ANSEL, AN2 ; RA2 analog
   BSF
              ANSEL, AN3 ; RA3 analog
   BSF
              ANSEL, AN4 ; RB4 analog
   BSF
   BANKSEL
             CM1CON0
                        ; Select Bank 2
             B'10000000'; C1: no output
   MOVIW
   MOVWF
              CM1CON0
                       ; VREF1, AN4
   MOVIW
              B'10010000'; C2: no output
   MOVWF
              CM2CON0
                        ; invert,VREF1,AN4
   BANKSEL
             PTE1
                        ; Select Bank 1
   BCF
              INTCON,GIE ; Disable Int
   BSF
              PIE1,C1IE ; Enabl C1&C2 Ints
   BSF
              PIE1,C2IE
   BSF
             INTCON, PEIE
   BSF
             INTCON,GIE ; Enabl Global Ints
;* WINDOW COMPARATOR ISR with context save
WC_INT_SRV_R
   MOVWF
              W_SAVE
                         ; Save W & STATUS
   SWAPF
              STATUS,W
   MOVWE
              STATUS SAV
   BANKSEL
                        ; Select Bank 0
              PTR1
              B'00110000'; Save Int
   MOVIW
   ANDWF
              PIR1,W
   MOVWF
              WIN INT
;*** CLEAR C1 INTERRUPT
   BTFSS
              WIN INT, CliF; Cl Int ?
   GOTO
              TST_C2_INT
   BANKSEL
              CM1CON0
                         ; Select Bank 2
              CM1CON0,F
                        ; Clear C2 mismatch
   MOVE
   BANKSEL
              PIR1
                         ; Select Bank 0
   BCF
              PIR1,C1IF ; Clear C2 Int
;*** CLEAR C2 INTERRUPT
TXT_C2_INT
   BTFSS
              WIN_INT,C2IF; C2 int?
   GOTO
              USER ISR
   BANKSEL
              CM2CON0
                         ; Select Bank 2
              CM2CON0,F ; Clear C2 mismatch
   MOVE
   BANKSEL
              PIR1
                         ; Select Bank 0
   BCF
              PIR1,C1IF ; Clear C2 int
USER_ISR
;*** USER INTERRUPT ROUTING
;*
   SWAPF
              STATUS_SAVE,W; Restore W &
                           ; STATUS
   MOVWE
              STATUS
   SWAPF
              W_SAVE,F
   SWAPF
              W_SAVE,W
   RETFIE
                           ; Return
```

12.3 Effects of RESET

A RESET forces all registers to their RESET state. This disables both comparators.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
119h	CM1CON0	C10N	C10UT	C10E	C1POL	C1SP	C1R	C1CH1	C1CH0	0000 0000	0000 0000
11Ah	CM2CON0	C2ON	C2OUT	C2OE	C2POL	C2SP	C2R	C2CH1	C2CH0	0000 0000	0000 0000
11Bh	CM2CON1	MC1OUT	MC2OUT	_	—	—	—	—	C2SYNC	000	000
85h	TRISA	PORTA Da	ata Directio	n Registe	er					1111 1111	1111 1111
86h	TRISB	PORTB Da	ata Directio	n Regist	er					1111 1111	1111 1111
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx 0000	uuuu 0000
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx 0000	uuuu 0000
9Dh	ANSEL	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0	1111 1111	1111 1111
0Ch	PIR1	LVDIF	ADIF	C2IF	C1IF	—	—	_	TMR10N	00000	00000
8Ch	PIE1	LVDIE	ADIE	C2IE	C1IE	—	—	_	TMR1IE	00000	00000

TABLE 12-2: REGISTERS ASSOCIATED WITH THE COMPARATOR MODULE

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for comparator.

14.4 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when a VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, simply enable the internal MCLR feature. This eliminates external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Section 17.0 for details. For a slow rise time, see Figure 14-5.

Two delay timers (PWRT on OST) are provided, which hold the device in RESET after a POR (dependent upon device configuration), so that all operational parameters have been met prior to releasing the device to resume/begin normal operation.

When the device starts normal operation (exits the RESET condition), device operating parameters (i.e., voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met. Brown-out Reset may be used to meet the start-up conditions, or if necessary an external POR circuit may be implemented to delay end of RESET for as long as needed.

FIGURE 14-5: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD RAMP)

- Note 1: External Power-on Reset circuit is required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - R < 40 kΩ is recommended to make sure that voltage drop across R does not violate the device's electrical specification.
 - 3: R1 = 100Ω to 1 k Ω will limit any current flowing into MCLR from external capacitor C in the event of MCLR pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

14.5 Power-up Timer (PWRT)

The Power-up Timer provides a fixed TPWRT time-out on power-up type RESETS only. For a POR, the PWRT is invoked when the POR pulse is generated. For a BOR, the PWRT is invoked when the device exits the RESET condition (VDD rises above BOR trip point). The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT's time delay is designed to allow VDD to rise to an acceptable level. A configuration bit (PWRT) is provided to enable/disable the PWRT for the POR only. For a BOR the PWRT is always available regardless of the configuration bit setting.

The power-up time delay varies from chip-to-chip due to VDD, temperature and process variation. See DC parameters for details.

14.6 Programmable Brown-out Reset (PBOR)

The Programmable Brown-out Reset module is used to generate a RESET when the supply voltage falls below a specified trip voltage. The trip voltage is configurable to any one of four voltages provided by the BORV<1:0> configuration word bits.

Configuration bit BODEN can disable (if clear/programmed), or enable (if set), the Brown-out Reset circuitry. If VDD falls below the specified trip point for longer than TBOR (see Parameter 35, Section 17.0, Table 17-6), the brown-out situation resets the chip. A RESET may not occur if VDD falls below the trip point for less than TBOR. The chip remains in Brown-out Reset until VDD rises above VBOR. The Power-up Timer is invoked at that point and keeps the chip in RESET an additional TPWRT. If VDD drops below VBOR while the Power-up Timer is running, the chip goes back into a Brown-out Reset and the Power-up Timer is reinitialized. Once VDD rises above VBOR, the Power-up Timer again begins a TPWRT time delay.

14.7 Time-out Sequence

On power-up, the time-out sequence is as follows: First, PWRT time-out is invoked by the POR pulse. When the PWRT delay expires, the Oscillator Start-up Timer is activated. The total time-out varies depending on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there is no time-out at all. Figure 14-6, and Figure 14-9 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the time-outs expire. Then, bringing MCLR high begins execution immediately. This is useful for testing purposes or to synchronize more than one PIC microcontroller operating in parallel.

Table 14-5 shows the RESET conditions for some special function registers.

REGISTER 14-2: POWER CONTROL REGISTER (PCON: 8Eh)

	U-0	U-0	U-0	R/W-q	R/W-1	U-0	R/W-q	R/W-x
	_	—	—	WDTON	OSCF	_	POR	BOR
	bit 7							bit 0
bit 7-5	Unimplem	ented: Rea	d as '0'					
bit 4	WDTON: V	VDT Softwa	re Enable b	it				
	If WDTE bit	t (Configura	tion Word <	: <u>3>) = 1:</u>				
	This bit is n	ot writable,	always read	ds '1'				
	If WDTE bit	<u>t (Configura</u>	tion Word <	<u>:3>) = 0:</u>				
	1 = WDI is	enabled	ad algored					
hit 2			d hit (nondi		stornal acaillata	r dooicion)		
DIL 3		anator Spee	a bit (penai	ng on new ir	itemai osciliato	r decision)		
	1 - 4 MHz	<u>ue.</u> typical						
	0 = 37 kHz	typical						
	All other os	cillator mod	es:					
	Ignored							
bit 2	Unimplem	ented: Rea	d as '0'					
bit 1	POR: Powe	er-on Reset	Status bit					
	1 = No Pov	ver-on Rese	et occurred					
	0 = A Powe	er-on Reset	occurred (n	nust be set i	n software after	a Power-o	n Reset oc	curs)
bit 0	BOR: Brow	n-out Rese	t Status bit					
	1 = No Bro	wn-out Res	et occurred					
	0 = A Brow	n-out Reset	occurred (I	must be set	in software after	r a Brown-o	out Reset o	ccurs)
	1							
	Legend:							
	R = Reada	ble bit	W = V	Vritable bit	U = Unimple	emented bi	t, read as '() '
	- n = Value	at POR	'1' = E	Bit is set	'0' = Bit is c	leared		
	x = Bit is ur	nknown	'q' = \	alue depend	ds on condition			

TABLE 14-4: STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Bit Significance
0	1	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP

	PIC12CXXX	PIC14000	PIC16C5X	PIC16C6X	PIC16CXXX	PIC16F62X	X7O91OI9	XX7281219	PIC16C8X	PIC16F8XX	XX6D01DIG	ALC17C4X	XXTOTIOI9	PIC18CXX2	PIC18FXXX	63CXX 52CXX/ 54CXX/	ххххэн	мсвеххх	MCP2510
MPLAB® Integrated Development Environment	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
MPLAB® C17 C Compiler												>	>						
MPLAB® C18 C Compiler														~	~				
MPASM TM Assembler/ MPLINK TM Object Linker	`	>	~	>	>	>	>	>	>	>	>	>	~	>	>	>	~		
MPLAB® ICE In-Circuit Emulato	r <	~	>	~	>	×**	~	<	~	>	<	~	>	~	~				
CEPICTM In-Circuit Emulator	>		>	>	>		>	>	>		>								
ଡ଼ MPLAB® ICD In-Circuit Debugger				*			*>			>					>				
PICSTART® Plus Entry Level Development Programmer	`	>	`	`	`	**`	`	`	`	>	>	>	>	>	>				
ଅଟେ PRO MATE® II ପୁତ୍ତ Universal Device Programmer	>	~	^	>	>	** /	>	>	>	>	>	>	>	>	>	>	>		
PICDEM TM 1 Demonstration Board			^		>		∕+		`			>							
PICDEM TM 2 Demonstration Board				+			+							>	>				
PICDEM TM 3 Demonstration Board											>								
PICDEM TM 14A Demonstration Board		>																	
PICDEM™ 17 Demonstration Beard													~						
и КЕЕLoo® Evaluation Kit																	~		
о КЕЕLoo® Transponder Kit																	>		
u microlD™ Programmer's Kit																		>	
6 125 kHz microlD™ Developer's Kit																		>	
125 kHz Anticollision microlD Th Developer's Kit																		`	
13.56 MHz Anticollision microlD TM Developer's Kit																		>	
MCP2510 CAN Developer's Kit																			>
* Contact the Microchip Technology ** Contact Microchip Technology Inc. [†] Development tool is available on s	Inc. web for avai	site at w lability da vices.	ww.mic ate.	rochip.co	m for inf	ormation	on how to	o use the	MPLAB	ICD In-	Circuit D	ebugge	r (DV16	4001) wi	th PIC16	SC62, 63,	64, 65, 7	2, 73, 74,	76, 77.

© 2001-2013 Microchip Technology Inc.

TABLE 17-5: INTERNAL RC OSCILLATOR CALIBRATED FREQUENCIES PIC16C781/782, DSTEMP

AC Characte	ristics	Standard Operating Conditions (Operating Temperature $-40xC \le T$ Operating Voltage VDD range is des	unless A ≤ +88 scribed	otherwis 5°C (indu in Sectio	se spec strial) n 17-1.	ified)	
Parameter No.	Sym	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions
		Internal Calibrated RC Frequency	3.65	4.00	4.28	MHz	VDD = 5.0V
		Internal Calibrated RC Frequency	3.55*	4.00	4.31*	MHz	VDD = 2.5V

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 17-7: BROWN-OUT RESET TIMING

20-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		N	IILLIMETERS	8
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	р		.026			0.65	
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	Е	.299	.309	.322	7.59	7.85	8.18
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.278	.284	.289	7.06	7.20	7.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	φ	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010° (0.254mm) per side. JEDEC Equivalent: MO-150 Drawing No. C04-072