



Welcome to E-XFL.COM

## What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

## Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 20MHz                                                                     |
| Connectivity               | -                                                                         |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                     |
| Number of I/O              | 13                                                                        |
| Program Memory Size        | 3.5KB (2K x 14)                                                           |
| Program Memory Type        | ОТР                                                                       |
| EEPROM Size                | -                                                                         |
| RAM Size                   | 128 x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 4V ~ 5.5V                                                                 |
| Data Converters            | A/D 8x8b; D/A 1x8b                                                        |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 20-SSOP (0.209", 5.30mm Width)                                            |
| Supplier Device Package    | 20-SSOP                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16c782t-i-ss |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## Peripheral Features (Continued):

- Dual Analog Comparator module with:
  - Individual enable and interrupt bits
  - Programmable speed and output polarity
  - Fully configurable inputs and outputs
  - Reference from DAC, or VREF1/VREF2
  - Low input offset voltage.
- VR voltage reference module:
  - 3.072V +/- 0.7% @25°C, AVDD = 5V
  - Configurable output to ADC reference, DAC reference, and VR pin
  - 5 mA sink/source

- Programmable Switch Mode Controller module:
  - PWM and PSM modes
  - Programmable switching frequency
  - Configurable for either single or dual feedback inputs
  - Configurable single or dual outputs
  - Slope compensation output available in single output mode

| Key Features<br>PIC <sup>®</sup> Mid-Range<br>Reference Manual<br>(DS33023) | PIC16C781                       | PIC16C782                       |
|-----------------------------------------------------------------------------|---------------------------------|---------------------------------|
| Operating Frequency                                                         | DC - 20 MHz                     | DC - 20 MHZ                     |
| RESETS (and Delays)                                                         | POR, BOR, MCLR, WDT (PWRT, OST) | POR, BOR, MCLR, WDT (PWRT, OST) |
| Program Memory (14 bit words)                                               | 1K                              | 2K                              |
| Data Memory (bytes)                                                         | 128                             | 128                             |
| Interrupts                                                                  | 8                               | 8                               |
| I/O Ports                                                                   | 13 + 3 Input only               | 13 + 3 Input only               |
| Timers                                                                      | 2                               | 2                               |
| Programmable Switch Mode Controller                                         | 1                               | 1                               |
| 8-bit Analog-to-Digital Module                                              | 1                               | 1                               |
| ADC channels                                                                | 8 External, 2 Internal          | 8 External, 2 Internal          |
| 8-bit Digital-to-Analog Module                                              | 1                               | 1                               |
| Comparators                                                                 | 2                               | 2                               |
| Comparator Channels                                                         | 4 (AN<7:4>)                     | 4 (AN<7:4>)                     |
| Operational Amplifier                                                       | 1                               | 1                               |
| Voltage Reference                                                           | 1                               | 1                               |
| Brown-out Reset                                                             | Yes                             | Yes                             |
| Programmable Low Voltage Detect                                             | Yes                             | Yes                             |
| Instruction Set                                                             | 35 Instructions                 | 35 Instructions                 |



#### FIGURE 1-3: ANALOG SIGNAL MULTIPLEXING DIAGRAM

| Name                                           | Function                                                                                 | Input<br>Type | Output<br>Type | Description                                               |  |
|------------------------------------------------|------------------------------------------------------------------------------------------|---------------|----------------|-----------------------------------------------------------|--|
|                                                | RB7                                                                                      | TTL           | CMOS           | Bi-directional I/O                                        |  |
|                                                | C2                                                                                       | _             | CMOS           | Comparator 2 Output                                       |  |
| RD7/G2/PSINGTD/TTG                             | PSMC1B                                                                                   | —             | CMOS           | PSMC Output 1B                                            |  |
|                                                | T1G                                                                                      | ST            | _              | Timer 1 Gate Input                                        |  |
| AVdd                                           | AVdd                                                                                     | Power         | —              | Positive Supply for Analog                                |  |
| AVss                                           | AVss                                                                                     | Power         | —              | Ground Reference for Analog                               |  |
| Vdd                                            | Vdd                                                                                      | Power         | —              | Positive Supply for Logic and I/O pins                    |  |
| Vss                                            | Vss                                                                                      | Power         |                | Ground Reference for Logic and I/O pins                   |  |
| Legend: ST = Schmitt Trigger<br>XTAL = Crystal | AN = Analog OD = open drain TTL = Logic Level<br>CMOS = CMOS Output Power = Power Supply |               |                | OD = open drain TTL = Logic Level<br>Power = Power Supply |  |

## TABLE 1-1: PIC16C781/782 PINOUT DESCRIPTION (CONTINUED)

#### REGISTER 3-2: WEAK PULL-UP PORTB REGISTER (WPUB: 95h)

| R/W-1                                          | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
|------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| WPUB7                                          | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 |
| bit7 bit(                                      |       |       |       |       |       |       |       |
| WPI IB-7:0>: PORTB Weak Pull-I In Control hits |       |       |       |       |       |       |       |

bit 7-0 WPUB<7:0>: PORTB Weak Pull-Up C

1 = Weak pull-up enabled for corresponding pin

0 = Weak pull-up disabled for corresponding pin

- Note 1: For the WPUB register setting to take effect, the RBPU bit in the OPTION\_REG register must be cleared.
  - 2: The weak pull-up device is automatically disabled if the pin is in output mode, i.e., (TRISB = 0) for corresponding pin.

| Legend:            |                  |                      |                    |
|--------------------|------------------|----------------------|--------------------|
| R = Readable bit   | W = Writable bit | U = Unimplemented    | bit, read as '0'   |
| - n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

#### REGISTER 3-3: INTERRUPT-ON-CHANGE PORTB REGISTER (IOCB: 96h)

| R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| IOCB7 | IOCB6 | IOCB5 | IOCB4 | IOCB3 | IOCB2 | IOCB1 | IOCB0 |
| bit7  |       |       |       |       |       |       | bit0  |

bit 7-0

7-0 **IOCB<7:0>:** Interrupt-on-Change PORTB Control bits

1 = Interrupt-on-change enabled for corresponding pin

0 = Interrupt-on-change disabled for corresponding pin

**Note 1:** The interrupt enable bits, GIE and RBIE in the INTCON register, must be set for individual interrupts to be recognized.

| Legend:            |                  |                      |                    |
|--------------------|------------------|----------------------|--------------------|
| R = Readable bit   | W = Writable bit | U = Unimplemented    | bit, read as '0'   |
| - n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

## 3.3.3 TRISB, ANSEL, AND CONTROL PRECEDENCE

The ANSEL and TRISB registers are the primary controls for the configuration of PORTB pins. TRISB tristates the output drivers of PORTB, and the ANSEL register disables the input buffers. It is important to program both registers when configuring a port pin, since most peripherals do not have precedence over the TRISB and ANSEL registers' control of the pin. Even if a peripheral has the ability to override the control of the TRISB and ANSEL registers, it is good practice to program both registers appropriately.

| Note 1: Upon RESI | ET, the ANSEL register config- |
|-------------------|--------------------------------|
| ures the RE       | 3<3:0> pins as analog inputs.  |

- 2: When programmed as analog inputs, RB<3:0> pins will read as '0'.
- 3: There are specific cases in which the functions of the TRISB and ANSEL registers can be overridden by a peripheral or configuration word (see Figure 3-9 through Figure 3-16 for details).





© 2001-2013 Microchip Technology Inc.

#### REGISTER 4-3: PROGRAM MEMORY DATA LOW (PMDATL: 10Ch)

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PMD7  | PMD6  | PMD5  | PMD4  | PMD3  | PMD2  | PMD1  | PMD0  |
| bit7  |       |       |       |       |       |       | bit0  |

bit 7-0

#### PMD<7:0>: Program Memory Data bits The value of the program memory word pointed to by PMADRH and PMADRL after a program

The value of the program memory word pointed to by PMADRH and PMADRL after a program memory read command.

| Legend:            |                  |                      |                    |
|--------------------|------------------|----------------------|--------------------|
| R = Readable bit   | W = Writable bit | U = Unimplemented    | bit, read as '0'   |
| - n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

### REGISTER 4-4: PROGRAM MEMORY ADDRESS HIGH (PMADRH: 10Fh)

| U-0  | U-0 | U-0 | R/W-x    | R/W-x    | R/W-x | R/W-x | R/W-x |
|------|-----|-----|----------|----------|-------|-------|-------|
| —    | —   | —   | Reserved | Reserved | PMA10 | PMA9  | PMA8  |
| bit7 |     |     |          |          |       |       | bit0  |

- bit 7-5 Unimplemented: Read as '0'
- bit 4-3 Reserved: Read state is not guaranteed
- bit 2-0 PMA<10:8>: PMR Address bits

| Legend:            |                  |                      |                    |
|--------------------|------------------|----------------------|--------------------|
| R = Readable bit   | W = Writable bit | U = Unimplemented I  | oit, read as '0'   |
| - n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

### REGISTER 4-5: PROGRAM MEMORY ADDRESS LOW (PMADRL: 10Dh)

| R/W-x                      | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x |  |  |  |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
| PMA7                       | PMA6  | PMA5  | PMA4  | PMA3  | PMA2  | PMA1  | PMA0  |  |  |  |
| bit7 bit(                  |       |       |       |       |       |       |       |  |  |  |
| PMA<7:0>: PMR Address bits |       |       |       |       |       |       |       |  |  |  |

bit 7-0

### Legend:

| Logona.            |                  |                      |                    |
|--------------------|------------------|----------------------|--------------------|
| R = Readable bit   | W = Writable bit | U = Unimplemented b  | oit, read as '0'   |
| - n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |
|                    |                  |                      |                    |

### 6.3 Timer1 Oscillator for the PIC16C781/782

When the microcontroller is using INTRC w/o CLKOUT, Timer1 can enable and use the LP oscillator as the Timer1 oscillator. When enabled, Timer1 oscillator operation is solely controlled by the T1OSCEN bit. The oscillator will operate independently of the TMR1ON bit, allowing the programmer to start and stop the Timer/Counter using the TMR1ON bit. The oscillator will also operate during SLEEP, allowing continuous timekeeping with Timer1. The electrical requirements for the LP oscillator, when used as the Timer1 oscillator, are the same as when the oscillator is used in LP mode.

Note: The oscillator requires a startup and stabilization time before use. Therefore, T1OSCEN should be set, and a suitable delay observed, prior to enabling Timer1 (see Section 14.2).

## 6.4 Timer1 Interrupt

The TMR1 register pair (TMR1H and TMR1L) increments from 0000h to FFFFh and then rolls over to 0000h. When Timer1 rolls over, the TMR1IF bit (PIR1<0>) is set. To enable an interrupt, the TMR1IE bit (PIE1<0>), the GIE (INTCON<7>) and the PEIE bit (INTCON<6>) must be set prior to rollover. To clear the interrupt, the TMR1IF must be cleared by software prior to re-enabling interrupts.

Note: When enabling the Timer1 interrupt, the user should clear both TMR1 registers and the TMR1IF prior to enabling interrupts.

## 6.5 Effects of RESET

Only POR and BOR Resets clear T1CON, disabling Timer1. All other RESETS do not affect Timer1.

## TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

| Address | Name   | Bit 7   | Bit 6                                             | Bit 5         | Bit 4      | Bit 3    | Bit 2  | Bit 1  | Bit 0  | Value<br>PO<br>BC | e on:<br>)R,<br>)R | Valu<br>all o<br>RES | e on<br>ther<br>ETS |
|---------|--------|---------|---------------------------------------------------|---------------|------------|----------|--------|--------|--------|-------------------|--------------------|----------------------|---------------------|
| 0Bh     | INTCON | GIE     | PEIE                                              | TOIE          | INTE       | RBIE     | TOIF   | INTF   | RBIF   | 0000              | 000X               | 0000                 | 000u                |
| 0Ch     | PIR1   | LVDIF   | ADIF                                              | C2IF          | C1IF       | —        | —      | _      | TMRIF  | 0000              | 0                  | 0000                 | 0                   |
| 8Ch     | PIE1   | LVDIE   | ADIE                                              | C2IE          | C1IE       | —        | —      | _      | TMRIE  | 0000              | 0                  | 0000                 | 0                   |
| 0Eh     | TMR1L  | Least S | Significant E                                     | Byte of the 1 | 6-bit TMR1 | Register |        |        |        | xxxx              | xxxx               | uuuu                 | uuuu                |
| 0Fh     | TMR1H  | Most Si | Most Significant Byte of the 16-bit TMR1 Register |               |            |          |        |        |        |                   |                    | uuuu                 | uuuu                |
| 10h     | T1CON  | —       | TMR1GE                                            | T1CKPS1       | T1CKPS0    | T1OSCEN  | T1SYNC | TMR1CS | TMR10N | -000              | 0000               | -uuu                 | uuuu                |

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Timer1.

© 2001-2013 Microchip Technology Inc.

NOTES:

## 9.2 Configuring the ADC Module

#### 9.2.1 CONFIGURING ANALOG PORT PINS

The ANSEL and TRISB registers control the operation of the ADC port pins. The port pins to be used as analog inputs must have their corresponding TRISB bits set (= 1). The proper ANSEL bits must also be set (analog input) to disable the digital input buffer.

- Note 1: The ADC operation is independent of the state of the TRISB or ANSEL bits. These bits must be configured by the firmware prior to initiation of an ADC conversion.
  - 2: When reading the PORTA or PORTB registers, all pins configured as analog input channels will read as a '0'.
  - **3:** Analog levels on any pin that is defined as a digital input, including AN<7:0>, may cause the input buffer to consume excess supply current.

## 9.2.2 CONFIGURING THE REFERENCE VOLTAGES

The VCFG<5:4> bits in the ADCON1 register configure the ADC module reference voltage input, ADCREF. The reference input can come from any of the following:

- Internal voltage reference (VR)
- External comparator C1 reference (VREF1)
- DAC output (VDAC)
- Analog positive supply (AVDD)

If an external reference is chosen for the ADCREF input, the port pin that multiplexes with the incoming external reference must also be configured as an analog input.

### 9.2.3 SELECTING THE ADC CONVERSION CLOCK

The ADC conversion cycle requires 9.5TAD. The source of the ADC conversion clock is software selectable. The four possible options for ADC clock are:

- Fosc/2
- Fosc/8
- Fosc/32
- ADRC (clock derived from a dedicated internal RC oscillator)

For correct ADC conversion, the ADC conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6  $\mu$ sec. Table 9-1 shows the resultant TAD times derived from the device operating frequencies and the ADC clock source selected.

### TABLE 9-1: TAD vs. DEVICE OPERATING FREQUENCIES: PIC16C781/782

| ADC Clo              | ck Source (TAD) | Device Frequency          |                           |                           |                             |  |  |  |  |
|----------------------|-----------------|---------------------------|---------------------------|---------------------------|-----------------------------|--|--|--|--|
| Operation ADCS1:ADCS |                 | 20 MHz 5 MHz              |                           | 1.25 MHz                  | 333.33kHz                   |  |  |  |  |
| 2 Tosc               | 0.0             | 100 ns <sup>(2)</sup>     | 400 ns <sup>(2)</sup>     | 1.6 s                     | 6 μs                        |  |  |  |  |
| 8 Tosc               | 01              | 400 ns                    | 1.6 μs                    | 6.4 μs                    | 24 μs <sup>(3)</sup>        |  |  |  |  |
| 32 Tosc              | 10              | 1.6 μs                    | 6.4 μs                    | 25.6 μs <sup>(3)</sup>    | 96 μs <b><sup>(3)</sup></b> |  |  |  |  |
| RC                   | 11              | 2 - 6 μs <sup>(1,4)</sup> | 2 - 6 μs <sup>(1,4)</sup> | 2 - 6 μs <sup>(1,4)</sup> | 2 - 6 μs <sup>(1)</sup>     |  |  |  |  |

Legend: Shaded cells are outside of recommended range.

**Note 1:** The RC source has a typical TAD time of 4  $\mu$ s.

- 2: These values violate the minimum required TAD time.
- 3: For faster conversion times, the selection of another clock source is recommended.
- 4: When device frequency is greater than 1 MHz, the RC ADC conversion clock source is recommended for SLEEP operation only.

## 12.0 COMPARATOR MODULE

The comparator module has two separate voltage comparators: Comparator C1 and Comparator C2 (see Figure 12-1).

Each comparator offers the following list of features:

- · Control and configuration register
- · Comparator output available externally
- Programmable output polarity
- Interrupt-on-change flags
- Wake-up from SLEEP
- · Configurable as feedback input to the PSMC
- Programmable four input multiplexer
- Programmable reference selections
- · Programmable speed
- Output synchronization to Timer1 clock input (Comparator C2 only)

### 12.1 Control Registers

Both comparators have separate control and configuration registers: CM1CON0 for C1 and CM2CON0 for C2. In addition, Comparator C2 has a second control register, CM2CON1, for synchronization control and simultaneous reading of both comparator outputs.

#### 12.1.1 COMPARATOR C1 CONTROL REGISTER

The CM1CON0 register (shown in Register 12-1) contains the control and status bits for the following:

- · Comparator enable
- · Comparator input selection
- Comparator reference selection
- Output mode
- Comparator speed

Setting C1ON (CM1CON0<7>) enables Comparator C1 for operation.

Bits C1CH<1:0> (CM1CON0<1:0>) select the comparator input from the four analog pins AN<7:4>.

| Note: | To use AN<7:4> as analog inputs, the   |  |  |  |  |  |  |  |
|-------|----------------------------------------|--|--|--|--|--|--|--|
|       | appropriate bits must be programmed in |  |  |  |  |  |  |  |
|       | the ANSEL register.                    |  |  |  |  |  |  |  |

Setting C1R (CM1CON0<2>) selects the output of the DAC module as the reference voltage for the comparator. Clearing C1R selects the VREF1 input on the RA3/ AN3/VREF1 pin.

The output of the comparator is available internally via the C1OUT flag (CM1CON0<6>). To make the output available for an external connection, the C1OE flag (CM1CON0<5>) must be set. If the module is disabled with C1OE set, the output will be driven as shown in Table 12-2:

The polarity of the comparator output can be inverted by setting the C1POL flag (CM1CON0<4>). Clearing C1POL results in a non-inverted output. A complete table showing the output state versus input conditions and the polarity bit is shown in Table 12-2.

## TABLE 12-1: OUTPUT STATE VERSUS INPUT CONDITIONS

| Input Condition | C1POL | C10UT |
|-----------------|-------|-------|
| C1VN > C1VP     | 0     | 0     |
| C1VN < C1VP     | 0     | 1     |
| C1VN > C1VP     | 1     | 1     |
| C1VN < C1VP     | 1     | 0     |

Note 1: The internal output of the comparator is latched at the end of each instruction cycle. External outputs are not latched.

- 2: The C1 interrupt will operate correctly with C1OE set or cleared.
- For the output of C1 on RB6/C1/ PSMC1A, the PSMC must be disabled and TRISB<6> must be '0'.

C1SP (CM1CON0<3>) configures the speed of the comparator. When C1SP is set, the comparator operates at its normal speed. Clearing C1SP operates the comparator in a slower, low power mode.

|         | R/W-0                                                                                                                      | R-0                                                                                                     | R/W-0         | R/W-0         | R/W-0             | R/W-0         | R/W-0          | R/W-0 |  |  |  |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------|---------------|-------------------|---------------|----------------|-------|--|--|--|--|--|--|
|         | C2ON                                                                                                                       | C2OUT                                                                                                   | C2OE          | C2POL         | C2SP              | C2R           | C2CH1          | C2CH0 |  |  |  |  |  |  |
|         | bit 7                                                                                                                      |                                                                                                         |               | 1             |                   | L             |                | bit 0 |  |  |  |  |  |  |
|         |                                                                                                                            |                                                                                                         |               |               |                   |               |                |       |  |  |  |  |  |  |
| bit 7   | <b>C2ON:</b> Co                                                                                                            | mparator C2                                                                                             | Enable bit    |               |                   |               |                |       |  |  |  |  |  |  |
|         | 1 = C2 Col                                                                                                                 | mparator is e                                                                                           | enabled       |               |                   |               |                |       |  |  |  |  |  |  |
| L:1.0   |                                                                                                                            | 0 = C2 Comparator is disabled                                                                           |               |               |                   |               |                |       |  |  |  |  |  |  |
| DIT 6   | <b>G2001:</b> Comparator G2 Output bit<br>If C2POL = 1 (inverted polarity):                                                |                                                                                                         |               |               |                   |               |                |       |  |  |  |  |  |  |
|         | C2OUT =                                                                                                                    | $\frac{\text{If C2POL} = 1 \text{ (inverted polarity):}}{\text{C2OUT} = 1 \text{ (C2VP} < \text{C2VN}}$ |               |               |                   |               |                |       |  |  |  |  |  |  |
|         | C2OUT =                                                                                                                    | C200T = 1, C2VP < C2VN $C20UT = 0, C2VP > C2VN$                                                         |               |               |                   |               |                |       |  |  |  |  |  |  |
|         | If C2POL =                                                                                                                 | <u>= 0 (non-inve</u>                                                                                    | erted polarit | <u>y):</u>    |                   |               |                |       |  |  |  |  |  |  |
|         | C2OUT =                                                                                                                    | = 1, C2VP >                                                                                             | C2VN          |               |                   |               |                |       |  |  |  |  |  |  |
|         | C2OUT =                                                                                                                    | = 0, C2VP <                                                                                             | C2VN          |               |                   |               |                |       |  |  |  |  |  |  |
| bit 5   | C2OE: Co                                                                                                                   | mparator C2                                                                                             | Output En     | able bit      |                   |               |                |       |  |  |  |  |  |  |
|         | $1 = C2OU^{-1}$                                                                                                            | F is present                                                                                            | on RB7/C2     | PSMC1B/T      | 1G <sup>(1)</sup> |               |                |       |  |  |  |  |  |  |
| hit 1   | 0 = 0200                                                                                                                   | amporator C                                                                                             |               | olority Color | 4 h.t             |               |                |       |  |  |  |  |  |  |
| DIL 4   |                                                                                                                            | Uniparator C                                                                                            | 2 Output P    | olarity Selec |                   |               |                |       |  |  |  |  |  |  |
|         | 0 = C2OUT logic is not inverted                                                                                            |                                                                                                         |               |               |                   |               |                |       |  |  |  |  |  |  |
| bit 3   | C2SP: Cor                                                                                                                  | C2SP: Comparator C2 Speed Select bit                                                                    |               |               |                   |               |                |       |  |  |  |  |  |  |
|         | 1 = C2 operates in normal speed mode                                                                                       |                                                                                                         |               |               |                   |               |                |       |  |  |  |  |  |  |
|         | 0 = C2 ope                                                                                                                 | erates in low                                                                                           | power, slov   | w speed mo    | de.               |               |                |       |  |  |  |  |  |  |
| bit 2   | C2R: Comparator C2 Reference Select bits (non-inverting input)                                                             |                                                                                                         |               |               |                   |               |                |       |  |  |  |  |  |  |
|         | 1 = C2VP connects to VDAC                                                                                                  |                                                                                                         |               |               |                   |               |                |       |  |  |  |  |  |  |
|         | 0 = C2VP                                                                                                                   | connects to                                                                                             | VREF2         |               |                   |               |                |       |  |  |  |  |  |  |
| bit 1-0 | C2CH<1:0>: Comparator C2 Channel Select bits                                                                               |                                                                                                         |               |               |                   |               |                |       |  |  |  |  |  |  |
|         | 00 = C2VN  of  C2  connects to  AN4                                                                                        |                                                                                                         |               |               |                   |               |                |       |  |  |  |  |  |  |
|         | $0 \perp = C_2 V N \text{ of } C_2 \text{ connects to ANS}$<br>$1 \circ = C_2 V N \text{ of } C_2 \text{ connects to ANS}$ |                                                                                                         |               |               |                   |               |                |       |  |  |  |  |  |  |
|         | 11 = C2VN of C2 connects to AN7                                                                                            |                                                                                                         |               |               |                   |               |                |       |  |  |  |  |  |  |
|         | Note 1: C2OUT will only drive RB7/C2/PSMC1B/T1G if:                                                                        |                                                                                                         |               |               |                   |               |                |       |  |  |  |  |  |  |
|         | (                                                                                                                          | C2OE = 1) 8                                                                                             | & (C2ON =     | 1) & (TRISE   | <7> = 0) & (      | ((SMCON = 0)) | or             |       |  |  |  |  |  |  |
|         | ((SMCOM = 0) & (SCEN = 0))).                                                                                               |                                                                                                         |               |               |                   |               |                |       |  |  |  |  |  |  |
|         | Legend:                                                                                                                    | Legend:                                                                                                 |               |               |                   |               |                |       |  |  |  |  |  |  |
|         | R = Reada                                                                                                                  | ble bit                                                                                                 | W = \         | Vritable bit  | U = Uni           | implemented b | it, read as '0 | )'    |  |  |  |  |  |  |

## REGISTER 12-2: COMPARATOR C2 CONTROL REGISTER0 (CM2CON0: 11Ah)

- n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

## TABLE 13-4: PSMC1A OUTPUT SEQUENCE IN PSM MODE USING C1 AND C2 COMPARATORS

| Time                    | C10UT | C2OUT | PSMC1A Output Signal |
|-------------------------|-------|-------|----------------------|
| Beginning of PSM cycle  | Н     | Н     | $0 \rightarrow 1$    |
|                         | L     | х     | 0                    |
|                         | х     | L     | 0                    |
| During Pulse Duty Cycle | х     | х     | No Change            |
|                         | х     | х     | No Change            |
| After Pulse Duty Cycle  | х     | х     | $1 \rightarrow 0$    |

Legend: x = Don't Care 0 = Inactive 1 = Active H = High L = Low

#### 13.1.2 SINGLE OR DUAL OUTPUT

The PSMC has the capability to operate with either a single output, or dual alternating outputs. In the single output mode, the PSMC generates an output pulse on PSMC1A output only. The pulses are at the programmed frequency, and are variable between the programmed minimum and maximum duty cycle limits. In the dual output mode, the PSMC generates output pulses which alternate between PSMC1A and PSMC1B. The pulses generated at each output are generated at one half of the programmed frequency, and 50% maximum of the output duty cycle. The maximum duty cycle for either output is 50%.

#### 13.1.3 SLOPE COMPENSATION

An optional feature of the PSMC single output mode is the ability to configure the PSMC1B output for use as a slope compensation ramp generator. In this mode, the PSMC1B output is pulled low for the last 1/16 of each pulse cycle. Connecting the PSMC1B output to an RC network, similar to Figure 13-4, results in a positive going pseudo ramp function. This pseudo ramp function is useful as an offset function for the loop error signal in unstable conditions at a duty cycle of greater than 50%.

Note: When the Slope Compensation switch is enabled (SMCOM = 0, and SCEN = 1), the S1BPOL bit has no effect (see RC Network on next page for more detail).



#### FIGURE 13-4: SLOPE COMPENSATION (SC) SWITCH OPERATION



Note: The OPAMP, Comparator and DAC must be configured, prior to enabling the PSMC to prevent unpredictable operation which may stress the power MOSFET transistors.

#### EXAMPLE 13-1: PSMC CONFIGURATION EXAMPLE

```
;* This code block will configure the PSMC and
;* all additional peripherals for a boost mode
; *
   switching power supply.
;*
;* Order of configuration
;* 1. PORTA/B I/O and analog configured
;* 2. DAC enabled, configured, and preset
; *
  3. Op Amp enabled and configured
;* 4. Comparator C1 enabled and configured
;* 5. PSMC configured
;* 6. PSMC enabled
*******
;* This code block will configure all analog ports.
  BANKSEL
           TRISA
                           ; Select Bank 1
  MOVIW
           B'00001011'
  MOVWF
           TRISA
                           ; Set RA0,1,& 3 as inputs
  MOVLW
           B'11001110'
                          ; Set RB1,2,3,6 & 7 as inputs
  MOVWF
           TRISB
  MOVLW
          B'11101011'
                          ; Configure RA0, RA1, RA3,
  MOVWF
           ANSEL
                          ; RB1, RB2, RB3 as analog
;* This code block will configure the DAC for VDD as
;* DACREF, and RB1/AN5/VDAC as an output
  BANKSEL
          DACON0
                           ; Select Bank 2
  CLRF
          DAC
                          ; Set DAC to safe value
          B'11000000'
  MOVIW
                         ; Enable DAC, output
  MOVWF
           DACON0
                           ; and set DACREF = VDD
  MOVLW
           OUTPUT_VALUE
  MOVWF
           DAC
                          ; Set DAC output level
;* This code block will configure the OPA module as an
;* Op Amp, with a 2MHz GBWP
          B'10000001'
  MOVIW
                         ; Set Op Amp mode and
           OPACON
                           ; 2MHz GBWP
  MOVWE
;* This code block will configure Comparator C1
;* for normal speed and output polarity,
;* input on AN6, and Reference from the VREF1
  MOVLW
           B'10001010
                          ; Set C1, no ext out, norm
  MOVWF
           CM1CON0
                           ; speed & pol, VREF1, AN6
;* This code block will configure the PSMC module
;* for PWM, FOSC/128, Single in, Single pulse out, slope comp out
;* Non-inverting out, DC min = 0%, DC max = 75%
           B'00001000'
  MOVLW
  MOVWF
          PSMCCON0
                          ; Set DCmin 0, DCmax 75, FOSC/128
                          ; Set PWM Sngl in, Sngl out non-invert
  MOVLW
          B'00001010'
  MOVWE
          PSMCCON1
                          ; Slope comp
  BSF
           PSMCCON1,SMCON
                          ; Enable PSMC
```

#### EXAMPLE 13-3: PERIPHERAL CONFIGURATION EXAMPLE

```
*****
;* This code block will configure the PSMC and
;* all additional peripherals for a motor speed
;* control.
; *
;* Order of configuration
;* 1. PORTA/B I/O and analog configured
;* 2. DAC enabled, configured, and preset
;* 3. Op Amp enabled and configured
;* 4. Comparator C1 enabled and configured
;* 5. PSMC configured
;* 6. PSMC enabled
; *
*****
;* This code block will configure all analog ports.
  BANKSEL
           TRISA
                            ; Select Bank 1
           B'01000011'
  MOVIW
  MOVWF
           TRISA
                            ; Set RA0,1 & 6 as inputs
  MOVLW
           B'00001100'
  MOVWF
           TRISB
                            ; Set RB2 & 3 as inputs
  MOVLW
          B'11000011'
  MOVWF
          ANSEL
                            ; Set AN0,1,6,& 7 as analog
;* This code block will configure the DAC for VR as
;* DACREF, and no output.
  BANKSEL
           REFCON
          REFCON, VREN
  BSF
                          ; Enable VR
  BANKSEL
          DACON0
                           ; Select Bank 2
  CLRF
           DAC
                           ; Set DAC to safe value
  MOVIW
           B'10000010'
                           ; Enable DAC, no output
  MOVWF
            DACON0
                            ; and set DACREF = VR
  MOVIW
           OUTPUT_VALUE
  MOVWF
           DAC
                            ; Set DAC output level
;* This code block will configure the OPA module
;* as an Op Amp, with a 2 MHz GBWP
  MOVLW
            B'10000001'
                           ; Set Op Amp mode and
  MOVWE
           OPACON
                           ; 2 MHz GBWP
This code block will configure Comparator C1
  for normal speed and output polarity,
  input on AN6, and Reference from the VDAC
  MOVLW
           B'10001110'
                           ; Set C1; no ext out, norm
  MOVWF
           CM1CON0
                           ; speed & pol, VDAC, AN6
;* This code block will configure the PSMC module
;* for PWM, Fosc/16, Single input, Single output
;* Non-inverting out, DC min = 0%, DC max = 94%
  MOVLW
          B'11001100'
  MOVWE
           PSMCCON0
                           ; Set DCmin 0, DCmax 94, Fosc/16
  MOVLW
           B'00000010'
  MOVWF
           PSMCCON1
                           ; Set PWM, Sngl in/out, noninvert
                           ; Enable PSMC
  BSF
           PSMCCON1, SMCON
```

Preliminary



#### 14.2.4 RC MODE

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of:

- supply voltage
- resistor (REXT) and capacitor (CEXT) values
- · operating temperature

In addition, the oscillator frequency varies from unit to unit due to normal process variation. The difference in lead frame capacitance between package types also affects the oscillation frequency, especially for low CEXT values. The user should allow for variations due to tolerance of external R and C components used. Figure 14-3 shows how the RC combination is connected to the PIC16C781/782. For REXT values below 2.2 k $\Omega$ , the oscillator operation may become unstable or stop completely. For very high REXT values (e.g., 1 M $\Omega$  or greater), the oscillator becomes sensitive to:

- noise
- humidity
- leakage

Microchip recommends keeping REXT between 3 k $\Omega$  and 100 k $\Omega.$ 

Although the oscillator will operate with no external capacitor (CExT = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as board trace capacitance or package lead frame capacitance.

See Section 18.0 for RC frequency variation from part to part due to normal process variation. The variation is greater for large values of R (since leakage current variations affect RC frequency more for large R) and for small values of C (since variations of input capacitance affect RC frequency more).

See Section 18.0 for variation of oscillator frequency due to VDD for given REXT and CEXT values (or for frequency variation due to operating temperature for given R, C, and VDD values).

#### FIGURE 14-3: RC OSCILLATOR MODE



#### 14.2.5 INTRC MODE

The internal RC oscillator provides a fixed 4 MHz/37 kHz (nominal) system clock at VDD = 5V and 25°C. See Section 18.0 for information on variations over voltage and temperature ranges. The INTRC oscillator does not run during RESET.

## 14.2.6 DUAL SPEED OPERATION FOR INTRC MODE

A software programmable slow speed mode is available with the INTRC oscillator. This feature allows the firmware to dynamically toggle the oscillator speed between normal and slow frequencies. The nominal slow frequency is 37 kHz. Applications that require low current power savings, but cannot tolerate putting the part into SLEEP, may use this mode.

The OSCF bit (PCON<3>) is used to control dual speed mode. See the PCON Register, Register 2-6, for details.

When changing the INTRC internal oscillator speed, there is a brief period of time when the processor is inactive. When the speed changes from fast to slow, the processor inactive period is in the range of 100  $\mu S$  to 300  $\mu S$ . For a speed change from slow to fast, the processor is inactive between 1.25  $\mu S$  and 3.25  $\mu S$ , nominal.

### 14.2.7 CLKOUT

In the INTRC and RC modes, the PIC16C781/782 can be configured to provide a clock out signal by programming the configuration word. The oscillator frequency, divided by 4, can be used for test purposes or to synchronize other logic.

In the INTRC and RC modes, if the CLKOUT output is enabled, CLKOUT is held low during RESET.

### TABLE 14-6: INITIALIZATION CONDITION FOR ALL REGISTERS

| Register                  | Power-On Reset or<br>Brown-Out Reset | MCLR Reset or<br>WDT Reset | Wake-up via WDT or<br>Interrupt |
|---------------------------|--------------------------------------|----------------------------|---------------------------------|
| W (not a mapped register) | XXXX XXXX                            | uuuu uuuu                  | uuuu uuuu                       |
| INDF                      | 0000 0000                            | uuuu uuuu                  | uuuu uuuu                       |
| TMR0                      | xxxx xxxx                            | սսսս սսսս                  | uuuu uuuu                       |
| PCL                       | 0000 0000                            | 0000 0000                  | PC + 1(1)                       |
| STATUS                    | 0001 1xxx                            | 000q quuu <b>(2)</b>       | uuuq quuu <b>(2)</b>            |
| FSR                       | XXXX XXXX                            | uuuu uuuu                  | uuuu uuuu                       |
| PORTA                     | xxxx 0000                            | uuuu 0000                  | uuuu uuuu                       |
| PORTB                     | xxxx xx00                            | uuuu uu00                  | uuuu uu00                       |
| PCLATH                    | 0 0000                               | 0 0000                     | u uuuu                          |
| INTCON                    | 0000 000x                            | 0000 000u                  | uuuu uuqq                       |
| PIR1                      | 00000                                | 00000                      | 0000u                           |
| CALCON                    | 000                                  | 000                        | uuu                             |
| TMR1L                     | xxxx xxxx                            | uuuu uuuu                  | uuuu uuuu                       |
| TMR1H                     | xxxx xxxx                            | uuuu uuuu                  | uuuu uuuu                       |
| T1CON                     | -000 0000                            | -uuu uuuu                  | -uuu uuuu                       |
| PSMCCON0                  | 0000 0000                            | 0000 0000                  | uuuu uuuu                       |
| PSMCCON1                  | 000- 0000                            | 000- 0000                  | uuu- uuuu                       |
| CM1CON0                   | 0000 0000                            | 0000 0000                  | uuuu uuuu                       |
| CM2CON0                   | 0000 0000                            | 0000 0000                  | uuuu uuuu                       |
| CM2CON1                   | 000                                  | 000                        | uuu                             |
| OPACON                    | 000                                  | 000                        | uuu                             |
| ADRES                     | XXXX XXXX                            | uuuu uuuu                  | uuuu uuuu                       |
| ADCON0                    | 0000 0000                            | 0000 0000                  | uuuu uuuu                       |
| OPTION_REG                | 1111 1111                            | 1111 1111                  | uuuu uuuu                       |
| TRISA                     | 1111 1111                            | 1111 1111                  | uuuu uuuu                       |
| TRISB                     | 1111 1111                            | 1111 1111                  | uuuu uuuu                       |
| PIE1                      | 00000                                | 00000                      | uuuuu                           |
| PCON                      | 0 1-qq                               | 0 1-uu                     | u u-uu                          |
| DAC                       | 0000 0000                            | 0000 0000                  | uuuu uuuu                       |
| DACON0                    | 0000                                 | 0000                       | uuuu                            |
| WPUB                      | 1111 1111                            | 1111 1111                  | uuuu uuuu                       |
| IOCB                      | 1111 0000                            | 1111 0000                  | uuuu uuuu                       |
| REFCON                    | 00                                   | 00                         | uu                              |
| LVDCON                    | 00 0101                              | 00 0101                    | uu uuuu                         |
| ANSEL                     | 1111 1111                            | 1111 1111                  | uuuu uuuu                       |
| ADCON1                    | 00                                   | 00                         | uu                              |
| PMDATL                    | XXXX XXXX                            | uuuu uuuu                  | uuuu uuuu                       |
| PMADRL                    | XXXX XXXX                            | uuuu uuuu                  | uuuu uuuu                       |
| PMDATH                    | xx xxxx                              | uu uuuu                    | uu uuuu                         |
| PMADRH                    | xxxx                                 | uuuu                       | uuuu                            |
| PMCON1                    | 10                                   | 10                         | 10                              |

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

**Note 1:** When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

2: See Table 14-5 for RESET value for specific condition.

| XORWF            | Exclusive OR W with f                                                                                                                                                       |  |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Syntax:          | [ <i>label</i> ] XORWF f,d                                                                                                                                                  |  |  |  |  |  |  |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$                                                                                                             |  |  |  |  |  |  |
| Operation:       | (W) .XOR. (f) $\rightarrow$ (destination)                                                                                                                                   |  |  |  |  |  |  |
| Status Affected: | Z                                                                                                                                                                           |  |  |  |  |  |  |
| Description:     | Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. |  |  |  |  |  |  |

## 17.3 AC Characteristics: PIC16C781/782 (Industrial)

### 17.3.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS

| 2. TppS |                                     |      |              |
|---------|-------------------------------------|------|--------------|
| т       |                                     |      |              |
| F       | Frequency                           | Т    | Time         |
| Lowerca | se letters (pp) and their meanings: |      |              |
| рр      |                                     |      |              |
|         |                                     | OSC  | OSC1         |
| ck      | CLKOUT                              |      |              |
| dt      | Data in                             | t0   | TOCKI        |
| io      | I/O port                            | t1   | T1CKI        |
| mc      | MCLR                                |      |              |
| Upperca | se letters and their meanings:      |      |              |
| S       |                                     |      |              |
| F       | Fall                                | Р    | Period       |
| Н       | High                                | R    | Rise         |
| I       | Invalid (Hi-impedance)              | V    | Valid        |
| L       | Low                                 | Z    | Hi-impedance |
|         |                                     | High | High         |
|         |                                     | Low  | Low          |





| Param<br>No. | Sym                         |                                                                                        | Characteristic                    |                         | Min                                       | Тур† | Max   | Units          | Conditions                         |
|--------------|-----------------------------|----------------------------------------------------------------------------------------|-----------------------------------|-------------------------|-------------------------------------------|------|-------|----------------|------------------------------------|
| 40*          | Ттон T0CKI High Pulse Width |                                                                                        | No Prescaler                      | 0.5Tcy + 20             | _                                         | —    | ns    | Must also meet |                                    |
|              |                             |                                                                                        |                                   | With Prescaler          | 10                                        | -    | —     | ns             | parameter 42                       |
| 41*          | TTOL                        | T0CKI Low Pulse                                                                        | Width                             | No Prescaler            | 0.5Tcy + 20                               | _    | —     | ns             | Must also meet                     |
|              |                             |                                                                                        |                                   | With Prescaler          | 10                                        | —    | —     | ns             | parameter 42                       |
| 42*          | Ттор                        | T0CKI Period                                                                           |                                   | No Prescaler            | TCY + 40                                  | —    | —     | ns             |                                    |
|              |                             |                                                                                        |                                   | With Prescaler          | Greater of:<br>20 or <u>Tcy + 40</u><br>N | -    | _     | ns             | N = prescale value<br>(2, 4,, 256) |
| 45*          | Тт1н                        | T1CKI High Time                                                                        | Synchronous, Pre                  | escaler = 1             | 0.5Tcy + 20                               | —    | —     | ns             | Must also meet                     |
|              |                             |                                                                                        | Synchronous,<br>Prescaler = 2,4,8 | PIC16 <b>C</b> 781/782  | 15                                        | -    | _     | ns             | parameter 47                       |
|              |                             |                                                                                        | Asynchronous                      | PIC16 <b>C</b> 781/782  | 30                                        | -    | —     | ns             |                                    |
| 45*          | Тт1н                        | 1H T1CKI High Time                                                                     | Synchronous, Prescaler = 1        |                         | 0.5Tcy + 20                               | —    | —     | ns             | Must also meet                     |
|              |                             |                                                                                        | Synchronous,<br>Prescaler = 2,4,8 | PIC16 <b>LC</b> 781/782 | 15                                        | -    | _     | ns             | parameter 47                       |
|              |                             |                                                                                        | Asynchronous                      | PIC16 <b>LC</b> 781/782 | 30                                        | —    | —     | ns             |                                    |
| 46*          | T⊤1∟                        | T1CKI Low Time                                                                         | Synchronous, Pre                  | escaler = 1             | 0.5Tcy + 20                               | _    | _     | ns             | Must also meet                     |
|              |                             |                                                                                        | Synchronous,<br>Prescaler = 2,4,8 | PIC16 <b>C</b> 781/782  | 15                                        | -    | -     | ns             | parameter 47                       |
|              |                             |                                                                                        | Asynchronous                      | PIC16 <b>C</b> 781/782  | 30                                        | —    | —     | ns             |                                    |
| 46*          | T⊤1∟                        | L T1CKI Low Time                                                                       | Synchronous, Pre                  | escaler = 1             | 0.5TCY + 20                               | —    | —     | ns             | Must also meet                     |
|              |                             |                                                                                        | Synchronous,<br>Prescaler = 2,4,8 | PIC16 <b>LC</b> 781/782 | 15                                        | —    | _     | ns             | parameter 47                       |
|              |                             |                                                                                        | Asynchronous                      | PIC16LC781/782          | 30                                        | —    | —     | ns             |                                    |
| 47*          | Tt1p                        | T1CKI input<br>period                                                                  | Synchronous                       | PIC16 <b>C</b> 781/782  | Greater of:<br>30 OR <u>TCY + 40</u><br>N | -    | _     | ns             | N = prescale value $(1, 2, 4, 8)$  |
|              |                             |                                                                                        | Asynchronous                      | PIC16C781/782           | 60                                        | _    | —     | ns             |                                    |
| 47*          | Tt1p                        | T1CKI input<br>period                                                                  | Synchronous                       | PIC16 <b>LC</b> 781/782 | Greater of:<br>30 OR <u>TCY + 40</u><br>N | -    | _     | ns             | N = prescale value<br>(1, 2, 4, 8) |
|              |                             |                                                                                        | Asynchronous                      | PIC16 <b>C</b> 781/782  | 60                                        |      | —     | ns             |                                    |
|              | FT1                         | Timer1 oscillator input frequency range<br>(oscillator enabled by setting bit T1OSCEN) |                                   |                         | DC                                        | —    | 50    | kHz            |                                    |
| 48*          | Tcke2tmrl                   | Delay from externa                                                                     | al clock edge to tim              | ner increment           | 2Tosc                                     | —    | 7Tosc | —              |                                    |

| TABLE 17-7: 1 | TIMER0 AND TIMER1 | EXTERNAL CLOC | K REQUIREMENTS |
|---------------|-------------------|---------------|----------------|
|---------------|-------------------|---------------|----------------|

\* These parameters are characterized but not tested.

 Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.