Microchip Technology - PIC16LC782-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x8b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc782-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC16C781/782 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
	RA0	ST	N/A	Port Input
RA0/AN0/OPA+	AN0	AN	_	ADC Input
	OPA+	AN	_	OPAMP Non-inverting Input
	RA1	ST	N/A	Port Input
RA1/AN1/OPA-	AN1	AN	_	ADC Input
	OPA-	AN	_	OPAMP Inverting Input
	RA2	ST	CMOS	Bi-directional I/O
RA2/AN2/VREF2	AN2	AN	_	ADC Input
	VREF2	AN	_	Comparator 2 Voltage Reference Input
	RA3	ST	CMOS	Bi-directional I/O
RA3/AN3/VREF1	AN3	AN	_	ADC Input
	VREF1	AN	_	Comparator 1, ADC, DACREF Input
RA4/T0CKI	RA4	ST	OD	Bi-directional I/O
	TOCKI	ST	_	Timer0 Clock Input
	RA5	ST	N/A	Port Input
RA5/MCLR/VPP	MCLR	ST	_	Master Clear Input
	Vpp	Power	_	Programming Voltage
	RA6	ST	CMOS	Bi-directional I/O
	OSC2	_	XTAL	Crystal/Resonator
RA6/OSC2/CLKOUT/T1CKI	CLKOUT	_	CMOS	Fosc/4 Output
	T1CKI	ST	_	Timer1 Clock Input
	RA7	ST	CMOS	Bi-directional I/O
RA7/OSC1/CLKIN	OSC1	XTAL	_	Crystal/Resonator
	CLKIN	ST	_	External Clock Input
	RB0	TTL	CMOS	Bi-directional I/O
	INT	ST	_	External Interrupt
RBU/INT/AN4/VR	AN4	AN	_	ADC, Comparator Input
	VR	—	AN	Internal Voltage Reference Output
	RB1	TTL	CMOS	Bi-directional I/O
RB1/AN5/VDAC	AN5	AN	_	ADC, Comparator Input
	VDAC	—	AN	DAC Output
RB2/AN6	RB2	TTL	CMOS	Bi-directional I/O
	AN6	AN	_	ADC, Comparator Input
	RB3	TTL	CMOS	Bi-directional I/O
RB3/AN7/OPA	AN7	AN	_	ADC, Comparator Input
	OPA	_	AN	OPAMP Output
RB4	RB4	TTL	CMOS	Bi-directional I/O
RB5	RB5	TTL	CMOS	Bi-directional I/O
	RB6	TTL	CMOS	Bi-directional I/O
RB6/C1/PSMC1A	C1	—	CMOS	Comparator 1 Output
	PSMC1A	—	CMOS	PSMC Output 1A

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on Page:
Bank 2											
100h ⁽²⁾	INDF	Addressin	g this location	on uses con	tents of FSR	to address d	lata memory	(not a physica	al register)	0000 0000	23
101h	TMR0	Timer0 Mc	dule's Regi	ster						xxxx xxxx	51
102h ⁽²⁾	PCL	Program C	Counter's (P	C) Least Sig	gnificant Byte					0000 0000	23
103h ⁽²⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	17
104h ⁽²⁾	FSR	Indirect Da	ata Memory	Address Pc	binter					xxxx xxxx	23
105h	-	Unimplem	ented							-	-
106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx 0000	35
107h	-	Unimplem	ented				•		•	-	-
108h	-	Unimplem	ented							-	-
109h	-	Unimplem	ented							-	-
10Ah ^(1,2)	PCLATH	-	-	-	Write Buffer	for the uppe	r 5 bits of the	e Program Co	unter	0 0000	23
10Bh (2)	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	19
10Ch	PMDATL	PMD7	PMD6	PMD5	PMD4	PMD3	PMD2	PMD1	PMD0	0000 0000	48
10Dh	PMADRL	PMA7	PMA6	PMA5	PMA4	PMA3	PMA2	PMA1	PMA0	xxxx xxxx	48
10Eh	PMDATH	—	—	PMD13	PMD12	PMD11	PMD10	PMD9	PMD8	00 0000	47
10Fh	PMADRH	—	-	-	Reserved	Reserved	PMA10	PMA9	PMA8	x xxxx	48
110h	CALCON	CAL	CALERR	CALREF	—	—	—	—	—	000	85
111h	PSMCCON0	SMCCL1	SMCCL0	MINDC1	MINDC0	MAXDC1	MAXDC0	DC1	DC0	0000 0000	104
112h	PSMCCON1	SMCON	S1APOL	S1BPOL	—	SCEN	SMCOM	PWM/PSM	SMCCS	000- 0000	104
113h	-	Unimplem	ented							-	-
114h	—	Unimplem	ented							—	—
115h	-	Unimplem	ented							-	-
116h	-	Unimplem	ented							-	-
117h	-	Unimplem	ented							-	-
118h	-	Unimplem	ented							-	-
119h	CM1CON0	C10N	C10UT	C10E	C1POL	C1SP	C1R	C1CH1	C1CH0	0000 0000	91
11Ah	CM2CON0	C2ON	C2OUT	C2OE	C2POL	C2SP	C2R	C2CH1	C2CH0	0000 0000	93
11Bh	CM2CON1	MC10UT	MC2OUT	-	-	-	—	—	C2SYNC	000	94
11Ch	OPACON	OPAON	CMPEN	—	—	—	—	—	GBWP	000	84
11Dh	-	Unimplem	ented							-	-
11Eh	DAC	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0	0000 0000	79
11Fh	DACON0	DAON	DAOE	—	—	—	—	DARS1	DARS0	0000	79

TABLE 2-1: PIC16C781/782 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter. See Section 2.9 for more detail.2: These registers can be addressed from any bank.

2.12 Effect of RESET on Core Registers

Refer to Table 2-2 for the effect of a RESET operation on core registers.

TABLE 2-2:EFFECT OF RESET ON CORE REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS ⁽¹⁾
Bank 0											
00h	INDF	Addressing	this location	n uses conte	ents of FSR to	address data	a memory (no	t a physical r	egister)	0000 0000	0000 0000
02h	PCL	Program C	ounter's (PC	C) Least Sigr	nificant Byte					0000 0000	0000 0000
04h	FSR	Indirect Data Memory Address Pointer								xxxx xxxx	uuuu uuuu
0Ah	PCLATH	—	—	—	Write Buffer	for the uppe	r 5 bits of the	Program C	ounter	0 0000	0 0000
0Ch	PIR1	LVDIF	ADIF	C2IF	C1IF	—	—	—	TMR1IF	00000	00000
Bank 1											
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	XXXX XXXX	1111 1111
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	LVDIE	ADIE	C2IE	C1IE	—	—	—	TMR1IE	00000	00000
8Eh	PCON	_	-	—	WDTON	OSCF	_	POR	BOR	q 1-qq	q 1-qq

Shaded locations are unimplemented, read as '0'.

Note 1: Other (non power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.

© 2001-2013 Microchip Technology Inc.

Analog HI-Z = No internal drive on pin (analog input) during calibration.

1

1

1

Analog HI-Z

Calibration

0

© 2001-2013 Microchip Technology Inc.

12.0 COMPARATOR MODULE

The comparator module has two separate voltage comparators: Comparator C1 and Comparator C2 (see Figure 12-1).

Each comparator offers the following list of features:

- · Control and configuration register
- · Comparator output available externally
- Programmable output polarity
- Interrupt-on-change flags
- Wake-up from SLEEP
- · Configurable as feedback input to the PSMC
- Programmable four input multiplexer
- Programmable reference selections
- · Programmable speed
- Output synchronization to Timer1 clock input (Comparator C2 only)

12.1 Control Registers

Both comparators have separate control and configuration registers: CM1CON0 for C1 and CM2CON0 for C2. In addition, Comparator C2 has a second control register, CM2CON1, for synchronization control and simultaneous reading of both comparator outputs.

12.1.1 COMPARATOR C1 CONTROL REGISTER

The CM1CON0 register (shown in Register 12-1) contains the control and status bits for the following:

- · Comparator enable
- · Comparator input selection
- Comparator reference selection
- Output mode
- Comparator speed

Setting C1ON (CM1CON0<7>) enables Comparator C1 for operation.

Bits C1CH<1:0> (CM1CON0<1:0>) select the comparator input from the four analog pins AN<7:4>.

Note:	To use AN<7:4> as analog inputs, the
	appropriate bits must be programmed in
	the ANSEL register.

Setting C1R (CM1CON0<2>) selects the output of the DAC module as the reference voltage for the comparator. Clearing C1R selects the VREF1 input on the RA3/ AN3/VREF1 pin.

The output of the comparator is available internally via the C1OUT flag (CM1CON0<6>). To make the output available for an external connection, the C1OE flag (CM1CON0<5>) must be set. If the module is disabled with C1OE set, the output will be driven as shown in Table 12-2:

The polarity of the comparator output can be inverted by setting the C1POL flag (CM1CON0<4>). Clearing C1POL results in a non-inverted output. A complete table showing the output state versus input conditions and the polarity bit is shown in Table 12-2.

TABLE 12-1: OUTPUT STATE VERSUS INPUT CONDITIONS

Input Condition	C1POL	C10UT
C1VN > C1VP	0	0
C1VN < C1VP	0	1
C1VN > C1VP	1	1
C1VN < C1VP	1	0

Note 1: The internal output of the comparator is latched at the end of each instruction cycle. External outputs are not latched.

- 2: The C1 interrupt will operate correctly with C1OE set or cleared.
- For the output of C1 on RB6/C1/ PSMC1A, the PSMC must be disabled and TRISB<6> must be '0'.

C1SP (CM1CON0<3>) configures the speed of the comparator. When C1SP is set, the comparator operates at its normal speed. Clearing C1SP operates the comparator in a slower, low power mode.

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	SMCCL1	SMCCL0	MINDC1	MINDC0	MAXDC1	MAXDC0	DC1	DC0	
	bit 7							bit 0	
bit 7-6	SMCCL<1	:0>: Clock	Frequency	Select bits					
	00 = Outp	ut frequency	y for single	output mod	e is Fosc/12	28			
	01 = Outp	ut frequency	y for single	output mod	e is Fosc/64	Ļ			
	10 = Outp	ut frequenc	v for single	output mod	e is FOSC/32 e is FOSC/16				
bit 5-4	MINDC<1:	:0>: Minimu	m Duty Cv	cle Select b	its for PWM	Mode			
	00 = Min c	uty cycle of	fO						
	01 = Min c	luty cycle of	f 1/8						
	10 = Min c	luty cycle of	f 1/4						
	11 = Min c	luty cycle of	13/8						
bit 3-2	MAXDC<1	1:0>: Maxim	um Duty C	ycle Select	bits for PWN	1 Mode			
	00 = Max	duty cycle c	of 1/2						
	01 = Max	duty cycle c duty cycle c	of 3/4						
	11 = Max duty cycle of 15/16								
bit 1-0	DC<1:0>:	Duty Cycle	Select bits	for PSM Mo	ode				
	00 = Duty	cycle of 1/8							
	01 = Duty	cycle of 3/8							
	10 = Duty	cycle of 5/8							
	11 = Duty	cycle of 15/	16						
	Legend:								
	R = Reada	able bit	W = V	Nritable bit	U = Uni	implemented	bit, read as '() '	
	- n = Value	at POR	'1' = l	Bit is set	'0' = Bit	is cleared	x = Bit is ur	nknown	

REGISTER 13-1: PSMC CONTROL REGISTER0 (PSMCCON0: 111h)

14.0 SPECIAL FEATURES OF THE CPU

These devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These features include:

- · Oscillator selection
- RESET
- Power-on Reset (POR)
- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- Programmable Brown-out Reset (PBOR)
- Interrupts
- Watchdog Timer (WDT)
- Programmable Low Voltage Detection (PLVD)
- SLEEP
- Code protection
- · ID locations
- In-Circuit Serial Programming[™] (ICSP[™])

Several oscillator options are available to allow the part to fit the application. The INTRC oscillator options save system cost while the LP crystal option saves power. A set of configuration bits is used to select various options.

The CPU also features a Watchdog Timer (WDT), which can be enabled either through a configuration bit during programming, or by the software. For added reliability, the WDT runs off its own internal RC oscillator instead of the main CPU clock.

In addition to the WDT, the CPU incorporates both an Oscillator Start-up Timer and a Power-up Timer. The Oscillator Start-up Timer (OST) is intended to hold the chip in RESET until the crystal oscillator has stabilized. The Power-up Timer (PWRT) holds the CPU in a fixed RESET delay of 72ms (nominal) on Power-up Resets (POR and PBOR), while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can awaken from SLEEP through:

- External RESET
- Watchdog Timer Wake-up
- Interrupt

Additional information on special features is available in the PIC Mid-Range Reference Manual, (DS33023).

14.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped in program memory location 2007h.

Note: Address 2007h is beyond the user program memory space, which can be accessed only during programming.

Some of the core features provided may not be necessary for each application in which a device may be used. The configuration word bits allow these features to be configured/enabled/disabled as necessary. These features include:

- Code Protection
- PBOR Trip Point
- Power-up Timer
- Watchdog Timer
- Device Oscillator Mode

As can be seen in Table 14-1, some additional configuration word bits have been provided for Brown-out Reset trip point selection.

REGISTER 14-2: POWER CONTROL REGISTER (PCON: 8Eh)

	U-0	U-0	U-0	R/W-q	R/W-1	U-0	R/W-q	R/W-x
	_	_	_	WDTON	OSCF	_	POR	BOR
	bit 7							bit 0
bit 7-5	Unimplem	ented: Rea	d as '0'					
bit 4	WDTON: W	DT Softwa	re Enable b	it				
	If WDTE bit	t (Configura	tion Word <	:3> <u>) = 1:</u>				
	This bit is n	ot writable,	always rea	ds '1'				
	If WDTE bit	t (Configura	tion Word <	: <u>3>) = 0:</u>				
	1 = WDT is	enabled						
		disabled al	nd cleared					
bit 3	OSCF: Osc	cillator Spee	d bit (pendi	ng on new ir	iternal oscillato	r decision)		
	INTRC mod	<u>de:</u>						
	1 = 4 MHz	typical						
		cillator mod	06.					
	lanored		<u>cs.</u>					
bit 2	Unimplem	ented: Rea	d as '0'					
bit 1	POR Powe	er-on Reset	Status hit					
bit i		ver-on Rese	et occurred					
	0 = A Powe	er-on Reset	occurred (r	nust be set ir	n software after	a Power-o	n Reset oc	curs)
bit 0	BOR: Brow	n-out Rese	t Status bit					
	1 = No Bro	wn-out Res	et occurred					
	0 = A Brow	n-out Reset	occurred (must be set i	n software afte	r a Brown-o	out Reset o	ccurs)
	Legend:							
	R = Reada	ble bit	W = V	Vritable bit	U = Unimple	emented bi	t, read as '()'
	- n = Value	at POR	'1' = E	Bit is set	'0' = Bit is c	leared		
	x = Bit is unknown 'q' = Value depends on condition							

TABLE 14-4: STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Bit Significance
0	1	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	х	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

TABLE 14-5: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0 1-01
MCLR Reset during normal operation	000h	000u uuuu	0 1-uu
MCLR Reset during SLEEP	000h	0001 0uuu	0 1-uu
WDT Reset	000h	0000 luuu	0 1-uu
WDT Wake-up	PC + 1	uuu0 0uuu	0 u-uu
Brown-out Reset	000h	0001 luuu	0 1-u0
Interrupt wake-up from SLEEP, GIE = 0	PC + 1	uuul Ouuu	u u-uu
Interrupt wake-up from SLEEP, GIE = 1	0004h	uuul Ouuu	u u-uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'.

FIGURE 14-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

FIGURE 14-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD)

14.9.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register sets the flag bit, T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit, T0IE (INTCON<5>) (Section 2.5).

14.9.3 PORTB INTERRUPT-ON-CHANGE (IOCB)

An input change on PORTB<7:0> sets flag bit RBIF (INTCON<0>). The PORTB pin(s) which can individually generate interrupt are selectable in the IOCB register. The interrupt can be enabled/disabled by setting/ clearing enable bit RBIE (INTCON<4>) (Section 2.5). PORTB must be configured as a digital input.

14.10 Context Saving During Interrupts

During an interrupt, only the PC is saved on the stack. At minimum, W and STATUS should be saved to preserve the context for the interrupted program. All registers that may be corrupted by the Interrupt Service Routine (ISR), such as PCLATH or FSR, should be saved.

Example 14-1 stores and restores the STATUS, W and PCLATH registers. The register, W TEMP, is defined in Common RAM, the last 16 bytes of each bank that may be accessed from any bank. The STATUS TEMP and PCLATH TEMP are defined in bank 0.

The example:

- Stores the W register. a)
- b) Stores the STATUS register in bank 0.
- Stores the PCLATH register in bank 0. c)
- Executes the ISR code. d)
- Restores the PCLATH register. e)
- Restores the STATUS register. f)
- Restores W. a)

Note:	The W_TEMP, STATUS_TEMP and						
	PCLATH_TEMP are defined in the com-						
	mon RAM area (70h - 7Fh) to avoid regis-						
	ter bank switching during context save and						
	restore.						

EXAMPLE 14-1: SAVING STATUS, W, AND PCLATH REGISTERS

#define	W_TEMP	0x70
#define	STATUS_TEMP	0x71
#define	PCLATH_TEMP	0x72
org	0x04	; Int Vector
MOVWF	W_TEMP	; Save W
MOVF	STATUS,w	
MOVWF	STATUS_TEMP	; save STATUS
MOVF	PCLATH,w	
MOVWF	PCLATH_TEMP	; save PCLATH
:		
(Interi	rupt Service Rou	utine)
:		
MOVF	PCLATH_TEMP,w	
MOVWF	PCLATH	
MOVF	STATUS_TEMP,w	
MOVWF	STATUS	
SWAPF	W_TEMP,f	; swapf loads W
SWAPF	W_TEMP,w	; w/o affect STATUS
RETFIE		

14.11 Watchdog Timer (WDT)

The Watchdog Timer uses a free running, on-chip RC oscillator, which does not require any external components. This oscillator is independent from the processor clock. The WDT runs even if the main clock of the device has been stopped (for example, by execution of a SLEEP instruction).

During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the STATUS register is cleared upon a Watchdog Timer time-out.

The WDT can be permanently enabled by programming the configuration bit WDTE, or by software via the WDTON bit in the Power Control register (PCON: 8EH). See Section 14.8 and Section 14.1.

WDT time-out period values may be found in the Electrical Specifications. Values for the WDT prescaler may be assigned using the OPTION_REG register.

Note 1: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT.

2: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count is cleared, but the prescaler assignment is not changed.

15.0 INSTRUCTION SET SUMMARY

Each PIC16CXXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXXX instruction set summary in Table 15-2 lists **byte-oriented**, **bitoriented**, and **literal and control** operations. Table 15-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 15-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compati- bility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$
PC	Program Counter
то	Time-out bit
PD	Power-down bit

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 15-2 lists the instructions recognized by the MPASMTM assembler.

Figure 15-1 shows the general formats that the instructions can have.

Note: To maintain upward compatibility with future PIC16CXXX products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

A description of each instruction is available in the PIC Mid-Range Reference Manual, (DS33023).

XORWF	Exclusive OR W with f					
Syntax:	[<i>label</i>] XORWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) .XOR. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.					

17.2 DC Characteristics: Input/Output Pins

TABLE 17-2: DC CHARACTERISTICS: PIC16C781/782, DSTEMP (INDUSTRIAL)

			Standard Operating Conditions (unless otherwise stated)					
	RISTICS	Operating temperature $-40^{\circ}C \le 1A \le +85^{\circ}C$ for industrial and Operating voltage VDD range as described in DC spec Section 17-1						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
		Input Low Voltage						
	VIL	I/O ports:						
D030		with TTL buffer	Vss	—	0.15VDD	V	For entire VDD range	
D030A		with Coheritt Trigger huffer	VSS	_	0.8V	V	$4.5V \le VDD \le 5.5V$	
D031			VSS	_		V	For entire VDD range	
D032			VSS	_	0.2000	v		
D033		USC1 (In XI, HS, LP and EC)	VSS	_	0.3 VD	V		
	Μн	I/O ports:		_				
D040	VIII	with TTL buffer	2.0	_	VDD	v	4.5V < VDD < 5.5V	
D040A			(0.25VDD	_	VDD	V	For entire VDD range	
			+ 0.8V)				0	
D041		with Schmitt Trigger buffer	0.8Vdd	—	Vdd	V	For entire VDD range	
D042		MCLR	0.8Vdd	—	Vdd	V		
D042A		OSC1 (XT, HS, LP and EC)	0.7Vdd		Vdd	V		
D070	IPURB	PORTB Weak Pull-up Current Per Pin	50	250	400	μA	VDD = 5V, VPIN = VSS	
		Input Leakage Current ^(1,2)						
D060	lı∟	I/O ports (with digital functions)	—	_	±1	μA	$Vss \le VPIN \le VDD$, Pin at hi-impedance	
D060A	lı∟	I/O ports (with analog functions)	_	—	±100	nA	Vss \leq VPIN \leq VDD, Pin at hi-impedance	
D061		RA5/MCLR/VPP	_	—	±5	μA	$Vss \le VPIN \le VDD$	
D063		OSC1	—	—	±5	μA	Vss \leq VPIN \leq VDD, XT, HS, LP and EC osc configuration	
		Output Low Voltage						
D080	Vol	I/O ports (Includes CLKOUT)	—	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V	
		Output High Voltage						
D090	Vон	I/O ports ⁽²⁾ (Includes CLKOUT)	Vdd - 0.7		—	V	Юн = -3.0 mA, VDD = 4.5V	
D150*	Vod	Open Drain High Voltage	_	-	10.5	V	RA4 pin	
		Capacitive Loading Specs on Output Pins*						
D100	Cosc2	OSC2 pin	_	—	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1	
D101	Сю	All I/O pins and OSC2 (in RC mode)	_	_	50	pF		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

2: Negative current is defined as current sourced by the pin.

17.4 Operational Amplifier

TABLE 17-8: DC CHARACTERISTICS: OPERATIONAL AMPLIFIER (OPA)

DC CHA	RACTERISTICS		Standard Operating Conditions (unless otherwise stated): VDD = 2.7V to 5.5V, TA = 25°C, VCM = VDD/2, RL = 100 k Ω to VDD/2, and VOUT ~ VDD/2 Operating Temperature -40°C to +85°C for Industrial					
Param No.	Parameters	Symbol	Min	Тур	Мах	Units	Conditions	
	Input Offset Voltage Input Offset Voltage	Vos	TBD	±2	TBD	mV	Prior to Auto Calibration	
	Input Offset Voltage Input Offset Voltage	Vos	TBD	±100	TBD	μV	Following Auto Calibration	
	Input Current and Impedance Input Bias Current Input Offset Bias Current	Ів Ios	-50 —	— ±1	+50	nA pA	Following Auto Calibration	
	Common Mode Common Mode Input Range Common Mode Rejection	Vсм CMR	Vss TBD	— 80	VDD-1.4	V dB	Following Auto Calibration VDD = 5 V VCM = VDD/2, Frequency = DC	
	Open Loop Gain DC Open Loop Gain DC Open Loop Gain	Aol Aol	_	90 80	_	dB dB	$\label{eq:GBWP} \begin{array}{l} GBWP = 1 \text{ following Auto Calibration} \\ RL = 25 \ k\Omega \ \text{connected to VDD/2}, \\ 50 \ mV < VOUT < VDD - 50 \ mV \\ RL = 5 \ k\Omega \ \text{connected to VDD/2}, \\ 100 \ mV < VOUT < VDD - 100 \ mV \end{array}$	
	DC Open Loop Gain DC Open Loop Gain	Aol Aol	_	TBD TBD	_	dB dB	$\begin{array}{l} \mbox{GBWP} = 0 \mbox{ following Auto Calibration} \\ \mbox{RL} = 50 \ \mbox{k}\Omega \ \mbox{connected to VDD}/2, \\ \mbox{50 mV} < \mbox{Vout} < \mbox{VDD} - 50 \ \mbox{mV} \\ \mbox{RL} = 100 \ \mbox{k}\Omega \ \mbox{connected to VDD}/2, \\ \mbox{50 mV} < \mbox{Vout} < \mbox{VDD} - 50 \ \mbox{mV} \end{array}$	
	Output Output Voltage Swing	Vout	Vss+0.1	_	Vdd-0.1	V	$\begin{array}{l} \mbox{GBWP} = 1 \mbox{ Following Auto Calibration} \\ \mbox{RL} = 5 \mbox{ k}\Omega \mbox{ connected to VDD/2} \\ \mbox{VDD} = 5 \mbox{ V} \end{array}$	
	Output Short Circuit Current	Isc	—	25	TBD	mA		
	Power Supply Power Supply Rejection	PSR	-	80	-	dB	Following Auto Calibration	
	Auto Calibration Reference	ACR	TBD	1.2	TBD	V	CALREF = 0	

AC CHARACTERISTICS				Standard Operating Conditions (unless otherwise stated):VDD = 2.7V to 5.5V, VSs = GND, TA = 25°C, VCM = VDD/2,RL = 100kΩ to VDD/2, and VOUT = VDD/2Operating Temperature -40°C to +85°C for Industrial				
Param Parameters Symbol No.			Min	Тур	Мах	Units	Conditions	
	Gain Bandwidth Product	GBWP	_	75	_	kHz	VDD = 5V, GBWP = 0	
		GBWP	—	2	—	MHz	VDD = 5V, GBWP = 1	
	Input Offset Auto	Tz	_	300	TBD	μS	VDD = 5V, GBWP = 1	
	Calibration Time	Tz	—	TBD	TBD	μS	VDD = 5V GBWP = 0	
		TON	—	10	TBD	μS	VDD = 5V, GWBP = 1	
	Turn On Time	TON	_	TBD	TBD	μS	VDD = 5V, GBWP = 0	
	Phase Margin	ΘΜ	—	TBD		degrees	VDD = 5V, GBWP = 0	
	-	ΘΜ	—	TBD	—	degrees	VDD = 5V, GBWP = 1	
	Slew Rate	SR SR	_	TBD TBD	_	V/μs V/μs	VDD = 5V, GBWP = 0 VDD = 5V, GBWP = 1	

TABLE 17-9: AC CHARACTERISTICS: OPERATIONAL AMPLIFIER (OPA)

Note: Data in 'Typ' column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

NOTES:

19.0 PACKAGING INFORMATION

19.1 Package Marking Information

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the even be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

© 2001-2013 Microchip Technology Inc.

OPTION_REG Register	
INTEDG Bit	18
PS Bits1	8, 52
PSA Bit1	8, 52
RBPU Bit	18
T0CS Bit1	8, 51
T0SE Bit1	8, 51
Oscillator Configuration	. 119
CLKOUT	. 120
Dual Speed Operation for INTRC Modes	. 120
EC119	123
ER	. 119
HS119	, 123
INTRC 119	, 123
LP119	, 123
XT	, 123
Oscillator, WDT	. 129
Oscillators	
RC, Block Diagram	. 120
OTP Program Memory Read	49

Ρ

Package Marking Information169
Paging, Program Memory23
PCON Register
BOR Bit
OSCF Bit22
POR Bit
WDTON Bit22
PICDEM 1 Low Cost PIC MCU
Demonstration Board
PICDEM 17 Demonstration Board 144
PICDEM 2 Low Cost PIC16CXX
Demonstration Board
PICDEM 3 Low Cost PIC16CXXX
Demonstration Board
PICSTART Plus Entry Level
Development Programmer143
Pin Functions
AVDD9
AVss9
RA0/AN0/OPA+8
RA1/AN1/OPA8
RA2/AN2/VREF28
RA3/AN3/VREF1 8
RA4/T0CKI8
RA5/MCLR/VPP8
RA6/OSC2/CLKOUT/T1CKI8
RA7/OSC1/CLKIN8
RB0/INT/AN4/Vr8
RB1/AN5/VDAC8
RB2/AN68
RB3/AN7/OPA8
RB48
RB58
RB6/C1/PSMC1A8
RB7/C2/PSMC1B/T1G9
VDD9
Vss9
Pinout Description
PIC16C781/7828

PIR1 Register	
ADIF Bit	
C1IF Bit	21
C2IF Bit	21
LVDIF Bit	21
TMR1IF Bit	21
PLVD	
DC Characteristics	
PLVD Example	67
PMCON1	
PMDATH and PMDATL Registers	
PMR	
Associated Register Summary	50
Pointer. FSR	
POR. See Power-on Reset	
PORTA	
Associated Register Summary	
Initialization	
PORTA and the TRISA Register	26
PORTB	
Associated Register Summary	45
Initialization	
Pull-up Enable (RBPU Rit)	18
RB0/INT Edge Select (INTEDG Bit)	18
RB0/INT Pin External	128
RB7:RB0 Interrupt-on-Change Enable	
(BBIE Bit)	129
RB7:RB4 Interrupt-on-Change	120
RB7:RB4 Interrupt-on-Change Flag	
(BBIE Bit)	129
PORTB and the TRISB Register	
PORTB Interrunt-on-Change	
PORTB Weak Pull-up	
Postscaler WDT	
Assignment (PSA Bit)	18 52
Rate Select (PS Bits)	18 52
Switching Between Timer() and WDT	
Power-down Mode See SLEEP	
Power-on Reset (POR) 117 121 12	2 125 126
Oscillator Start-up Timer (OST)	.2, 120, 120
Power Control (PCON) Register	123
Power-down (PD Bit)	123
Power-on Reset Circuit External	
Power-up Timer (PW/PT)	117 122
Time-out (TO Bit)	117, 122
Time-out Sequence	122
Time-out Sequence on Power-up	125 127
Prescaler Timer0	123, 127
Assignment (PSA Bit)	18 52
Pate Select (PS Bits)	18 52
Switching Between Timer() and WDT	10, 52
Prescaler Timer1	
Soloot (T1CKPS1:T1CKPS0 Pite)	57
PRO MATE II Universal Device Programmer	
Program	
Program Counter	
PCL Pagistor	22
Reset Conditions	20, 129 105
Program Memory	
Paging	
Faying	
	4.4
PIC16C782	11 ۸۸
Program Memory Organization	11