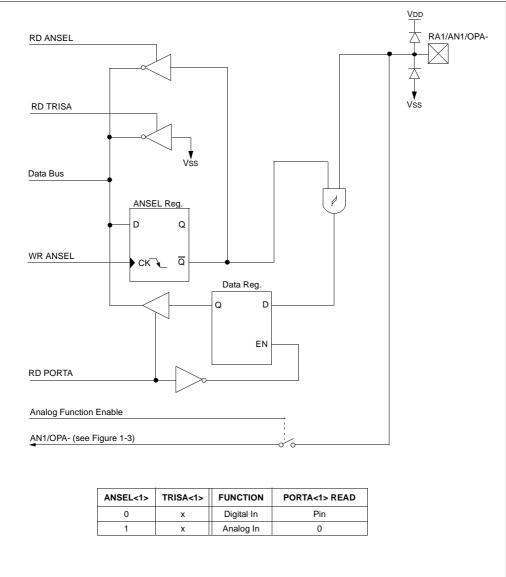


Welcome to E-XFL.COM

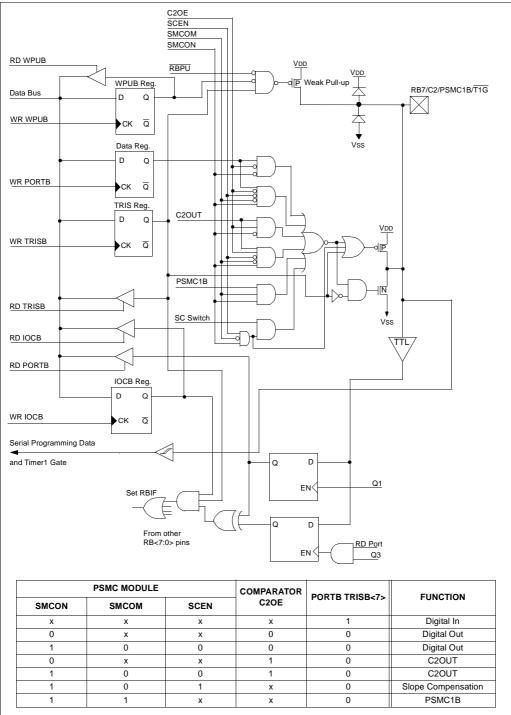
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x8b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc782t-i-so


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

PROGRAM MEMORY READ 4.0 (PMR)

Program memory is readable during normal operation (full VDD range). It is read by indirect addressing through the following Special Function Registers:

- PMCON1: Control
- · PMDATH: Data High
- PMDATL: Data Low
- PMADRH: Address High
- PMADRL: Address Low

When interfacing to the program memory block, the PMDATH and PMDATL registers form a 2-byte word, which holds the 14-bit data. The PMADRH and PMADRL registers form a 2-byte word, which holds the 12-bit address of the program memory location being accessed. Mid-range devices have up to 8K words of program EPROM with an address range from 0h to 3FFFh. When the device contains less memory than the full address range of the PMADRH: PMARDL registers, the Most Significant bits of the PMADRH register are ignored.

4.1 PMCON1 Register

PMCON1 is the control register for program memory accesses.

Control bit RD initiates a read operation. This bit cannot be cleared, only set, in software. It is cleared in hardware at completion of the read operation.

4.2 PMDATH and PMDATL Registers

The PMDATH: PMDATL registers are loaded with the contents of program memory addressed by the PMADRH and PMADRL registers upon completion of a Program Memory Read command.

REGISTER 4-1: PROGRAM MEMORY READ CONTROL REGISTER 1 (PMCON1: 18Ch)

	R-1	U-0	U-0	U-0	U-0	U-0	U-0	R/S-0
	Reserved	—	—	—	_	—	—	RD
	bit7		·					bit0
bit 7	Reserved: F	Read as '1'						
bit 6-1	Unimplemen	ted: Read	d as '0					
bit 0	RD: Read C	ontrol bit						
	1 = Initiates 0 = Reserve	0	memory rea	ad (read tak	es 2 cycles,	RD is clear	ed in hardwa	are)
	Legend:							
	U U							
	S = Settable	bit						

:	S = Settable bit			
	R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
	- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 4-2: PROGRAM MEMORY DATA HIGH (PMDATH: 10Eh)

- n = Value at POR

	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	PMD13	PMD12	PMD11	PMD10	PMD9	PMD8
	bit7							bit0
bit 7-6	Unimpleme	nted: Rea	d as '0					
bit 5-0	PMD<13:8>	: Program	Memory Dat	ta bits				
	The value of memory rea	1 0		word pointe	d to by PM	ADRH and F	MADRL afte	er a program
	Т							
	Legend:							
	R = Readab	le bit	W = W	ritable bit	U = Unii	mplemented	l bit, read as	'0'

'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

6.2 Control Register T1CON

Control and configuration of Timer1 is by means of the T1CON register shown in Register 6-1.

Timer1 is enabled by setting the TMR1ON bit (T1CON<0>). Clearing TMR1ON stops the timer, but does not clear the Timer1 register.

The TMR1CS bit (T1CON<1>) determines the Timer mode. When TMR1CS is set, the timer is configured as a counter and receives its clock from RA6/OSC2/ CLKOUT/T1CKI. When cleared, the timer is configured as a timer and its clock is derived from FoSC/4.

The T1SYNC bit (T1CON<2>) determines Timer1's synchronization. If cleared, the timer clock is synchronized to the system clock. If set, the timer is asynchronous.

The Timer1 clock gate function is enabled by setting the TMR1GE bit (T1CON<6>). When TMR1GE is set, the T1G input will control the clock input to the timer/ counter. A low on the T1G input will cause Timer1 to increment at the clock rate, a high will hold the timer at its present value.

The T1OSCEN bit (T1CON<3>) enables the LP oscillator as a clock source for Timer1. This mode is a replacement for the regular external oscillator. T1CKPS<1:0> determines the prescaler value for the timer. Available prescaler values are:

T1CKP	'S<1:0>	Prescaler Value				
Bit 1	Bit 0					
1	1	1:8				
1	0	1:4				
0	1	1:2				
0	0	1:1				

Note: To use the LP oscillator as the Timer1 oscillator:

- 1. TMR1CS must be set.
- 2. T1OSCEN must be set.
- The Configuration Word must select INTRC w/o CLKOUT.

NOTES:

8.2 Operation

The PLVD indicates a low voltage condition by setting the LVDIF bit in the PIR1 register. Once set by the PLVD module, the LVDIF bit will remain set until cleared by software. For proper indication of a low voltage condition, the user should clear this bit prior to testing.

To test for a low voltage condition, the PLVD module compares the divided output of VDD against an internal bandgap reference. The PLVD module automatically enables this reference whenever it is enabled and provides a stability bit, BGST, to indicate when it has stabilized. The bandgap reference is also enabled by other modules within the PIC16C781/782 as part of their operation. Other modules using the bandgap include the following:

- VR module
- · BOR module
- · OPA calibration module

10.3 DAC Configuration

Example 10-1 shows a sample configuration for the DAC module. The port pin is configured, AVDD is selected for the voltage reference, and the DAC output is enabled.

EXAMPLE 10-1: DAC CONFIGURATION

```
;* This code block will configure the DAC
```

;* for AVDD Voltage Ref, and RB1/AN5/VDAC as
;* output.

```
BANKSEL TRISB
                      ; Select bank 1
       TRISB,1
                     ; Set RB1 input
BSF
BSF
       ANSEL,1
                      ; Set RB1 as analog
BANKSEL DACON0
                      ; Select Bank 2
CLRF
       DAC
                      ; DAC to 00
MOVLW B'11000000'
                     ; Enable DAC output
MOVWF DACON0
                      ; Set REF = VDD
MOVLW
       DAC_VALUE
MOVWF
       DAC
                      ; Set DAC output
```

10.4 Effects of RESET

A device RESET forces all registers to their RESET state. This forces the following conditions:

- · DAC module is off
- · Reference input to AVDD
- · Output disabled
- · DAC register is cleared

10.5 DAC Module Accuracy/Error

The accuracy/error specified for the DAC includes:

- · Integral non-linearity error
- Differential non-linearity error
- · Gain error
- Offset error
- Monotonicity

FIGURE 10-2: DAC TRANSFER FUNCTION

03h

02h 01h

00h

2 LSb 3 LSb 4 LSb

Offset error measures the first actual transition of a code versus the first ideal transition of a code. Offset error shifts the entire transfer function. Offset error can be calibrated out of a system or introduced into a system through the interaction of the output drive capability with the load impedance.

Analog Output Voltage

256 LSb full scale)

255 LSb

Gain error measures the maximum deviation of the last actual transition and the last ideal transition adjusted for offset error. This error appears as a change in slope of the transfer function. The difference in gain error to full scale error is that full scale does not take offset error into account. Gain error can be calibrated out by adjusting the reference voltage.

Linearity error refers to the uniformity of the voltage change with code change. Linearity errors cannot be calibrated out of the system. **Integral non-linearity error** measures the actual voltage output versus the ideal voltage output adjusted by the gain error for each code.

Differential non-linearity error measures the maximum actual voltage step versus the ideal voltage step. This measure is unadjusted.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on All Other RESETS
11Fh	DACON0	DAON	DAOE		—		_	DARS1	DARS0	0000	0000
11Eh	DAC	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0	0000 0000	0000 0000
86h	TRISB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	1111 1111	1111 1111
9Dh	ANSEL	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0	1111 1111	1111 1111

TABLE 10-1: REGISTERS/BITS ASSOCIATED WITH DAC

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for DAC conversion.

11.2 Configuration as OPAMP or Comparator

The following example demonstrates calibration of the OPA module as an Operational Amplifier.

EXAMPLE 11-1: CALIBRATION FOR OPAMP MODE

- ;* This code block will configure the OPA
- ;* module as an Op Amp, 2 MHz GBWP, and
- ;* calibrated for a common mode voltage of
- ;* 1.2V. Routine returns w=0 if
- ;* calibration good.

BANKSEL MOVLW MOVWF	B'10000001' ;	Select Bank 2 Op Amp mode & 2 MHz GBWP
BCF BSF	CALCON, CALREF; CALCON, CAL;	
CAL_LOOP BTFSC	CALCON, CAL ;	Test for end
GOTO MOVLW	CAL_LOOP ; ERROR_FLAG	If not, wait
BTFSS CLRW RETURN		Test for error If no, return 0

The following example demonstrates how to configure and calibrate the OPA module as a Voltage Comparator.

EXAMPLE 11-2: CALIBRATION FOR COMPARATOR MODE

- ;* This code block will configure the OPA
- ;* module as a voltage comparator, slow
- ;* speed, and calibrated for a common mode
- ;* voltage of 2.5 V (assumes VDD=5V).
- ;* Routine returns w=0 if calibration good.

	BANKSEL MOVLW	OPACON B'10000000'	;	Select Bank 2
	MOVWF	OPACON		Op Amp mode, slow
	BSF	CALCON, CALREF	;	Common mode=DAC
	MOVLW	H'0x80'		
	MOVWF	DAC	;	DAC at VDD/2
	MOVLW	B'10000000'		
	MOVWF	DACON0	;	enable DAC,
			;	VDD ref
	BSF	CALCON, CAL	;	Start
CAL	LOOP			
	BTFSC	CALCON, CAL	;	Test for end
	GOTO	CAL_LOOP	;	If not, wait
	MOVLW	EDDOD ELAC		
		ERROR_FLAG		
	BTFSS	CALCON, CALERR		Test for error
	CLRW		;	If no, return O
	BSF	OPACON, CMPEN	;	Comparator mode
	RETURN			

11.3 Effects of RESET

A device RESET forces all registers to their RESET state. This disables the OPA module and clears any calibration.

11.4 OPA Module Performance

Common AC and DC performance specifications for the OPA module:

- Common Mode Voltage Range
- Leakage Current
- · Input Offset Voltage
- · Open Loop Gain
- · Gain Bandwidth Product

Common mode voltage range is the specified voltage range for the OPA+ and OPA- inputs, for which the OPA module will perform to within its specifications. The OPA module is designed to operate with input voltages between 0 and VDD-1.4V. Behavior for Common mode voltages greater than VDD-1.4V, or below 0V, are not guaranteed.

Leakage current is a measure of the small source or sink currents on the OPA+ and OPA- inputs. To minimize the effect of leakage currents, the effective impedances connected to the OPA+ and OPA- inputs should be kept as small as possible and equal.

Input offset voltage is a measure of the voltage difference between the OPA+ and OPA- inputs in a closed loop circuit with the OPA in its linear region. The offset voltage will appear as a DC offset in the output equal to the input offset voltage, multiplied by the gain of the circuit. The input offset voltage is also affected by the Common mode voltage. The OPA has an automatic calibration module which can minimize the input offset voltage of the module.

Open loop gain is the ratio of the output voltage to the differential input voltage, (OPA+) - (OPA-). The gain is greatest at DC and falls off with frequency.

Gain Bandwidth Product or GBWP is the frequency at which the open loop gain falls off to 0 dB. The lower GBWP is optimized for systems requiring low frequency response and low power consumption.

12.3 Effects of RESET

A RESET forces all registers to their RESET state. This disables both comparators.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
119h	CM1CON0	C10N	C10UT	C10E	C1POL	C1SP	C1R	C1CH1	C1CH0	0000 0000	0000 0000
11Ah	CM2CON0	C2ON	C2OUT	C2OE	C2POL	C2SP	C2R	C2CH1	C2CH0	0000 0000	0000 0000
11Bh	CM2CON1	MC1OUT	MC2OUT	_	—	_		—	C2SYNC	000	000
85h	TRISA	PORTA Da	ata Directio	n Registe	ər					1111 1111	1111 1111
86h	TRISB	PORTB Da	ata Directio	n Regist	er					1111 1111	1111 1111
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx 0000	uuuu 0000
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx 0000	uuuu 0000
9Dh	ANSEL	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0	1111 1111	1111 1111
0Ch	PIR1	LVDIF	ADIF	C2IF	C1IF	_	_	_	TMR1ON	00000	00000
8Ch	PIE1	LVDIE	ADIE	C2IE	C1IE	_	_	—	TMR1IE	00000	00000

TABLE 12-2: REGISTERS ASSOCIATED WITH THE COMPARATOR MODULE

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for comparator.

REGISTER 14-1: CONFIGURATION WORD FOR PIC16C781/782 DEVICE (CONFIG:2007h)

CP CP	BORV1 BORV	0 <u>CP</u>	CP	_	BODEN	MCLRE	PWRTE	WDTE	F0SC2	F0SC1	F0SC0
bit13	Bolter Bolte	0 0.	01		BODEN	MOLINE		IID I E	10002	10001	bit0
birro											Ditto
bit 13-12, 9-8	CP: Program M 1 = Code Prote 0 = All program	ction off									
bit 11-10	BORV<1:0>: Bo 00 = PBOR set 01 = PBOR set 10 = PBOR set 11 = PBOR set	to 4.5V to 4.2V to 2.7V	Reset V	/oltage	e bits						
bit 7	Unimplemente	d: Read a	as '1'								
bit 6	BODEN: Brown 1 = Brown-out I 0 = Brown-out I	Detect Re	eset ena	bled	ble bit ⁽¹⁾						
bit 5	$1 = RA5 \overline{MCLR}$	ICLRE: RA5/MCLR Pin Function Select bit = RA5/MCLR pin function is MCLR = RA5/MCLR pin function is digital input, MCLR internally tied to VDD									
bit 4	PWRTE : Power 1 = PWRT disal 0 = PWRT enab	oled	r Enable	e bit ⁽¹⁾)						
bit 3	WDTE: Watchd 1 = WDT enable 0 = WDT disabl	ed	Enable	bit							
bit 2-0	FOSC<2:0>: 03	scillator S	electior	n bits							
	FOSC<2:0>	OSCIL	LATOR	RA	S/OSC2/CI	KOUT/T1	ICKI	RA7/OS	C1/CLKIN	1	
	000	L	P		Crystal/F	Resonator	-	Crystal	Resonato	or	
	001	>	(T		Crystal/F	Resonator		Crystal	Resonate/	or	
	010	F	IS		Crystal/F	Resonator		Crystal	Resonate/	or	
	011	E	C		Digit	al I/O		С	LKIN		
	100	IN	FRC		Digit	al I/O		Dig	ital I/O		
	101	IN	FRC		CLK	OUT		Dig	ital I/O		
	110	F	RC		Digit	al I/O			RC		
	111	F	RC 01		CLK	OUT			RC		

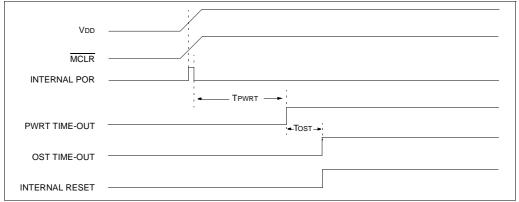
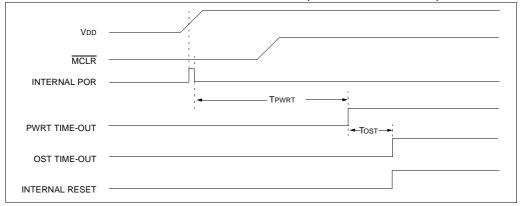

Note 1: All of the CP bits must be given the same value to enable code protection.

TABLE 14-5: RESET CONDITION FOR SPECIAL REGISTERS


Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0 1-01
MCLR Reset during normal operation	000h	000u uuuu	0 1-uu
MCLR Reset during SLEEP	000h	0001 0uuu	0 1-uu
WDT Reset	000h	0000 luuu	0 1-uu
WDT Wake-up	PC + 1	uuu0 0uuu	0 u-uu
Brown-out Reset	000h	0001 luuu	0 1-u0
Interrupt wake-up from SLEEP, GIE = 0	PC + 1	uuul Ouuu	u u-uu
Interrupt wake-up from SLEEP, GIE = 1	0004h	uuul Ouuu	u u-uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'.

FIGURE 14-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

FIGURE 14-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD)

FIGURE 14-12: WAKE-UP FROM SLEEP THROUGH INTERRUPT

		TOST		\'\		
NT pin	i i		1		1	
NTF flag	1		1		1	
NTCON<1>)		/	1		1	
GIE bit				Interrupt	Latency ⁽²⁾	
NTCON<7>)	1	Processor in	· ·			
1	1	SLEEP	1		1	
NSTRUCTION FLOW			i i			
PC X P	C X PC+1	χ PC+2	X PC+2	(PC + 2)	0004h χ	0005h
	= SLEEP Inst(PC -	+ 1)	Inst(PC + 2)		Inst(0004h)	Inst(0005h)
nstruction Fetched { Inst(PC)					Dummy cycle	

3: CLKOUT is not available in these osc modes, but shown here for timing reference.

TABLE 13-2: FIGTOGAAA INSTRUCTION SET	TABLE 15-2:	PIC16CXXX INSTRUCTION SET
---------------------------------------	-------------	---------------------------

Mnemonic,		Description	Cycles		14-Bit	Opcod	е	Status	Notes
Opera	inds	Description	Cycles	MSb)		LSb	Affected	NULES
		BYTE-ORIENTED FILE REG	ISTER O	PERA	TIONS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	0011	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF			1	00	0011	dfff	ffff	Z	1,2
DECFSZ	FSZ f, d Decrement f, Skip if 0		1(2)	00	1011	dfff	ffff		1,2,3
INCF	CF f, d Increment f		1	00	1010	dfff	ffff	Z	1,2
INCFSZ			1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF f, d		Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENTED FILE REGISTER OPERATIONS									
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL AND CONTROL OPERATIONS									
ADDLW	k	Add literal and W 1 11 111x kkkk kkkk		C,DC,Z					
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO, PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

16.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.

The MPLINK object linker features include:

- Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- Allows all memory areas to be defined as sections to provide link-time flexibility.

The MPLIB object librarian features include:

- Easier linking because single libraries can be included instead of many smaller files.
- Helps keep code maintainable by grouping related modules together.
- Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted.

16.5 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PIC series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multiproject software development tool.

16.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows environment were chosen to best make these features available to you, the end user.

16.7 ICEPIC In-Circuit Emulator

The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.

TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP

		PIC120	PIC14	PIC160	PIC160	D91019	PIC16F	PIC16C	PIC16C	PIC16C	PIC16F8	PIC16C9	PIC17C	2271219	XD81DI9	PIC18FX	83CXX 52CXX/ 54CXX/	ххзэн	мсвехх	MCP251
	MPLAB [®] Integrated Development Environment	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
	MPLAB® C17 C Compiler												>	>						
	MPLAB [®] C18 C Compiler														~	1				
NOS A M	MPASM TM Assembler/ MPLINK TM Object Linker	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>		
	MPLAB® ICE In-Circuit Emulator	~	~	`	`	<	<**	~	~	<	~	>	>	~	~	1				
	ICEPIC TM In-Circuit Emulator	^		>	~	~		>	>	~		^								
of ⊒ D ⊻ Depn88et	MPL AB® ICD In-Circuit Debugger				*			*>			>					>				
	PICSTART® Plus Entry Level Development Programmer	`	>	>	`	`	<**	~	~	`	`	`	`	`	`	1				
Program	PRO MATE® II Universal Device Programmer	^	^	>	>	^	** ^	^	^	^	^	~	>	>	>	~	~	^		
PIC B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PICDEM TM 1 Demonstration Board			>		>		.≁		>			>							
Bög	PICDEM TM 2 Demonstration Board				<+ \			✓†							>	~				
	PICDEM TM 3 Demonstration Board											>								
	PICDEM TM 14A Demonstration Board		>																	
	PICDEM TM 17 Demonstration Board													>						
	KEELoq® Evaluation Kit																	1		
	KEELoa [®] Transponder Kit																	1		
	microlD TM Programmer's Kit																		>	
	125 kHz microlD™ Developer's Kit																		>	
12! De	125 kHz Anticollision microlD™ Developer's Kit																		>	
13.° Mic	13.56 MHz Anticollision microlD™ Developer's Kit																		>	
ğ	MCP2510 CAN Developer's Kit																			^

© 2001-2013 Microchip Technology Inc.

17.1 DC Characteristics: Power Supply

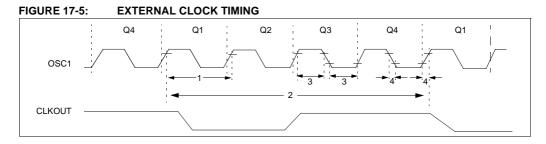
TABLE 17-1: DC CHARACTERISTICS: PIC16C781/782, DSTEMP (INDUSTRIAL)

DC CHA	RACTER	ISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature-40°C \leq TA \leq +85°C for industrial								
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions				
D001	Vdd	Supply Voltage	4.0 4.5	_	5.5 5.5		XT, EC, RC, INTRC Oscillator HS Oscillator				
D001A	Vdd	Supply Voltage (DSTEMP)	2.7 4.5	_	5.5 5.5	V V	XT, EC, RC, INTRC Oscillator HS Oscillator				
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾	-	1.5	—	V					
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	-	TBD	—	V	See section on Power-on Reset for details				
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	_	V/ms	See section on Power-on Reset for details. PWRT enabled				
D010	IDD	Supply Current ⁽²⁾	_	TBD TBD	TBD TBD	mA mA	Fosc = 20 MHz, VDD = 5.5V* HS Oscillator Fosc = 20 MHz, VDD = 4.5V				
			_	TBD	TBD	mA	HS Oscillator Fosc = 4 MHz, VDD = 4.0V* XT, RC w/CLKOUT				
			-	TBD	TBD	mA	Fosc = 32 kHz, VDD = 4.0V LP Oscillator				
D020 D020A	IPD	Power-down Current ⁽³⁾	_	TBD 1.5	TBD 19	μΑ μΑ	VDD = 5.5V VDD = 4.0V				
	Ιορά	Operational Amplifier	-	TBD TBD	TBD	mA mA	VDD = 5.0V, GBWP = 0 VDD = 5.0V.				
				100	100	mA	GBWP = 1				
	Ivc*	Voltage Comparators C1 and C2	-	TBD	TBD	mA	$V_{DD} = 5.0V, V_{ID} > 100 mV$ C1SP = 0				
			-	TBD	TBD	mA	VDD = 5.0 , VID>100 mV C1SP = 1				
	IADC*	Digital to Analog Converter (DAC)	—	TBD	TBD	mA	VDD = 5.0V				
D021	IWDT*	Watchdog Timer	—	TBD	TBD	mA	VDD = 4.0V				
D026	IAD*	Analog-to-Digital Converter (ADC)	—	TBD	TBD	mA	VDD = 5.5V, ADC not converting				
	IPLVD*	Programmable Low Voltage Detect		TBD	TBD	mA	VDD = 4.0V				
	IPBOR*	Programmable Brown-out Reset		TBD	TBD	mA	VDD = 5.0V				
1A	Fosc	LP Oscillator, Operating Freq. INTRC Oscillator Operating Freq.	9		200 	kHz MHz kHz	All temperatures All temperatures, OSCF = 1 All temperatures, OSCF = 0				
		XT Oscillator Operating Freq. HS Oscillator Operating Freq.	0 0	_	4 20	MHz MHz	All temperatures All temperatures				

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.


2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

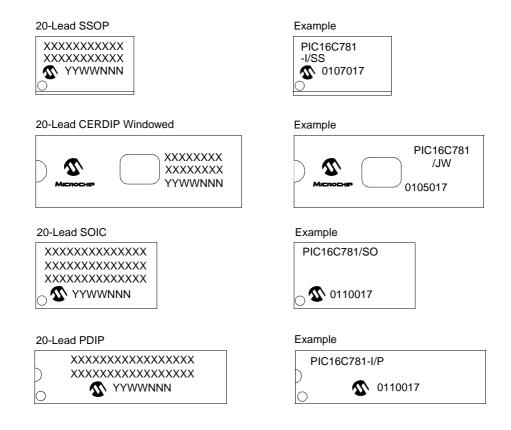
OSC1 = external square wave, from rail-to-rail; all I/O pins configured as inputs, pulled to VDD

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins configured as iputs and tied to VDD or VSS.

TABLE 17-4: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
1A	Fosc	External CLKIN Frequency ⁽¹⁾	DC		4	MHz	XT osc mode
			DC	_	20	MHz	EC osc mode
			DC	_	20	MHz	HS osc mode
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency ⁽¹⁾	0.1		4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period ⁽¹⁾	250	_	—	ns	XT and RC osc mode
			50	_	—	ns	EC osc mode
			50	_	—	ns	HS osc mode
			5	—	—	μs	LP osc mode
		Oscillator Period ⁽¹⁾	250	_	10,000	ns	XT osc mode
			50	_	250	ns	HS osc mode
			5	_	—	μS	LP osc mode
2	TCY	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	TCY = 4/FOSC
3*	TOSL,	External Clock in (OSC1) High or	100	_	_	ns	XT oscillator
	Tosh	Low Time	2.5	—	—	μs	LP oscillator
			15	_	—	ns	HS oscillator
							EC oscillator
4*	TOSR,	External Clock in (OSC1) Rise or	—	_	25	ns	XT oscillator
	TOSF	Fall Time	—	—	50	ns	LP oscillator
			—	_	15	ns	HS oscillator
							EC oscillator


- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.

When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

NOTES:

19.0 PACKAGING INFORMATION

19.1 Package Marking Information

Legend:	XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((a)) can be found on the outer packaging for this package.
I	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

© 2001-2013 Microchip Technology Inc.