# E·XFL



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                |
|----------------------------|-----------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M4                                                       |
| Core Size                  | 32-Bit Single-Core                                                    |
| Speed                      | 72MHz                                                                 |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, SPI, UART/USART, USB, USB OTG         |
| Peripherals                | DMA, I <sup>2</sup> S, LCD, LVD, POR, PWM, WDT                        |
| Number of I/O              | 52                                                                    |
| Program Memory Size        | 256KB (256K x 8)                                                      |
| Program Memory Type        | FLASH                                                                 |
| EEPROM Size                | 2K x 8                                                                |
| RAM Size                   | 64K x 8                                                               |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 3.6V                                                          |
| Data Converters            | A/D 27x16b; D/A 1x12b                                                 |
| Oscillator Type            | Internal                                                              |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                    |
| Mounting Type              | Surface Mount                                                         |
| Package / Case             | 80-LQFP                                                               |
| Supplier Device Package    | 80-FQFP (12x12)                                                       |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/mk40dx256vlk7 |
|                            |                                                                       |

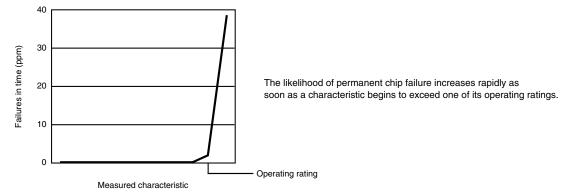
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



## 3.4 Definition: Rating

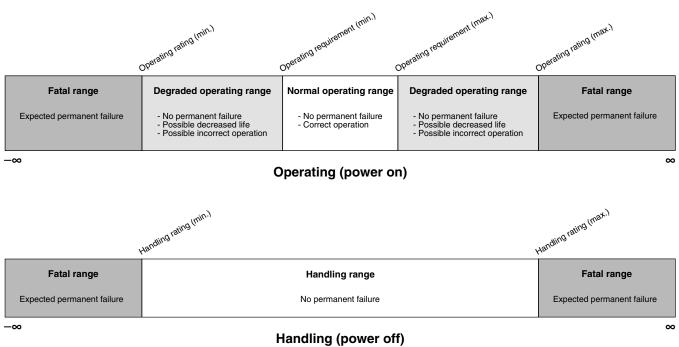
A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:


- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

## 3.4.1 Example

This is an example of an operating rating:

| Symbol          | Description                  | Min. | Max. | Unit |
|-----------------|------------------------------|------|------|------|
| V <sub>DD</sub> | 1.0 V core supply<br>voltage | -0.3 | 1.2  | V    |


# 3.5 Result of exceeding a rating





**Terminology and guidelines** 





## 3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

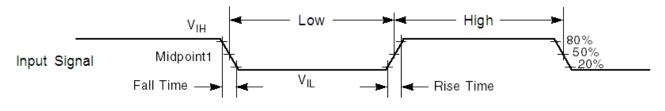
## 3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.




| Symbol           | Description                                                    | Min.                  | Max.                  | Unit |
|------------------|----------------------------------------------------------------|-----------------------|-----------------------|------|
| I <sub>DD</sub>  | Digital supply current                                         | —                     | 185                   | mA   |
| V <sub>DIO</sub> | Digital input voltage (except RESET, EXTAL, and XTAL)          | -0.3                  | 5.5                   | V    |
| V <sub>AIO</sub> | Analog <sup>1</sup> , RESET, EXTAL, and XTAL input voltage     | -0.3                  | V <sub>DD</sub> + 0.3 | V    |
| Ι <sub>D</sub>   | Maximum current single pin limit (applies to all digital pins) | -25                   | 25                    | mA   |
| V <sub>DDA</sub> | Analog supply voltage                                          | V <sub>DD</sub> - 0.3 | V <sub>DD</sub> + 0.3 | V    |
| $V_{USB_{DP}}$   | USB_DP input voltage                                           | -0.3                  | 3.63                  | V    |
| $V_{USB_{DM}}$   | USB_DM input voltage                                           | -0.3                  | 3.63                  | V    |
| VREGIN           | USB regulator input                                            | -0.3                  | 6.0                   | V    |
| V <sub>BAT</sub> | RTC battery supply voltage                                     | -0.3                  | 3.8                   | V    |

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

# 5 General

## 5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.



The midpoint is  $V_{IL}$  +  $(V_{IH} - V_{IL})/2$ .



All digital I/O switching characteristics assume:

- 1. output pins
  - have C<sub>L</sub>=30pF loads,
  - are configured for fast slew rate (PORTx\_PCRn[SRE]=0), and
  - are configured for high drive strength (PORTx\_PCRn[DSE]=1)
- 2. input pins
  - have their passive filter disabled (PORTx\_PCRn[PFE]=0)

## 5.2 Nonswitching electrical specifications





## 5.3 Switching specifications

## 5.3.1 Device clock specifications

## Table 8. Device clock specifications

| Symbol                     | Description                                            | Min. | Max. | Unit | Notes |
|----------------------------|--------------------------------------------------------|------|------|------|-------|
|                            | Normal run moc                                         | e    |      | •    |       |
| f <sub>SYS</sub>           | System and core clock                                  | —    | 72   | MHz  |       |
| f <sub>SYS_USB</sub>       | System and core clock when Full Speed USB in operation | 20   | -    | MHz  |       |
| f <sub>BUS</sub>           | Bus clock                                              | _    | 50   | MHz  |       |
| f <sub>FLASH</sub>         | Flash clock                                            | _    | 25   | MHz  |       |
| f <sub>LPTMR</sub>         | LPTMR clock                                            | _    | 25   | MHz  |       |
|                            | VLPR mode <sup>1</sup>                                 |      | •    |      |       |
| f <sub>SYS</sub>           | System and core clock                                  | —    | 4    | MHz  |       |
| f <sub>BUS</sub>           | Bus clock                                              | _    | 4    | MHz  |       |
| f <sub>FLASH</sub>         | Flash clock                                            | _    | 0.5  | MHz  |       |
| f <sub>ERCLK</sub>         | External reference clock                               | _    | 16   | MHz  |       |
| f <sub>LPTMR_pin</sub>     | LPTMR clock                                            | _    | 25   | MHz  |       |
| f <sub>LPTMR_ERCLK</sub>   | LPTMR external reference clock                         | _    | 16   | MHz  |       |
| f <sub>FlexCAN_ERCLK</sub> | FlexCAN external reference clock                       | _    | 8    | MHz  |       |
| f <sub>I2S_MCLK</sub>      | I2S master clock                                       | —    | 12.5 | MHz  |       |
| f <sub>I2S_BCLK</sub>      | I2S bit clock                                          | _    | 4    | MHz  |       |

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

## 5.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, CAN, CMT, and I<sup>2</sup>C signals.

| Symbol | Description                                                                                                | Min. | Max. | Unit                | Notes |
|--------|------------------------------------------------------------------------------------------------------------|------|------|---------------------|-------|
|        | GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path                         | 1.5  | _    | Bus clock<br>cycles | 1, 2  |
|        | GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path | 100  | —    | ns                  | 3     |

 Table 9. General switching specifications

Table continues on the next page...



| Symbol | Description                                        | Min. | Max. | Unit |
|--------|----------------------------------------------------|------|------|------|
| J1     | TCLK frequency of operation                        |      |      | MHz  |
|        | Boundary Scan                                      | 0    | 10   |      |
|        | JTAG and CJTAG                                     | 0    | 25   |      |
|        | Serial Wire Debug                                  | 0    | 50   |      |
| J2     | TCLK cycle period                                  | 1/J1 |      | ns   |
| J3     | TCLK clock pulse width                             |      |      |      |
|        | Boundary Scan                                      | 50   | _    | ns   |
|        | JTAG and CJTAG                                     | 20   | _    | ns   |
|        | Serial Wire Debug                                  | 10   | _    | ns   |
| J4     | TCLK rise and fall times                           |      | 3    | ns   |
| J5     | Boundary scan input data setup time to TCLK rise   | 20   |      | ns   |
| J6     | Boundary scan input data hold time after TCLK rise | 0    |      | ns   |
| J7     | TCLK low to boundary scan output data valid        | —    | 25   | ns   |
| J8     | TCLK low to boundary scan output high-Z            | _    | 25   | ns   |
| J9     | TMS, TDI input data setup time to TCLK rise        | 8    |      | ns   |
| J10    | TMS, TDI input data hold time after TCLK rise      | 1    | _    | ns   |
| J11    | TCLK low to TDO data valid                         | —    | 17   | ns   |
| J12    | TCLK low to TDO high-Z                             | —    | 17   | ns   |
| J13    | TRST assert time                                   | 100  | —    | ns   |
| J14    | TRST setup time (negation) to TCLK high            | 8    |      | ns   |

## Table 12. JTAG limited voltage range electricals (continued)

Table 13. JTAG full voltage range electricals

| Symbol | Description                                        | Min. | Max. | Unit |
|--------|----------------------------------------------------|------|------|------|
|        | Operating voltage                                  | 1.71 | 3.6  | V    |
| J1     | TCLK frequency of operation                        |      |      | MHz  |
|        | Boundary Scan                                      | 0    | 10   |      |
|        | JTAG and CJTAG                                     | 0    | 20   |      |
|        | Serial Wire Debug                                  | 0    | 40   |      |
| J2     | TCLK cycle period                                  | 1/J1 |      | ns   |
| J3     | TCLK clock pulse width                             |      |      |      |
|        | Boundary Scan                                      | 50   | —    | ns   |
|        | JTAG and CJTAG                                     | 25   | —    | ns   |
|        | Serial Wire Debug                                  | 12.5 | —    | ns   |
| J4     | TCLK rise and fall times                           | —    | 3    | ns   |
| J5     | Boundary scan input data setup time to TCLK rise   | 20   |      | ns   |
| J6     | Boundary scan input data hold time after TCLK rise | 0    |      | ns   |

Table continues on the next page ...

#### K40 Sub-Family Data Sheet, Rev. 3, 11/2012.



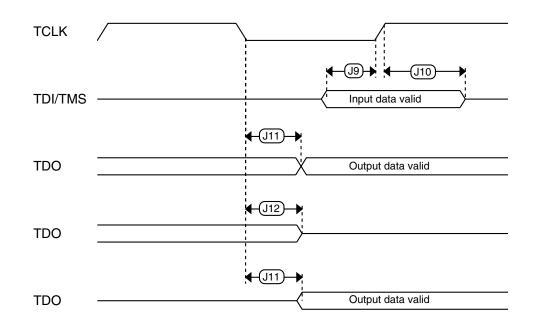
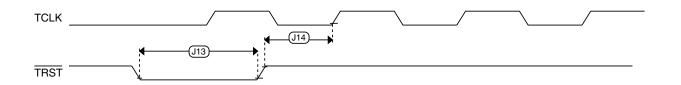




Figure 8. Test Access Port timing





## 6.2 System modules

There are no specifications necessary for the device's system modules.

## 6.3 Clock modules



| Symbol                   | Description                                                                                                                    | Min.   | Тур. | Max.                                        | Unit | Notes |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------|------|---------------------------------------------|------|-------|
| J <sub>cyc_fll</sub>     | FLL period jitter                                                                                                              | _      | 180  | _                                           | ps   |       |
|                          | <ul> <li>f<sub>VCO</sub> = 48 MHz</li> <li>f<sub>VCO</sub> = 98 MHz</li> </ul>                                                 | _      | 150  | _                                           |      |       |
| t <sub>fll_acquire</sub> | FLL target frequency acquisition time                                                                                          | _      | —    | 1                                           | ms   | 6     |
|                          | P                                                                                                                              | ĹĹ     |      |                                             |      |       |
| f <sub>vco</sub>         | VCO operating frequency                                                                                                        | 48.0   | —    | 100                                         | MHz  |       |
| I <sub>pll</sub>         | PLL operating current<br>• PLL @ 96 MHz (f <sub>osc_hi_1</sub> = 8 MHz, f <sub>pll_ref</sub> =<br>2 MHz, VDIV multiplier = 48) | _      | 1060 | _                                           | μΑ   | 7     |
| I <sub>pll</sub>         | PLL operating current<br>• PLL @ 48 MHz (f <sub>osc_hi_1</sub> = 8 MHz, f <sub>pll_ref</sub> =<br>2 MHz, VDIV multiplier = 24) | _      | 600  | -                                           | μA   | 7     |
| f <sub>pll_ref</sub>     | PLL reference frequency range                                                                                                  | 2.0    | _    | 4.0                                         | MHz  |       |
| J <sub>cyc_pll</sub>     | PLL period jitter (RMS)                                                                                                        |        |      |                                             |      | 8     |
|                          | • f <sub>vco</sub> = 48 MHz                                                                                                    | _      | 120  |                                             | ps   |       |
|                          | • f <sub>vco</sub> = 100 MHz                                                                                                   | _      | 50   | _                                           | ps   |       |
| J <sub>acc_pll</sub>     | PLL accumulated jitter over 1µs (RMS)                                                                                          |        |      |                                             |      | 8     |
|                          | • f <sub>vco</sub> = 48 MHz                                                                                                    | _      | 1350 |                                             | ps   |       |
|                          | • f <sub>vco</sub> = 100 MHz                                                                                                   | _      | 600  | _                                           | ps   |       |
| D <sub>lock</sub>        | Lock entry frequency tolerance                                                                                                 | ± 1.49 | —    | ± 2.98                                      | %    |       |
| D <sub>unl</sub>         | Lock exit frequency tolerance                                                                                                  | ± 4.47 | —    | ± 5.97                                      | %    |       |
| t <sub>pll_lock</sub>    | Lock detector detection time                                                                                                   | _      | _    | $150 \times 10^{-6} + 1075(1/ f_{pll_ref})$ | S    | 9     |

Table 14. MCG specifications (continued)

1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).

- 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation
   (Δf<sub>dco t</sub>) over voltage and temperature should be considered.
- 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

## 6.3.2 Oscillator electrical specifications

This section provides the electrical characteristics of the module.

#### K40 Sub-Family Data Sheet, Rev. 3, 11/2012.



## 6.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

| Symbol                    | Description                              | Min. | Тур. | Max. | Unit | Notes |
|---------------------------|------------------------------------------|------|------|------|------|-------|
| t <sub>hvpgm4</sub>       | Longword Program high-voltage time       | —    | 7.5  | 18   | μs   |       |
| t <sub>hversscr</sub>     | Sector Erase high-voltage time           | _    | 13   | 113  | ms   | 1     |
| t <sub>hversblk32k</sub>  | Erase Block high-voltage time for 32 KB  | _    | 52   | 452  | ms   | 1     |
| t <sub>hversblk256k</sub> | Erase Block high-voltage time for 256 KB | _    | 104  | 904  | ms   | 1     |

#### Table 19. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

### 6.4.1.2 Flash timing specifications — commands Table 20. Flash command timing specifications

| Symbol                  | Description                                           | Min. | Тур. | Max. | Unit | Notes |
|-------------------------|-------------------------------------------------------|------|------|------|------|-------|
|                         | Read 1s Block execution time                          |      |      |      |      |       |
| t <sub>rd1blk32k</sub>  | • 32 KB data flash                                    | _    | _    | 0.5  | ms   |       |
| t <sub>rd1blk256k</sub> | 256 KB program flash                                  | _    | _    | 1.7  | ms   |       |
| t <sub>rd1sec1k</sub>   | Read 1s Section execution time (data flash sector)    | _    |      | 60   | μs   | 1     |
| t <sub>rd1sec2k</sub>   | Read 1s Section execution time (program flash sector) | _    |      | 60   | μs   | 1     |
| t <sub>pgmchk</sub>     | Program Check execution time                          | _    | —    | 45   | μs   | 1     |
| t <sub>rdrsrc</sub>     | Read Resource execution time                          | _    | —    | 30   | μs   | 1     |
| t <sub>pgm4</sub>       | Program Longword execution time                       | _    | 65   | 145  | μs   |       |
|                         | Erase Flash Block execution time                      |      |      |      |      | 2     |
| t <sub>ersblk32k</sub>  | 32 KB data flash                                      | _    | 55   | 465  | ms   |       |
| t <sub>ersblk256k</sub> | 256 KB program flash                                  | _    | 122  | 985  | ms   |       |
| t <sub>ersscr</sub>     | Erase Flash Sector execution time                     |      | 14   | 114  | ms   | 2     |
|                         | Program Section execution time                        |      |      |      |      |       |
| t <sub>pgmsec512p</sub> | • 512 B program flash                                 | _    | 2.4  | _    | ms   |       |
| t <sub>pgmsec512d</sub> | • 512 B data flash                                    | _    | 4.7  | _    | ms   |       |
| t <sub>pgmsec1kp</sub>  | 1 KB program flash                                    | _    | 4.7  | _    | ms   |       |
| t <sub>pgmsec1kd</sub>  | • 1 KB data flash                                     | _    | 9.3  | _    | ms   |       |
| t <sub>rd1all</sub>     | Read 1s All Blocks execution time                     | _    | _    | 1.8  | ms   |       |
| t <sub>rdonce</sub>     | Read Once execution time                              |      | —    | 25   | μs   | 1     |
| t <sub>pgmonce</sub>    | Program Once execution time                           | —    | 65   | —    | μs   |       |
| t <sub>ersall</sub>     | Erase All Blocks execution time                       | _    | 175  | 1500 | ms   | 2     |

Table continues on the next page...

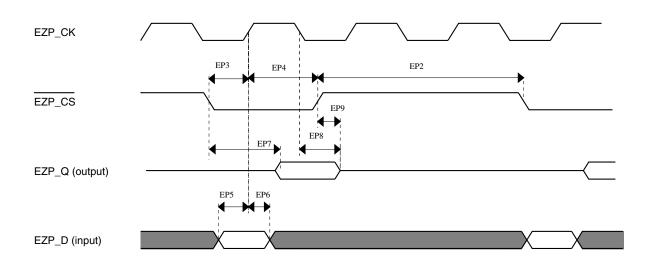



Figure 11. EzPort Timing Diagram

# 6.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

# 6.6 Analog

# 6.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 24 and Table 25 are achievable on the differential pins ADCx\_DP0, ADCx\_DM0.

The ADCx\_DP2 and ADCx\_DM2 ADC inputs are connected to the PGA outputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 26 and Table 27.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.



### 6.6.1.3 16-bit ADC with PGA operating conditions Table 26. 16-bit ADC with PGA operating conditions

| Symbol              | Description                | Conditions                                                                                                                                                   | Min.             | Typ. <sup>1</sup> | Max.             | Unit | Notes                   |
|---------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|------------------|------|-------------------------|
| V <sub>DDA</sub>    | Supply voltage             | Absolute                                                                                                                                                     | 1.71             | _                 | 3.6              | V    |                         |
| V <sub>REFPGA</sub> | PGA ref voltage            |                                                                                                                                                              | VREF_OU<br>T     | VREF_OU<br>T      | VREF_OU<br>T     | V    | 2, 3                    |
| V <sub>ADIN</sub>   | Input voltage              |                                                                                                                                                              | V <sub>SSA</sub> | _                 | V <sub>DDA</sub> | V    |                         |
| V <sub>CM</sub>     | Input Common<br>Mode range |                                                                                                                                                              | V <sub>SSA</sub> | —                 | V <sub>DDA</sub> | V    |                         |
| R <sub>PGAD</sub>   | Differential input         | Gain = 1, 2, 4, 8                                                                                                                                            | _                | 128               | —                | kΩ   | IN+ to IN- <sup>4</sup> |
|                     | impedance                  | Gain = 16, 32                                                                                                                                                | —                | 64                | —                |      |                         |
|                     |                            | Gain = 64                                                                                                                                                    | _                | 32                | —                |      |                         |
| R <sub>AS</sub>     | Analog source resistance   |                                                                                                                                                              |                  | 100               | —                | Ω    | 5                       |
| Τ <sub>S</sub>      | ADC sampling time          |                                                                                                                                                              | 1.25             | —                 | —                | μs   | 6                       |
| C <sub>rate</sub>   | ADC conversion<br>rate     | <ul> <li>≤ 13 bit modes</li> <li>No ADC hardware<br/>averaging</li> <li>Continuous conversions<br/>enabled</li> <li>Peripheral clock = 50<br/>MHz</li> </ul> | 18.484           | _                 | 450              | Ksps | 7                       |
|                     |                            | 16 bit modes<br>No ADC hardware<br>averaging<br>Continuous conversions<br>enabled<br>Peripheral clock = 50<br>MHz                                            | 37.037           | _                 | 250              | Ksps | 8                       |

- 1. Typical values assume V<sub>DDA</sub> = 3.0 V, Temp = 25°C, f<sub>ADCK</sub> = 6 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. ADC must be configured to use the internal voltage reference (VREF\_OUT)
- 3. PGA reference is internally connected to the VREF\_OUT pin. If the user wishes to drive VREF\_OUT with a voltage other than the output of the VREF module, the VREF module must be disabled.
- 4. For single ended configurations the input impedance of the driven input is  $R_{\text{PGAD}}/2$
- 5. The analog source resistance (R<sub>AS</sub>), external to MCU, should be kept as minimum as possible. Increased R<sub>AS</sub> causes drop in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.
- The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs time should be allowed for F<sub>in</sub>=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at 8 MHz ADC clock.
- 7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1
- 8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1



Peripheral operating requirements and behaviors

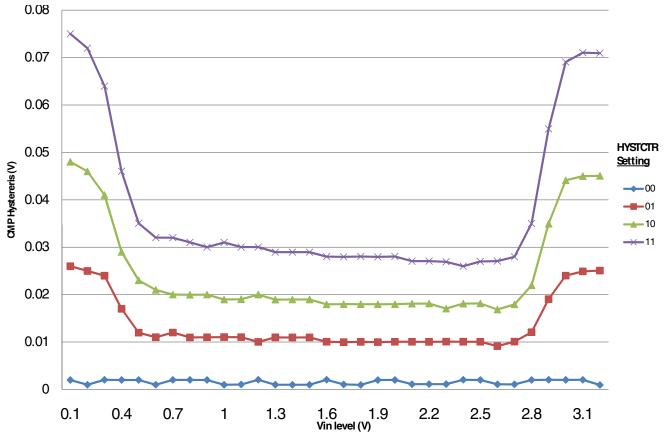



Figure 15. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)



rempheral operating requirements and behaviors



Figure 16. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)

## 6.6.3 12-bit DAC electrical characteristics

## 6.6.3.1 12-bit DAC operating requirements Table 29. 12-bit DAC operating requirements

| Symbol            | Desciption              | Min. | Max.                    | Unit | Notes |
|-------------------|-------------------------|------|-------------------------|------|-------|
| V <sub>DDA</sub>  | Supply voltage          | 1.71 | 3.6                     | V    |       |
| V <sub>DACR</sub> | Reference voltage       | 1.13 | 3.6                     | V    | 1     |
| T <sub>A</sub>    | Temperature             |      | emperature<br>he device | °C   |       |
| CL                | Output load capacitance | _    | 100                     | pF   | 2     |
| ١L                | Output load current     | —    | 1                       | mA   |       |

1. The DAC reference can be selected to be V<sub>DDA</sub> or the voltage output of the VREF module (VREF\_OUT)

2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC



#### rempheral operating requirements and behaviors

| Symbol              | Description                                                                         | Min.   | Тур.  | Max.   | Unit | Notes |
|---------------------|-------------------------------------------------------------------------------------|--------|-------|--------|------|-------|
| V <sub>out</sub>    | Voltage reference output with factory trim at nominal $V_{DDA}$ and temperature=25C | 1.1915 | 1.195 | 1.1977 | V    |       |
| V <sub>out</sub>    | Voltage reference output — factory trim                                             | 1.1584 | _     | 1.2376 | V    |       |
| V <sub>out</sub>    | Voltage reference output — user trim                                                | 1.193  | —     | 1.197  | V    |       |
| V <sub>step</sub>   | Voltage reference trim step                                                         | _      | 0.5   | _      | mV   |       |
| V <sub>tdrift</sub> | Temperature drift (Vmax -Vmin across the full temperature range)                    | _      | _     | 80     | mV   |       |
| I <sub>bg</sub>     | Bandgap only current                                                                | —      | —     | 80     | μA   | 1     |
| I <sub>lp</sub>     | Low-power buffer current                                                            | —      | —     | 360    | uA   | 1     |
| I <sub>hp</sub>     | High-power buffer current                                                           | —      | —     | 1      | mA   | 1     |
| $\Delta V_{LOAD}$   | Load regulation                                                                     |        |       |        | μV   | 1, 2  |
|                     | • current = ± 1.0 mA                                                                | -      | 200   | _      |      |       |
| T <sub>stup</sub>   | Buffer startup time                                                                 | —      |       | 100    | μs   |       |
| V <sub>vdrift</sub> | Voltage drift (Vmax -Vmin across the full voltage range)                            | —      | 2     | -      | mV   | 1     |

#### Table 32. VREF full-range operating behaviors

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.

2. Load regulation voltage is the difference between the VREF\_OUT voltage with no load vs. voltage with defined load

### Table 33. VREF limited-range operating requirements

| Symbol         | Description | Min. | Max. | Unit | Notes |
|----------------|-------------|------|------|------|-------|
| T <sub>A</sub> | Temperature | 0    | 50   | °C   |       |

### Table 34. VREF limited-range operating behaviors

| Symbol           | Description                                | Min.  | Max.  | Unit | Notes |
|------------------|--------------------------------------------|-------|-------|------|-------|
| V <sub>out</sub> | Voltage reference output with factory trim | 1.173 | 1.225 | V    |       |

## 6.7 Timers

See General switching specifications.

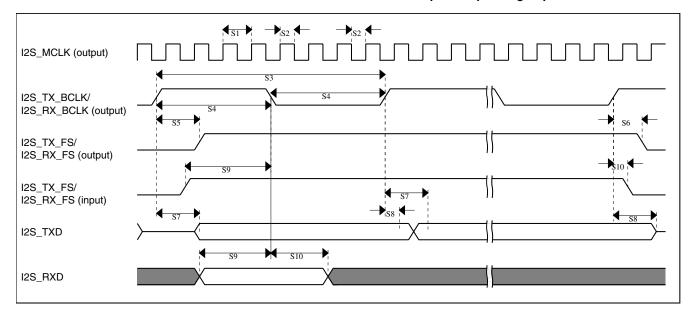
## 6.8 Communication interfaces



rempheral operating requirements and behaviors

is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures.

# 6.8.9.1 Normal Run, Wait and Stop mode performance over the full operating voltage range


This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes.

| Num. | Characteristic                                                    | Min. | Max. | Unit        |
|------|-------------------------------------------------------------------|------|------|-------------|
|      | Operating voltage                                                 | 1.71 | 3.6  | V           |
| S1   | I2S_MCLK cycle time                                               | 40   | _    | ns          |
| S2   | I2S_MCLK pulse width high/low                                     | 45%  | 55%  | MCLK period |
| S3   | I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)                       | 80   | _    | ns          |
| S4   | I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low                      | 45%  | 55%  | BCLK period |
| S5   | I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/<br>I2S_RX_FS output valid   | —    | 15   | ns          |
| S6   | I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/<br>I2S_RX_FS output invalid | -1.0 | _    | ns          |
| S7   | I2S_TX_BCLK to I2S_TXD valid                                      | —    | 15   | ns          |
| S8   | I2S_TX_BCLK to I2S_TXD invalid                                    | 0    | _    | ns          |
| S9   | I2S_RXD/I2S_RX_FS input setup before<br>I2S_RX_BCLK               | 20.5 | -    | ns          |
| S10  | I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK                    | 0    | _    | ns          |

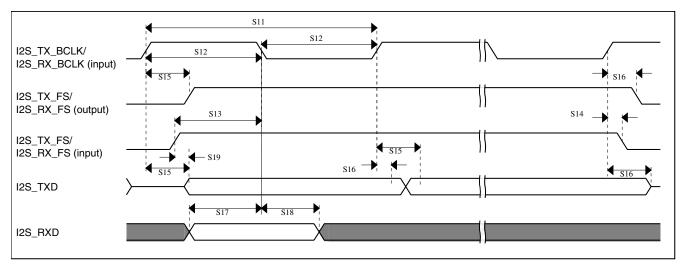
# Table 41. I2S/SAI master mode timing in Normal Run, Wait and Stop modes<br/>(full voltage range)



#### Peripheral operating requirements and behaviors



### Figure 25. I2S/SAI timing — master modes


# Table 44. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

| Num. | Characteristic                                                    | Min. | Max. | Unit        |
|------|-------------------------------------------------------------------|------|------|-------------|
|      | Operating voltage                                                 | 1.71 | 3.6  | V           |
| S11  | I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)                        | 250  | —    | ns          |
| S12  | I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)              | 45%  | 55%  | MCLK period |
| S13  | I2S_TX_FS/I2S_RX_FS input setup before<br>I2S_TX_BCLK/I2S_RX_BCLK | 30   | -    | ns          |
| S14  | I2S_TX_FS/I2S_RX_FS input hold after<br>I2S_TX_BCLK/I2S_RX_BCLK   | 7.6  | -    | ns          |
| S15  | I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid                     | —    | 67   | ns          |
| S16  | I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid                   | 0    | —    | ns          |
| S17  | I2S_RXD setup before I2S_RX_BCLK                                  | 30   | —    | ns          |
| S18  | I2S_RXD hold after I2S_RX_BCLK                                    | 6.5  | —    | ns          |
| S19  | I2S_TX_FS input assertion to I2S_TXD output valid <sup>1</sup>    |      | 72   | ns          |

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear



rempheral operating requirements and behaviors





## 6.9 Human-machine interfaces (HMI)

## 6.9.1 TSI electrical specifications

Table 45. TSI electrical specifications

| Symbol               | Description                                                                      | Min.  | Тур.   | Max.  | Unit     | Notes |
|----------------------|----------------------------------------------------------------------------------|-------|--------|-------|----------|-------|
| V <sub>DDTSI</sub>   | Operating voltage                                                                | 1.71  | _      | 3.6   | V        |       |
| C <sub>ELE</sub>     | Target electrode capacitance range                                               | 1     | 20     | 500   | pF       | 1     |
| f <sub>REFmax</sub>  | Reference oscillator frequency                                                   | _     | 8      | 15    | MHz      | 2, 3  |
| f <sub>ELEmax</sub>  | Electrode oscillator frequency                                                   | _     | 1      | 1.8   | MHz      | 2, 4  |
| C <sub>REF</sub>     | Internal reference capacitor                                                     | _     | 1      | _     | pF       |       |
| V <sub>DELTA</sub>   | Oscillator delta voltage                                                         | _     | 500    | _     | mV       | 2, 5  |
| I <sub>REF</sub>     | Reference oscillator current source base current<br>• 2 μA setting (REFCHRG = 0) | _     | 2      | 3     | μA       | 2, 6  |
|                      | <ul> <li>32 µA setting (REFCHRG = 15)</li> </ul>                                 | _     | 36     | 50    |          |       |
| I <sub>ELE</sub>     | Electrode oscillator current source base current<br>• 2 μA setting (EXTCHRG = 0) | _     | 2      | 3     | μΑ       | 2, 7  |
|                      | • 32 µA setting (EXTCHRG = 15)                                                   | —     | 36     | 50    |          |       |
| Pres5                | Electrode capacitance measurement precision                                      | _     | 8.3333 | 38400 | fF/count | 8     |
| Pres20               | Electrode capacitance measurement precision                                      | _     | 8.3333 | 38400 | fF/count | 9     |
| Pres100              | Electrode capacitance measurement precision                                      | _     | 8.3333 | 38400 | fF/count | 10    |
| MaxSens              | Maximum sensitivity                                                              | 0.008 | 1.46   | _     | fF/count | 11    |
| Res                  | Resolution                                                                       | _     |        | 16    | bits     |       |
| T <sub>Con20</sub>   | Response time @ 20 pF                                                            | 8     | 15     | 25    | μs       | 12    |
| I <sub>TSI_RUN</sub> | Current added in run mode                                                        | _     | 55     | _     | μA       |       |
| I <sub>TSI_LP</sub>  | Low power mode current adder                                                     | _     | 1.3    | 2.5   | μA       | 13    |

| 80<br>LQFP | Pin Name                                         | Default                                          | ALTO                                             | ALT1             | ALT2                            | ALT3        | ALT4 | ALT5 | ALT6     | ALT7                  | EzPort  |
|------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------|---------------------------------|-------------|------|------|----------|-----------------------|---------|
| 2          | PTE1/<br>LLWU_P0                                 | ADC1_SE5a                                        | ADC1_SE5a                                        | PTE1/<br>LLWU_P0 | SPI1_SOUT                       | UART1_RX    |      |      | I2C1_SCL | SPI1_SIN              |         |
| 3          | PTE2/<br>LLWU_P1                                 | ADC1_SE6a                                        | ADC1_SE6a                                        | PTE2/<br>LLWU_P1 | SPI1_SCK                        | UART1_CTS_b |      |      |          |                       |         |
| 4          | PTE3                                             | ADC1_SE7a                                        | ADC1_SE7a                                        | PTE3             | SPI1_SIN                        | UART1_RTS_b |      |      |          | SPI1_SOUT             |         |
| 5          | PTE4/<br>LLWU_P2                                 | DISABLED                                         |                                                  | PTE4/<br>LLWU_P2 | SPI1_PCS0                       | UART3_TX    |      |      |          |                       |         |
| 6          | PTE5                                             | DISABLED                                         |                                                  | PTE5             | SPI1_PCS2                       | UART3_RX    |      |      |          |                       |         |
| 7          | VDD                                              | VDD                                              | VDD                                              |                  |                                 |             |      |      |          |                       |         |
| 8          | VSS                                              | VSS                                              | VSS                                              |                  |                                 |             |      |      |          |                       |         |
| 9          | USB0_DP                                          | USB0_DP                                          | USB0_DP                                          |                  |                                 |             |      |      |          |                       |         |
| 10         | USB0_DM                                          | USB0_DM                                          | USB0_DM                                          |                  |                                 |             |      |      |          |                       |         |
| 11         | VOUT33                                           | VOUT33                                           | VOUT33                                           |                  |                                 |             |      |      |          |                       |         |
| 12         | VREGIN                                           | VREGIN                                           | VREGIN                                           |                  |                                 |             |      |      |          |                       |         |
| 13         | PGA0_DP/<br>ADC0_DP0/<br>ADC1_DP3                | PGA0_DP/<br>ADC0_DP0/<br>ADC1_DP3                | PGA0_DP/<br>ADC0_DP0/<br>ADC1_DP3                |                  |                                 |             |      |      |          |                       |         |
| 14         | PGA0_DM/<br>ADC0_DM0/<br>ADC1_DM3                | PGA0_DM/<br>ADC0_DM0/<br>ADC1_DM3                | PGA0_DM/<br>ADC0_DM0/<br>ADC1_DM3                |                  |                                 |             |      |      |          |                       |         |
| 15         | PGA1_DP/<br>ADC1_DP0/<br>ADC0_DP3                | PGA1_DP/<br>ADC1_DP0/<br>ADC0_DP3                | PGA1_DP/<br>ADC1_DP0/<br>ADC0_DP3                |                  |                                 |             |      |      |          |                       |         |
| 16         | PGA1_DM/<br>ADC1_DM0/<br>ADC0_DM3                | PGA1_DM/<br>ADC1_DM0/<br>ADC0_DM3                | PGA1_DM/<br>ADC1_DM0/<br>ADC0_DM3                |                  |                                 |             |      |      |          |                       |         |
| 17         | VDDA                                             | VDDA                                             | VDDA                                             |                  |                                 |             |      |      |          |                       |         |
| 18         | VREFH                                            | VREFH                                            | VREFH                                            |                  |                                 |             |      |      |          |                       |         |
| 19         | VREFL                                            | VREFL                                            | VREFL                                            |                  |                                 |             |      |      |          |                       |         |
| 20         | VSSA                                             | VSSA                                             | VSSA                                             |                  |                                 |             |      |      |          |                       |         |
| 21         | VREF_OUT/<br>CMP1_IN5/<br>CMP0_IN5/<br>ADC1_SE18 | VREF_OUT/<br>CMP1_IN5/<br>CMP0_IN5/<br>ADC1_SE18 | VREF_OUT/<br>CMP1_IN5/<br>CMP0_IN5/<br>ADC1_SE18 |                  |                                 |             |      |      |          |                       |         |
| 22         | DAC0_OUT/<br>CMP1_IN3/<br>ADC0_SE23              | DAC0_OUT/<br>CMP1_IN3/<br>ADC0_SE23              | DAC0_OUT/<br>CMP1_IN3/<br>ADC0_SE23              |                  |                                 |             |      |      |          |                       |         |
| 23         | XTAL32                                           | XTAL32                                           | XTAL32                                           |                  |                                 |             |      |      |          |                       |         |
| 24         | EXTAL32                                          | EXTAL32                                          | EXTAL32                                          |                  |                                 |             |      |      |          |                       |         |
| 25         | VBAT                                             | VBAT                                             | VBAT                                             |                  |                                 |             |      |      |          |                       |         |
| 26         | PTA0                                             | JTAG_TCLK/<br>SWD_CLK/<br>EZP_CLK                | TSI0_CH1                                         | PTA0             | UART0_CTS_<br>b/<br>UART0_COL_b | FTM0_CH5    |      |      |          | JTAG_TCLK/<br>SWD_CLK | EZP_CLK |
| 27         | PTA1                                             | JTAG_TDI/<br>EZP_DI                              | TSI0_CH2                                         | PTA1             | UART0_RX                        | FTM0_CH6    |      |      |          | JTAG_TDI              | EZP_DI  |

NP

Pinout

|  | 7 |  |
|--|---|--|
|  |   |  |
|  |   |  |
|  |   |  |

| 80<br>LQFP | Pin Name           | Default                                          | ALTO                                             | ALT1               | ALT2      | ALT3            | ALT4         | ALT5   | ALT6            | ALT7    | EzPort |
|------------|--------------------|--------------------------------------------------|--------------------------------------------------|--------------------|-----------|-----------------|--------------|--------|-----------------|---------|--------|
| 53         | PTB18              | LCD_P14/<br>TSI0_CH11                            | LCD_P14/<br>TSI0_CH11                            | PTB18              | CAN0_TX   | FTM2_CH0        | I2S0_TX_BCLK |        | FTM2_QD_<br>PHA | LCD_P14 |        |
| 54         | PTB19              | LCD_P15/<br>TSI0_CH12                            | LCD_P15/<br>TSI0_CH12                            | PTB19              | CAN0_RX   | FTM2_CH1        | 12S0_TX_FS   |        | FTM2_QD_<br>PHB | LCD_P15 |        |
| 55         | PTC0               | LCD_P20/<br>ADC0_SE14/<br>TSI0_CH13              | LCD_P20/<br>ADC0_SE14/<br>TSI0_CH13              | PTC0               | SPI0_PCS4 | PDB0_EXTRG      |              |        | I2S0_TXD1       | LCD_P20 |        |
| 56         | PTC1/<br>LLWU_P6   | LCD_P21/<br>ADC0_SE15/<br>TSI0_CH14              | LCD_P21/<br>ADC0_SE15/<br>TSI0_CH14              | PTC1/<br>LLWU_P6   | SPI0_PCS3 | UART1_RTS_b     | FTM0_CH0     |        | I2S0_TXD0       | LCD_P21 |        |
| 57         | PTC2               | LCD_P22/<br>ADC0_SE4b/<br>CMP1_IN0/<br>TSI0_CH15 | LCD_P22/<br>ADC0_SE4b/<br>CMP1_IN0/<br>TSI0_CH15 | PTC2               | SPI0_PCS2 | UART1_CTS_b     | FTM0_CH1     |        | I2S0_TX_FS      | LCD_P22 |        |
| 58         | PTC3/<br>LLWU_P7   | LCD_P23/<br>CMP1_IN1                             | LCD_P23/<br>CMP1_IN1                             | PTC3/<br>LLWU_P7   | SPI0_PCS1 | UART1_RX        | FTM0_CH2     | CLKOUT | I2S0_TX_BCLK    | LCD_P23 |        |
| 59         | VSS                | VSS                                              | VSS                                              |                    |           |                 |              |        |                 |         |        |
| 60         | VLL3               | VLL3                                             | VLL3                                             |                    |           |                 |              |        |                 |         |        |
| 61         | VLL2               | VLL2                                             | VLL2                                             |                    |           |                 |              |        |                 |         |        |
| 62         | VLL1               | VLL1                                             | VLL1                                             |                    |           |                 |              |        |                 |         |        |
| 63         | VCAP2              | VCAP2                                            | VCAP2                                            |                    |           |                 |              |        |                 |         |        |
| 64         | VCAP1              | VCAP1                                            | VCAP1                                            |                    |           |                 |              |        |                 |         |        |
| 65         | PTC4/<br>LLWU_P8   | LCD_P24                                          | LCD_P24                                          | PTC4/<br>LLWU_P8   | SPI0_PCS0 | UART1_TX        | FTM0_CH3     |        | CMP1_OUT        | LCD_P24 |        |
| 66         | PTC5/<br>LLWU_P9   | LCD_P25                                          | LCD_P25                                          | PTC5/<br>LLWU_P9   | SPI0_SCK  | LPTMR0_ALT2     | I2S0_RXD0    |        | CMP0_OUT        | LCD_P25 |        |
| 67         | PTC6/<br>LLWU_P10  | LCD_P26/<br>CMP0_IN0                             | LCD_P26/<br>CMP0_IN0                             | PTC6/<br>LLWU_P10  | SPI0_SOUT | PDB0_EXTRG      | I2S0_RX_BCLK |        | I2S0_MCLK       | LCD_P26 |        |
| 68         | PTC7               | LCD_P27/<br>CMP0_IN1                             | LCD_P27/<br>CMP0_IN1                             | PTC7               | SPI0_SIN  | USB_SOF_<br>OUT | 12S0_RX_FS   |        |                 | LCD_P27 |        |
| 69         | PTC8               | LCD_P28/<br>ADC1_SE4b/<br>CMP0_IN2               | LCD_P28/<br>ADC1_SE4b/<br>CMP0_IN2               | PTC8               |           |                 | I2S0_MCLK    |        |                 | LCD_P28 |        |
| 70         | PTC9               | LCD_P29/<br>ADC1_SE5b/<br>CMP0_IN3               | LCD_P29/<br>ADC1_SE5b/<br>CMP0_IN3               | PTC9               |           |                 | I2S0_RX_BCLK |        | FTM2_FLT0       | LCD_P29 |        |
| 71         | PTC10              | LCD_P30/<br>ADC1_SE6b                            | LCD_P30/<br>ADC1_SE6b                            | PTC10              | I2C1_SCL  |                 | I2S0_RX_FS   |        |                 | LCD_P30 |        |
| 72         | PTC11/<br>LLWU_P11 | LCD_P31/<br>ADC1_SE7b                            | LCD_P31/<br>ADC1_SE7b                            | PTC11/<br>LLWU_P11 | I2C1_SDA  |                 | 12S0_RXD1    |        |                 | LCD_P31 |        |
| 73         | PTD0/<br>LLWU_P12  | LCD_P40                                          | LCD_P40                                          | PTD0/<br>LLWU_P12  | SPI0_PCS0 | UART2_RTS_b     |              |        |                 | LCD_P40 |        |
| 74         | PTD1               | LCD_P41/<br>ADC0_SE5b                            | LCD_P41/<br>ADC0_SE5b                            | PTD1               | SPI0_SCK  | UART2_CTS_b     |              |        |                 | LCD_P41 |        |
| 75         | PTD2/<br>LLWU_P13  | LCD_P42                                          | LCD_P42                                          | PTD2/<br>LLWU_P13  | SPI0_SOUT | UART2_RX        |              |        |                 | LCD_P42 |        |
| 76         | PTD3               | LCD_P43                                          | LCD_P43                                          | PTD3               | SPI0_SIN  | UART2_TX        |              |        |                 | LCD_P43 |        |



| 80<br>LQFP | Pin Name          | Default               | ALT0                  | ALT1              | ALT2      | ALT3                            | ALT4     | ALT5 | ALT6      | ALT7    | EzPort |
|------------|-------------------|-----------------------|-----------------------|-------------------|-----------|---------------------------------|----------|------|-----------|---------|--------|
| 77         | PTD4/<br>LLWU_P14 | LCD_P44               | LCD_P44               | PTD4/<br>LLWU_P14 | SPI0_PCS1 | UART0_RTS_b                     | FTM0_CH4 |      | EWM_IN    | LCD_P44 |        |
| 78         | PTD5              | LCD_P45/<br>ADC0_SE6b | LCD_P45/<br>ADC0_SE6b | PTD5              | SPI0_PCS2 | UART0_CTS_<br>b/<br>UART0_COL_b | FTM0_CH5 |      | EWM_OUT_b | LCD_P45 |        |
| 79         | PTD6/<br>LLWU_P15 | LCD_P46/<br>ADC0_SE7b | LCD_P46/<br>ADC0_SE7b | PTD6/<br>LLWU_P15 | SPI0_PCS3 | UARTO_RX                        | FTM0_CH6 |      | FTM0_FLT0 | LCD_P46 |        |
| 80         | PTD7              | LCD_P47               | LCD_P47               | PTD7              | CMT_IRO   | UART0_TX                        | FTM0_CH7 |      | FTM0_FLT1 | LCD_P47 |        |

#### **K40 Pinouts** 8.2

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.



| Rev. No. | Date    | Substantial Changes                                                                                                                                                                                                                                                                                                                                        |
|----------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | 3/2012  | Initial public release                                                                                                                                                                                                                                                                                                                                     |
| 2        | 4/2012  | <ul> <li>Replaced TBDs throughout.</li> <li>Updated "Power consumption operating behaviors" table.</li> <li>Updated "ADC electrical specifications" section.</li> <li>Updated "VREF full-range operating behaviors" table.</li> <li>Updated "I2S/SAI Switching Specifications" section.</li> <li>Updated "TSI electrical specifications" table.</li> </ul> |
| 3        | 11/2012 | <ul> <li>Updated orderable part numbers.</li> <li>Updated the maximum input voltage (V<sub>ADIN</sub>) specification in the "16-bit ADC operating conditions" section.</li> <li>Updated the maximum I<sub>DDstby</sub> specification in the "USB VREG electrical specifications" section.</li> </ul>                                                       |