

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	PWM, WDT
Number of I/O	59
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	12К х 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.25V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	80-QFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s12dg256ccfu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.6 Detailed Register Map

The following tables show the detailed register map of the MC9S12DP256B.

\$0000 - \$000F

MEBI map 1 of 3 (Core User Guide)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0000	PORTA	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0001	PORTB	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0002	DDRA	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0003	DDRB	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0004	Reserved	Read:	0	0	0	0	0	0	0	0
		Write:			-		-			
\$0005	Reserved	Read:	0	0	0	0	0	0	0	0
		Pood	0	0	0	0	0	0	0	0
\$0006	Reserved	Write	0	0	0	0	0	0	0	0
		Read:	0	0	0	0	0	0	0	0
\$0007	Reserved	Write:	-	-	-	-	-	-	-	-
\$0008	PORTE	Read: Write:	Bit 7	6	5	4	3	2	Bit 1	Bit 0
\$0009	DDRE	Read: Write:	Bit 7	6	5	4	3	Bit 2	0	0
\$000A	PEAR	Read: Write:	NOACCE	0	PIPOE	NECLK	LSTRE	RDWE	0	0
\$000B	MODE	Read: Write:	MODC	MODB	MODA	0	IVIS	0	EMK	EME
\$000C	PUCR	Read: Write	PUPKE	0	0	PUPEE	0	0	PUPBE	PUPAE
\$000D	RDRIV	Read:	RDPK	0	0	RDPE	0	0	RDPB	RDPA
		Read:	0	0	0	0	0	0	0	
\$000E	EBICTL	Write:	<u> </u>	• •	<u> </u>		<u> </u>			ESTR
Ф000 Г	. .	Read:	0	0	0	0	0	0	0	0
9000F	Reserved	Write:								

\$0010 - \$0014

MMC map 1 of 4 (Core User Guide)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0010	INITRM	TRM Read: Write:		RAM15 RAM14	RAM13	RAM12	RAM11	0	0	RAMHAL
			KAIVI 15							
\$0011		Read:	0	DEC14	DEC12	DEC12	DEC11	0	0	0
	INTRO	Write:		KEG14	4 REG13 R	REGIZ	REGII			

Freescale Semiconductor, Inc. MC9S12DP256B Device User Guide — V02.14

\$01C0 - \$01FF

CAN2 (Motorola Scalable CAN - MSCAN)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$01CD	Reserved	Read:	0	0	0	0	0	0	0	0
		VVrite:	DYEDD7	DYEDDE	DYEDD5	DYEDD/	DYEDD3	DYEDD2	DYEDD1	PYERRO
\$01CE	CAN2RXERR	Write:	NALNN/	KALKKO	KALKK3	NALNN4	KALKK3	NALNNZ	NALNNI	KALKKU
Ф040 Г		Read:	TXERR7	TXERR6	TXERR5	TXERR4	TXERR3	TXERR2	TXERR1	TXERR0
\$01CF	CANZIXERR	Write:								
\$01D0	CAN2IDAR0	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$01D1	CAN2IDAR1	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$01D2	CAN2IDAR2	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$01D3	CAN2IDAR3	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$01D4	CAN2IDMR0	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$01D5	CAN2IDMR1	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$01D6	CAN2IDMR2	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$01D7	CAN2IDMR3	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$01D8	CAN2IDAR4	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$01D9	CAN2IDAR5	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$01DA	CAN2IDAR6	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$01DB	CAN2IDAR7	Read: Write:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$01DC	CAN2IDMR4	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$01DD	CAN2IDMR5	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$01DE	CAN2IDMR6	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$01DF	CAN2IDMR7	Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$01E0 -		Read:		FOF	REGROUN	D RECEIV	E BUFFER	see Table	1-2	
\$01EF	0/11/21//11/0	Write:								
\$01F0 - \$01FF	CAN2TXFG	Read: Write:		FOR	EGROUN	D TRANSM	IT BUFFE	R see Table	ə 1-2	

Section 2 Signal Description

This section describes signals that connect off-chip. It includes a pinout diagram, a table of signal properties, and detailed discussion of signals. It is built from the signal description sections of the Block User Guides of the individual IP blocks on the device.

2.1 Device Pinout

The MC9S12DP256B/MC9S12DT256/MC9S12DJ256 and MC9S12DG256 is available in a 112-pin low profile quad flat pack (LQFP) and MC9S12DJ256 is also available in a 80-pin quad flat pack (QFP). Most pins perform two or more functions, as described in the Signal Descriptions. **Figure 2-1** and **Figure 2-3** show the pin assignments.

Freescale Semiconductor, Inc. MC9S12DP256B Device User Guide - V02.14

Mnomonio	Pin Number	Nominal	Description	
witternomic	112-pin QFP	Voltage	Description	
V _{DD1, 2}	13, 65	2.5 V	Internal power and ground generated by internal regulator	
V _{SS1, 2}	14, 66	0V	Internal power and ground generated by internal regulator	
V _{DDR}	41	5.0 V	External power and ground, supply to pin drivers and internal	
V _{SSR}	40	0 V	voltage regulator.	
V _{DDX}	107	5.0 V	External power and ground supply to pip drivers	
V _{SSX}	106	0 V		
V _{DDA}	83	5.0 V	Operating voltage and ground for the analog-to-digital	
V _{SSA}	86	0 V	converters and the reference for the internal voltage regulator, allows the supply voltage to the A/D to be bypassed independently.	
V _{RL}	85	0 V	Peteroneo voltagos for the appleg to digital convertor	
V _{RH}	84	5.0 V		
V _{DDPLL}	43	2.5 V	Provides operating voltage and ground for the Phased-Locked	
V _{SSPLL}	45 0 V		Loop. This allows the supply voltage to the PLL to be bypassed independently. Internal power and ground generated by internal regulator.	
VREGEN	97	5V	Internal Voltage Regulator enable/disable	

Table 2-2 MC9S12DP256 Power and Ground Connection Summary

2.4.7 VREGEN — On Chip Voltage Regulator Enable

Enables the internal 5V to 2.5V voltage regulator. If this pin is tied low, VDD1,2 and VDDPLL must be supplied externally.

Section 6 HCS12 Core Block Description

Consult the HCS12 Core User Guide for information about the HCS12 core modules, i.e. central processing unit (CPU), interrupt module (INT), module mapping control module (MMC), multiplexed external bus interface (MEBI), breakpoint module (BKP) and background debug mode module (BDM).

Name	Description	MC9S12DP256B Configuration							
PUCR_RESET	PUCR reset state	\$90							
NUM_INT	Interrupt Request Bus Width	56							
INITEE_RST	INITEE reset state	\$01							
INITEE_WOK	INITEE Write anytime in normal mode	INITEE register is writeable once in normal modes							
PPAGE_SMOD_ONLY	PPAGE Write only in special mode	PPAGE register is writable in all modes,reset state of the PPAGE register is \$00							

Table 6-1	Configuration	of	HCS12	Core
	oomigaration	v .		0010

Section 7 Clock and Reset Generator (CRG) Block Description

Consult the CRG Block User Guide for information about the Clock and Reset Generator module.

7.1 Device-specific information

7.1.1 XCLKS

The XCLKS input signal is active low (see 2.3.13 PE7 / NOACC / XCLKS — Port E I/O Pin 7).

Section 8 Enhanced Capture Timer (ECT) Block Description

Consult the ECT_16B8C Block User Guide for information about the Enhanced Capture Timer module.

Section 9 Analog to Digital Converter (ATD) Block Description

There are two Analog to Digital Converters (ATD1 and ATD0) implemented on the MC9S12DP256B. Consult the ATD_10B8C Block User Guide for information about each Analog to Digital Converter module.

Section 10 Inter-IC Bus (IIC) Block Description

Consult the IIC Block User Guide for information about the Inter-IC Bus module.

Section 11 Serial Communications Interface (SCI) Block Description

There are two Serial Communications Interfaces (SCI1 and SCI0) implemented on the MC9S12DP256B device. Consult the SCI Block User Guide for information about each Serial Communications Interface module.

Section 12 Serial Peripheral Interface (SPI) Block Description

There are three Serial Peripheral Interfaces(SPI2, SPI1 and SPI0) implemented on MC9S12DP256B. Consult the SPI Block User Guide for information about each Serial Peripheral Interface module.

Section 13 J1850 (BDLC) Block Description

Consult the BDLC Block User Guide for information about the J1850 module.

Section 14 Pulse Width Modulator (PWM) Block Description

Consult the PWM_8B8C Block User Guide for information about the Pulse Width Modulator module.

Section 15 Flash EEPROM 256K Block Description

Consult the FTS256K Block User Guide for information about the flash module.

Section 16 EEPROM 4K Block Description

Consult the EETS4K Block User Guide for information about the EEPROM module.

Section 17 RAM Block Description

- Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the corresponding pins(C1 C6).
- Central point of the ground star should be the VSSR pin.
- Use low ohmic low inductance connections between VSS1, VSS2 and VSSR.
- VSSPLL must be directly connected to VSSR.
- Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7, C8, C11 and Q1 as small as possible.
- Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the connection area to the MCU.
- Central power input should be fed in at the VDDA/VSSA pins.

A.1.7 Operating Conditions

This chapter describes the operating conditions of the device. Unless otherwise noted those conditions apply to all the following data.

NOTE: Please refer to the temperature rating of the device (C, V, M) with regards to the ambient temperature T_A and the junction temperature T_J . For power dissipation calculations refer to Section A.1.8 Power Dissipation and Thermal Characteristics.

Rating	Symbol	Min	Тур	Max	Unit
I/O, Regulator and Analog Supply Voltage	V _{DD5}	4.5	5	5.25	V
Digital Logic Supply Voltage ¹	V _{DD}	2.35	2.5	2.75	V
PLL Supply Voltage ²	V _{DDPLL}	2.35	2.5	2.75	V
Voltage Difference VDDX to VDDR and VDDA	Δ_{VDDX}	-0.1	0	0.1	V
Voltage Difference VSSX to VSSR and VSSA	Δ_{VSSX}	-0.1	0	0.1	V
Oscillator	f _{osc}	0.5	-	16	MHz
Bus Frequency	f _{bus}	0.5	-	25	MHz
MC9S12DP256B C					
Operating Junction Temperature Range	Т _Ј	-40	-	100	°C
Operating Ambient Temperature Range ²	T _A	-40	27	85	°C
MC9S12DP256B V					
Operating Junction Temperature Range	Т _Ј	-40	-	120	°C
Operating Ambient Temperature Range ²	T _A	-40	27	105	°C
MC9S12DP256B M					
Operating Junction Temperature Range	Т _Ј	-40	-	140	°C
Operating Ambient Temperature Range ²	T _A	-40	27	125	°C

Table A-4 Operating Conditions

NOTES:

1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute maximum ratings apply when this regulator is disabled and the device is powered from an external source.

2. Please refer to Section A.1.8 Power Dissipation and Thermal Characteristics for more details about the relation between ambient temperature T_A and device junction temperature T_J.

A.1.8 Power Dissipation and Thermal Characteristics

Power dissipation and thermal characteristics are closely related. The user must assure that the maximum operating junction temperature is not exceeded. The average chip-junction temperature (T_J) in °C can be obtained from:

$$\mathsf{T}_{\mathsf{J}} = \mathsf{T}_{\mathsf{A}} + (\mathsf{P}_{\mathsf{D}} \bullet \Theta_{\mathsf{J}} \mathsf{A})$$

 T_{I} = Junction Temperature, [°C]

 $T_A = Ambient Temperature, [°C]$

 P_{D} = Total Chip Power Dissipation, [W]

 Θ_{IA} = Package Thermal Resistance, [°C/W]

The total power dissipation can be calculated from:

P_{INT} = Chip Internal Power Dissipation, [W]

Two cases with internal voltage regulator enabled and disabled must be considered:

1. Internal Voltage Regulator disabled

$$P_{INT} = I_{DD} \cdot V_{DD} + I_{DDPLL} \cdot V_{DDPLL} + I_{DDA} \cdot V_{DDA}$$
$$P_{IO} = \sum_{i} R_{DSON} \cdot I_{IO}^{2}_{i}$$

 P_{IO} is the sum of all output currents on I/O ports associated with VDDX and VDDR. For R_{DSON} is valid:

$$R_{DSON} = \frac{V_{OL}}{I_{OL}}$$
; for outputs driven low

respectively

$$R_{DSON} = \frac{V_{DD5} - V_{OH}}{I_{OH}}$$
; for outputs driven high

2. Internal voltage regulator enabled

$$P_{INT} = I_{DDR} \cdot V_{DDR} + I_{DDA} \cdot V_{DDA}$$

 I_{DDR} is the current shown in **Table A-7** and not the overall current flowing into VDDR, which additionally contains the current flowing into the external loads with output high.

$$P_{IO} = \sum_{i} R_{DSON} \cdot I_{IO_{i}}^{2}$$

P_{IO} is the sum of all output currents on I/O ports associated with VDDX and VDDR.

A.3 NVM, Flash and EEPROM

NOTE: Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for both Flash and EEPROM.

A.3.1 NVM timing

The time base for all NVM program or erase operations is derived from the oscillator. A minimum oscillator frequency f_{NVMOSC} is required for performing program or erase operations. The NVM modules do not have any means to monitor the frequency and will not prevent program or erase operation at frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at a lower frequency a full program or erase transition is not assured.

The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within the limits specified as f_{NVMOP} .

The minimum program and erase times shown in **Table A-11** are calculated for maximum f_{NVMOP} and maximum f_{bus} . The maximum times are calculated for minimum f_{NVMOP} and a f_{bus} of 2MHz.

A.3.1.1 Single Word Programming

The programming time for single word programming is dependent on the bus frequency as a well as on the frequency f_{NVMOP} and can be calculated according to the following formula.

$$t_{swpgm} = 9 \cdot \frac{1}{f_{NVMOP}} + 25 \cdot \frac{1}{f_{bus}}$$

A.3.1.2 Burst Programming

This applies only to the Flash where up to 32 words in a row can be programmed consecutively using burst programming by keeping the command pipeline filled. The time to program a consecutive word can be calculated as:

$$t_{bwpgm} = 4 \cdot \frac{1}{f_{NVMOP}} + 9 \cdot \frac{1}{f_{bus}}$$

The time to program a whole row is:

$$t_{brpgm} = t_{swpgm} + 31 \cdot t_{bwpgm}$$

Burst programming is more than 2 times faster than single word programming.

A.3.1.3 Sector Erase

Erasing a 512 byte Flash sector or a 4 byte EEPROM sector takes:

The setup time can be ignored for this operation.

A.3.1.4 Mass Erase

Erasing a NVM block takes:

$$t_{mass} \approx 20000 \cdot \frac{1}{f_{NVMOP}}$$

The setup time can be ignored for this operation.

A.3.1.5 Blank Check

The time it takes to perform a blank check on the Flash or EEPROM is dependent on the location of the first non-blank word starting at relative address zero. It takes one bus cycle per word to verify plus a setup of the command.

$$t_{check} \approx location \cdot t_{cyc} + 10 \cdot t_{cyc}$$

Condit	tions	s are shown in Table A-4 unless otherwise noted					
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	D	External Oscillator Clock	f _{NVMOSC}	0.5		50 ¹	MHz
2	D	Bus frequency for Programming or Erase Operations	f _{NVMBUS}	1			MHz
3	D	Operating Frequency	f _{NVMOP}	150		200	kHz
4	Р	Single Word Programming Time	t _{swpgm}	46 ²		74.5 ³	μs
5	D	Flash Burst Programming consecutive word ⁴	t _{bwpgm}	20.4 ²		31 ³	μs
6	D	Flash Burst Programming Time for 32 Words ⁴	t _{brpgm}	678.4 ²		1035.5 ³	μs
7	Ρ	Sector Erase Time	t _{era}	20 ⁵		26.7 ³	ms
8	Р	Mass Erase Time	t _{mass}	100 ⁵		133 ³	ms
9	D	Blank Check Time Flash per block	t _{check}	11 ⁶		32778 ⁷	t _{cyc}
10	D	Blank Check Time EEPROM per block	t _{check}	11 ⁶		2058 ⁷	t _{cyc}

Table A-11 NVM Timing Characteristics

NOTES:

1. Restrictions for oscillator in crystal mode apply!

2. Minimum Programming times are achieved under maximum NVM operating frequency f_{NVMOP} and maximum bus frequency f_{bus}.

A.5.3 Phase Locked Loop

The oscillator provides the reference clock for the PLL. The PLL's Voltage Controlled Oscillator (VCO) is also the system clock source in self clock mode.

A.5.3.1 XFC Component Selection

This section describes the selection of the XFC components to achieve a good filter characteristics.

Figure A-2 Basic PLL functional diagram

The following procedure can be used to calculate the resistance and capacitance values using typical values for K_1 , f_1 and i_{ch} from **Table A-16**.

The VCO Gain at the desired VCO output frequency is approximated by:

$$K_{V} = K_{1} \cdot e^{\frac{(f_{1} - f_{vco})}{K_{1} \cdot 1V}}$$

The phase detector relationship is given by:

$$K_{\Phi} = -|i_{ch}| \cdot K_{V}$$

i_{ch} is the current in tracking mode.

A.6 MSCAN

Table A-17	MSCAN Wake-up Pulse Characteristics
------------	-------------------------------------

Condi	tion	s are shown in Table A-4 unless otherwise noted					
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Ρ	MSCAN Wake-up dominant pulse filtered	t _{WUP}			2	μs
2	Ρ	MSCAN Wake-up dominant pulse pass	t _{WUP}	5			μs

Condit	Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 200pF on all outputs									
Num	С	Rating	Symbol	Min	Тур	Max	Unit			
1	Р	Operating Frequency	f _{op}	DC		1/4	f _{bus}			
1	Р	SCK Period t _{sck} = 1./f _{op}	t _{sck}	4		2048	t _{bus}			
2	D	Enable Lead Time	t _{lead}	1			t _{cyc}			
3	D	Enable Lag Time	t _{lag}	1			t _{cyc}			
4	D	Clock (SCK) High or Low Time	t _{wsck}	t _{cyc} – 30			ns			
5	D	Data Setup Time (Inputs)	t _{su}	25			ns			
6	D	Data Hold Time (Inputs)	t _{hi}	25			ns			
7	D	Slave Access Time	t _a			1	t _{cyc}			
8	D	Slave MISO Disable Time	t _{dis}			1	t _{cyc}			
9	D	Data Valid (after SCK Edge)	t _v			25	ns			
10	D	Data Hold Time (Outputs)	t _{ho}	0			ns			
11	D	Rise Time Inputs and Outputs	t _r			25	ns			
12	D	Fall Time Inputs and Outputs	t _f			25	ns			

Table A-19 SPI Slave Mode Timing Characteristics

Conditions are shown in Table A-4 unless otherwise noted, $C_{LOAD} = 50 pF$							
Num	С	Rating	Symbol	Min	Тур	Max	Unit
32	D	NOACC hold time	t _{NOH}	2			ns
33	D	IPIPO[1:0] delay time	t _{P0D}	2		7	ns
34	D	IPIPO[1:0] valid time to E rise (PW _{EL} -t _{P0D})	t _{P0V}	11			ns
35	D	IPIPO[1:0] delay time ¹ (PW _{EH} -t _{P1V})	t _{P1D}	2		25	ns
36	D	IPIPO[1:0] valid time to E fall	t _{P1V}	11			ns

Table A-20 Expanded Bus Timing Characteristics

NOTES:

1. Affected by clock stretch: add N x t_{cyc} where N=0,1,2 or 3, depending on the number of clock stretches.

B.3 80-pin QFP package

FINAL PAGE OF 128 PAGES