

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	HCS12
Core Size	16-Bit
Speed	25MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	PWM, WDT
Number of I/O	91
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 5.25V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s12dg256ccpv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MC9S12DP256B Device User Guide 9512DP256BDG V2/D V02.14

Section 7 Clock and Reset Generator (CRG) Block Description 7.1 Device-specific information
7.1.1 XCLKS
Section 8 Enhanced Capture Timer (ECT) Block Description
Section 9 Analog to Digital Converter (ATD) Block Description
Section 10 Inter-IC Bus (IIC) Block Description
Section 11 Serial Communications Interface (SCI) Block Description
Section 12 Serial Peripheral Interface (SPI) Block Description
Section 13 J1850 (BDLC) Block Description
Section 14 Pulse Width Modulator (PWM) Block Description
Section 15 Flash EEPROM 256K Block Description
Section 16 EEPROM 4K Block Description
Section 17 RAM Block Description
Section 18 MSCAN Block Description
Section 19 Port Integration Module (PIM) Block Description
Section 20 Voltage Regulator (VREG) Block Description
Appendix A Electrical Characteristics
A.1 General

A. I	General
A.1.1	Parameter Classification
A.1.2	Power Supply
A.1.3	Pins
A.1.4	Current Injection
A.1.5	Absolute Maximum Ratings
A.1.6	ESD Protection and Latch-up Immunity90

- 5V A/D converter inputs
- Operation at 50MHz equivalent to 25MHz Bus Speed
- Development support
- Single-wire background debugTM mode (BDM)
- On-chip hardware breakpoints

1.3 Modes of Operation

User modes

- Normal and Emulation Operating Modes
 - Normal Single-Chip Mode
 - Normal Expanded Wide Mode
 - Normal Expanded Narrow Mode
 - Emulation Expanded Wide Mode
 - Emulation Expanded Narrow Mode
- Special Operating Modes
 - Special Single-Chip Mode with active Background Debug Mode
 - Special Test Mode (Motorola use only)
 - Special Peripheral Mode (Motorola use only)

Low power modes

- Stop Mode
- Pseudo Stop Mode
- Wait Mode

1.6 Detailed Register Map

The following tables show the detailed register map of the MC9S12DP256B.

\$0000 - \$000F

MEBI map 1 of 3 (Core User Guide)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0000	PORTA	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0001	PORTB	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0002	DDRA	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0003	DDRB	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0004	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0005	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0006	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0007	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0008	PORTE	Read: Write:	Bit 7	6	5	4	3	2	Bit 1	Bit 0
\$0009	DDRE	Read: Write:	Bit 7	6	5	4	3	Bit 2	0	0
\$000A	PEAR	Read: Write:	NOACCE	0	PIPOE	NECLK	LSTRE	RDWE	0	0
\$000B	MODE	Read: Write:	MODC	MODB	MODA	0	IVIS	0	EMK	EME
\$000C	PUCR	Read: Write:	PUPKE	0	0	PUPEE	0	0	PUPBE	PUPAE
\$000D	RDRIV	Read: Write:	RDPK	0	0	RDPE	0	0	RDPB	RDPA
\$000E	EBICTL	Read: Write:	0	0	0	0	0	0	0	ESTR
\$000F	Reserved	Read: Write:	0	0	0	0	0	0	0	0

\$0010 - \$0014

MMC map 1 of 4 (Core User Guide)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0010	INITRM	Read:	RAM15	RAM14	RAM13	RAM12	RAM11	0	0	RAMHAL
\$0010		Write:	INAIM13		INAIM13					
\$0011	INITRG	Read:	0	REG14	REG13	REG12	REG11	0	0	0
\$0011	INTRO	Write:		NL014	KLG13	NL012	KL011			

Freescale Semiconductor, Inc. MC9S12DP256B Device User Guide — V02.14

\$001E - \$001E

Address

\$001E

MEBI map 2 of 3 (Core User Guide)

Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCR	Read:	IRQE	IRQEN	0	0	0	0	0	0
INTOR	Write:	INQE	INQEN						

\$001F - \$001F

INT map 2 of 2 (Core User Guide)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$001F	HPRIO	Read:	PSEL7	PSEL6	PSEL5	PSEL4	PSEL3	PSEL2	PSEL1	0
φυστη	IFRIO	Write:	FSEL/	FSELO	FOELD	F JEL4	FOELO	FJELZ	FJELI	

\$0020 - \$0027

Reserved

Address	Name	Γ	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
¢0000	Decembrad	Read:	0	0	0	0	0	0	0	0
\$0020	Reserved	Write:								
\$0021	Reserved	Read:	0	0	0	0	0	0	0	0
φ002 I	Reserveu	Write:								
\$0022	Reserved	Read:	0	0	0	0	0	0	0	0
ψ002Z	Reserveu	Write:								
\$0023	Reserved	Read:	0	0	0	0	0	0	0	0
00020	Reserved	Write:								
\$0024	Reserved	Read:	0	0	0	0	0	0	0	0
\$602	Reserved	Write:								
\$0025	Reserved	Read:	0	0	0	0	0	0	0	0
\$0020	Reserved	Write:								
\$0026	Reserved	Read:	0	0	0	0	0	0	0	0
00020	Reserved	Write:								
\$0027	Reserved	Read	0	0	0	0	0	0	0	0
ΨΟΟΖΙ	Reserved	Write:								

\$0028 - \$002F

Address \$0028

\$0029

\$002A

\$002B

\$002C

BKP (Core User Guide)

_	N I a una a		D:4 7	D:4 0	D:4 C	D:4 4	D:+ 0	D:+ 0	D:44	D:+ 0	
5	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	BKPCT0	Read:	BKEN	BKFULL	BKBDM	BKTAG	0	0	0	0	
	DRICIO	Write:	DICLIN		DIADDIM	DIVIAO					
	BKPCT1	Read:	вкомвн	BK0MBL	BK1MBH	BK1MBL	BKORWE	BK0RW	BK1RWE	BK1RW	
	DRECTI	Write:	DRONDI	DROMDL		DIVINIDE	DROITVL	DROIN	DRINVL	DIVITY	
	BKP0X	Read:	0	0	BK0V5	BK0V4	BK0V3	BK0V2	BK0V1	BK0V0	
	DKFUA	Write:			BRUVS	DR0V4	DR0V3	DRUVZ	BRUVI	BRUVU	
		Read:	Bit 15	14	13	12	11	10	9	Bit 8	
	BKP0H	Write:	DILTO	14	15	12	11	10	9	DILO	
	DICDOL	Read:		6	F	4	2	2	4		
	BKP0L	Write:	Bit 7	6	5	4	3	2	1	Bit 0	

\$0040 - \$007F

ECT (Enhanced Capture Timer 16 Bit 8 Channels)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0053	TC1 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0054	TC2 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0055	TC2 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0056	TC3 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0057	TC3 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0058	TC4 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0059	TC4 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$005A	TC5 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$005B	TC5 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$005C	TC6 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$005D	TC6 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$005E	TC7 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$005F	TC7 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0060	PACTL	Read: Write:	0	PAEN	PAMOD	PEDGE	CLK1	CLK0	PAOVI	PAI
\$0061	PAFLG	Read: Write:	0	0	0	0	0	0	PAOVF	PAIF
\$0062	PACN3 (hi)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0063	PACN2 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0064	PACN1 (hi)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0065	PACN0 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0066	MCCTL	Read: Write:	MCZI	MODMC	RDMCL	0 ICLAT	0 FLMC	MCEN	MCPR1	MCPR0
\$0067	MCFLG	Read: Write:	MCZF	0	0	0	POLF3	POLF2	POLF1	POLF0
\$0068	ICPAR	Read: Write:	0	0	0	0	PA3EN	PA2EN	PA1EN	PA0EN
\$0069	DLYCT	Read: Write:	0	0	0	0	0	0	DLY1	DLY0
\$006A	ICOVW	Read: Write:	NOVW7	NOVW6	NOVW5	NOVW4	NOVW3	NOVW2	NOVW1	NOVW0
\$006B	ICSYS	Read: Write:	SH37	SH26	SH15	SH04	TFMOD	PACMX	BUFEN	LATQ

Freescale Semiconductor, Inc. MC9S12DP256B Device User Guide — V02.14

Pin Name	Power		nal Pull sistor	Description				
Funct. 1	Funct. 2	Funct. 3	Funct. 4	Funct. 5	Supply	CTRL	Reset State	Description
PP6	KWP6	PWM6	SS2	_	VDDX	PERP/ PPSP	Disabled	Port P I/O, Interrupt, Channel 6 of PWM, SS of SPI2
PP5	KWP5	PWM5	MOSI2	_	VDDX	PERP/ PPSP	Disabled	Port P I/O, Interrupt, Channel 5 of PWM, MOSI of SPI2
PP4	KWP4	PWM4	MISO2	_	VDDX	PERP/ PPSP	Disabled	Port P I/O, Interrupt, Channel 4 of PWM, MISO2 of SPI2
PP3	KWP3	PWM3	SS1	_	VDDX	PERP/ PPSP	Disabled	Port P I/O, Interrupt, Channel 3 of PWM, SS of SPI1
PP2	KWP2	PWM2	SCK1	_	VDDX	PERP/ PPSP	Disabled	Port P I/O, Interrupt, Channel 2 of PWM, SCK of SPI1
PP1	KWP1	PWM1	MOSI1	_	VDDX	PERP/ PPSP	Disabled	Port P I/O, Interrupt, Channel 1 of PWM, MOSI of SPI1
PP0	KWP0	PWM0	MISO1	_	VDDX	PERP/ PPSP	Disabled	Port P I/O, Interrupt, Channel 0 of PWM, MISO2 of SPI1
PS7	SS0	_	_	_	VDDX	PERS/ PPSS	Up	Port S I/O, SS of SPI0
PS6	SCK0	_	_	_	VDDX	PERS/ PPSS	Up	Port S I/O, SCK of SPI0
PS5	MOSI0	_	_	_	VDDX	PERS/ PPSS	Up	Port S I/O, MOSI of SPI0
PS4	MISO0			_	VDDX	PERS/ PPSS	Up	Port S I/O, MISO of SPI0
PS3	TXD1	_	_	_	VDDX	PERS/ PPSS	Up	Port S I/O, TXD of SCI1
PS2	RXD1	—	—	—	VDDX	PERS/ PPSS	Up	Port S I/O, RXD of SCI1
PS1	TXD0	_			VDDX	PERS/ PPSS	Up	Port S I/O, TXD of SCI0
PS0	RXD0	_			VDDX	PERS/ PPSS	Up	Port S I/O, RXD of SCI0
PT[7:0]	IOC[7:0]	_			VDDX	PERT/ PPST	Disabled	Port T I/O, Timer channels

2.3 Detailed Signal Descriptions

2.3.1 EXTAL, XTAL — Oscillator Pins

EXTAL and XTAL are the crystal driver and external clock pins. On reset all the device clocks are derived from the EXTAL input frequency. XTAL is the crystal output.

VREGEN	VREGEN Description					
1	Internal Voltage Regulator enabled					
0	Internal Voltage Regulator disabled, VDD1,2 and VDDPLL must be supplied externally with 2.5V					

Table 4-3 Voltage Regulator VREGEN

4.3 Security

The device will make available a security feature preventing the unauthorized read and write of the memory contents. This feature allows:

- Protection of the contents of FLASH,
- Protection of the contents of EEPROM,
- Operation in single-chip mode,
- Operation from external memory with internal FLASH and EEPROM disabled.

The user must be reminded that part of the security must lie with the user's code. An extreme example would be user's code that dumps the contents of the internal program. This code would defeat the purpose of security. At the same time the user may also wish to put a back door in the user's program. An example of this is the user downloads a key through the SCI which allows access to a programming routine that updates parameters stored in EEPROM.

4.3.1 Securing the Microcontroller

Once the user has programmed the FLASH and EEPROM (if desired), the part can be secured by programming the security bits located in the FLASH module. These non-volatile bits will keep the part secured through resetting the part and through powering down the part.

The security byte resides in a portion of the Flash array.

Check the Flash Block User Guide for more details on the security configuration.

4.3.2 Operation of the Secured Microcontroller

4.3.2.1 Normal Single Chip Mode

This will be the most common usage of the secured part. Everything will appear the same as if the part was not secured with the exception of BDM operation. The BDM operation will be blocked.

4.3.2.2 Executing from External Memory

The user may wish to execute from external space with a secured microcontroller. This is accomplished by resetting directly into expanded mode. The internal FLASH and EEPROM will be disabled. BDM operations will be blocked.

Section 10 Inter-IC Bus (IIC) Block Description

Consult the IIC Block User Guide for information about the Inter-IC Bus module.

Section 11 Serial Communications Interface (SCI) Block Description

There are two Serial Communications Interfaces (SCI1 and SCI0) implemented on the MC9S12DP256B device. Consult the SCI Block User Guide for information about each Serial Communications Interface module.

Section 12 Serial Peripheral Interface (SPI) Block Description

There are three Serial Peripheral Interfaces(SPI2, SPI1 and SPI0) implemented on MC9S12DP256B. Consult the SPI Block User Guide for information about each Serial Peripheral Interface module.

Section 13 J1850 (BDLC) Block Description

Consult the BDLC Block User Guide for information about the J1850 module.

Section 14 Pulse Width Modulator (PWM) Block Description

Consult the PWM_8B8C Block User Guide for information about the Pulse Width Modulator module.

Section 15 Flash EEPROM 256K Block Description

Consult the FTS256K Block User Guide for information about the flash module.

Section 16 EEPROM 4K Block Description

Consult the EETS4K Block User Guide for information about the EEPROM module.

Section 17 RAM Block Description

This module supports single-cycle misaligned word accesses.

Section 18 MSCAN Block Description

There are five MSCAN modules (CAN4, CAN3, CAN2, CAN1 and CAN0) implemented on the MC9S12DP256B. Consult the MSCAN Block User Guide for information about the Motorola Scalable CAN Module.

Section 19 Port Integration Module (PIM) Block Description

Consult the PIM_9DP256 Block User Guide for information about the Port Integration Module.

Section 20 Voltage Regulator (VREG) Block Description

Consult the VREG Block User Guide for information about the dual output linear voltage regulator.

Component	Purpose	Туре	Value		
C1	VDD1 filter cap	ceramic X7R	100 220nF		
C2	VDD2 filter cap	ceramic X7R	100 220nF		
C3	VDDA filter cap	ceramic X7R	100nF		
C4	VDDR filter cap	X7R/tantalum	>=100nF		
C5	VDDPLL filter cap	ceramic X7R	100nF		
C6	VDDX filter cap	X7R/tantalum	>=100nF		
C7	OSC load cap				
C8	OSC load cap				
C9	PLL loop filter cap				
C10	PLL loop filter cap				
C11	DC cutoff cap	- See PLL specification chapter			
R1	PLL loop filter res				
Q1	Quartz				

The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the MCU itself. The following rules must be observed:

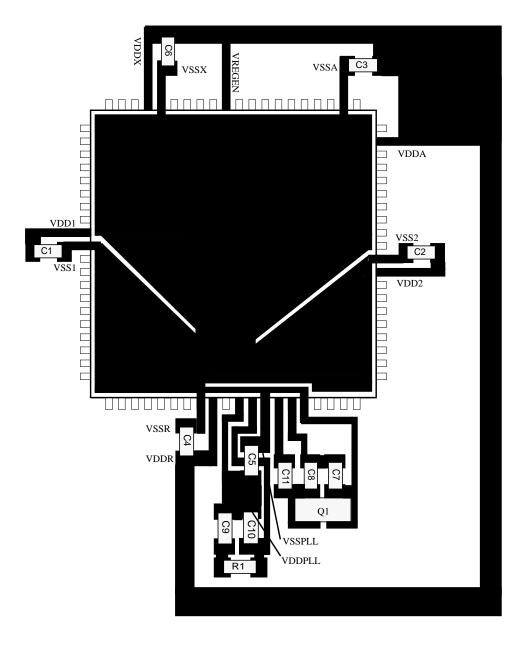


Figure 20-2 Recommended PCB Layout for 80QFP

- 2. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply.
- The absolute maximum ratings apply when the device is powered from an external source.
- 3. All digital I/O pins are internally clamped to V_{SSX} and V_{DDX}, V_{SSR} and V_{DDR} or V_{SSA} and V_{DDA}.
- 4. Those pins are internally clamped to V_{SSPLL} and V_{DDPLL} . 5. This pin is clamped low to V_{SSPLL} , but not clamped high. This pin must be tied low in applications.

A.1.6 ESD Protection and Latch-up Immunity

All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model.

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series Resistance	R1	1500	Ohm
	Storage Capacitance	С	100	pF
Human Body	n Body Number of Pulse per pin positive negative		- 3 3	
	Series Resistance	R1	0	Ohm
	Storage Capacitance	С	200	pF
Machine	Number of Pulse per pin positive negative		- 3 3	
Latab up	Minimum input voltage limit		-2.5	V
Latch-up	Maximum input voltage limit		7.5	V

Table A-2 ESD and Latch-up Test Conditions

Table A-3 ESD and Latch-Up Protection Characteristics

Num	С	Rating	Symbol	Min	Max	Unit
1	С	Human Body Model (HBM)	V _{HBM}	2000	-	V
2	С	Machine Model (MM)	V _{MM}	200	-	V
3	С	Charge Device Model (CDM)	V _{CDM}	500	-	V
4	с	Latch-up Current at T _A = 125°C positive negative	I _{LAT}	+100 -100	-	mA
5	с	Latch-up Current at $T_A = 27^{\circ}C$ positive negative	I _{LAT}	+200 -200	-	mA

A.3 NVM, Flash and EEPROM

NOTE: Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for both Flash and EEPROM.

A.3.1 NVM timing

The time base for all NVM program or erase operations is derived from the oscillator. A minimum oscillator frequency f_{NVMOSC} is required for performing program or erase operations. The NVM modules do not have any means to monitor the frequency and will not prevent program or erase operation at frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at a lower frequency a full program or erase transition is not assured.

The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within the limits specified as f_{NVMOP} .

The minimum program and erase times shown in **Table A-11** are calculated for maximum f_{NVMOP} and maximum f_{bus} . The maximum times are calculated for minimum f_{NVMOP} and a f_{bus} of 2MHz.

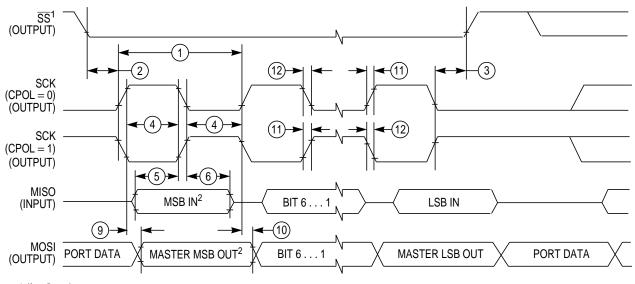
A.3.1.1 Single Word Programming

The programming time for single word programming is dependent on the bus frequency as a well as on the frequency f_{NVMOP} and can be calculated according to the following formula.

$$t_{swpgm} = 9 \cdot \frac{1}{f_{NVMOP}} + 25 \cdot \frac{1}{f_{bus}}$$

A.3.1.2 Burst Programming

This applies only to the Flash where up to 32 words in a row can be programmed consecutively using burst programming by keeping the command pipeline filled. The time to program a consecutive word can be calculated as:


$$t_{bwpgm} = 4 \cdot \frac{1}{f_{NVMOP}} + 9 \cdot \frac{1}{f_{bus}}$$

The time to program a whole row is:

$$t_{brpgm} = t_{swpgm} + 31 \cdot t_{bwpgm}$$

Burst programming is more than 2 times faster than single word programming.

1. If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure A-6 SPI Master Timing (CPHA =1)

Table A-18	SPI Master	Mode Timing	Characteristics ¹
------------	------------	-------------	------------------------------

Condit	Conditions are shown in Table A-4 unless otherwise noted, C _{LOAD} = 200pF on all outputs							
Num	С	Rating	Symbol	Min	Тур	Max	Unit	
1	Ρ	Operating Frequency	f _{op}	DC		1/4	f _{bus}	
1	Ρ	SCK Period t _{sck} = 1./f _{op}	t _{sck}	4		2048	t _{bus}	
2	D	Enable Lead Time	t _{lead}	1/2		—	t _{sck}	
3	D	Enable Lag Time	t _{lag}	1/2			t _{sck}	
4	D	Clock (SCK) High or Low Time	t _{wsck}	t _{bus} – 30		1024 t _{bus}	ns	
5	D	Data Setup Time (Inputs)	t _{su}	25			ns	
6	D	Data Hold Time (Inputs)	t _{hi}	0			ns	
9	D	Data Valid (after Enable Edge)	t _v			25	ns	
10	D	Data Hold Time (Outputs)	t _{ho}	0			ns	
11	D	Rise Time Inputs and Outputs	t _r			25	ns	
12	D	Fall Time Inputs and Outputs	t _f			25	ns	

NOTES:

1. The numbers 7, 8 in the column labeled "Num" are missing. This has been done on purpose to be consistent between the Master and the Slave timing shown in **Table A-19**.

Condit	tions	s are shown in Table A-4 unless otherwise noted, CL	OAD = 200pF	on all outputs			
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	Operating Frequency	f _{op}	DC		1/4	f _{bus}
1	Р	SCK Period t _{sck} = 1./f _{op}	t _{sck}	4		2048	t _{bus}
2	D	Enable Lead Time	t _{lead}	1			t _{cyc}
3	D	Enable Lag Time	t _{lag}	1			t _{cyc}
4	D	Clock (SCK) High or Low Time	t _{wsck}	t _{cyc} – 30			ns
5	D	Data Setup Time (Inputs)	t _{su}	25			ns
6	D	Data Hold Time (Inputs)	t _{hi}	25			ns
7	D	Slave Access Time	ta			1	t _{cyc}
8	D	Slave MISO Disable Time	t _{dis}			1	t _{cyc}
9	D	Data Valid (after SCK Edge)	t _v			25	ns
10	D	Data Hold Time (Outputs)	t _{ho}	0			ns
11	D	Rise Time Inputs and Outputs	t _r			25	ns
12	D	Fall Time Inputs and Outputs	t _f			25	ns

Table A-19 SPI Slave Mode Timing Characteristics

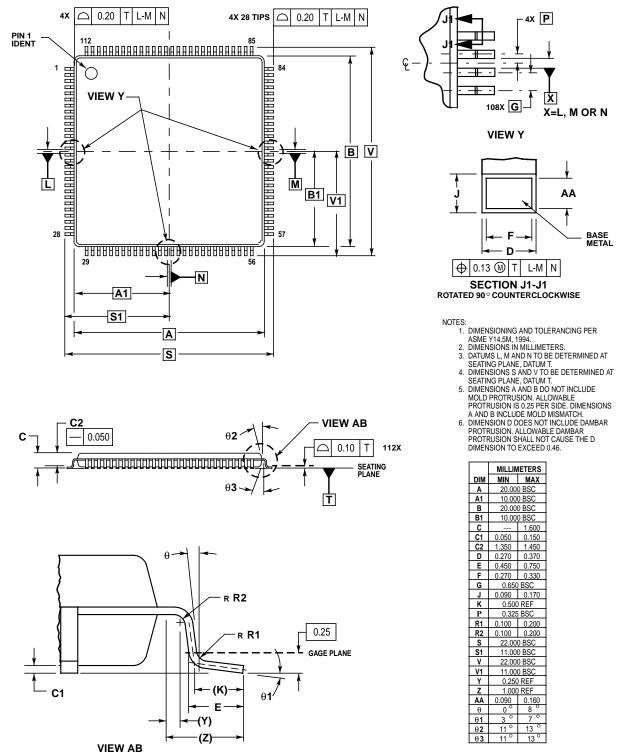
Conditions are shown in Table A-4 unless otherwise noted, C _{LOAD} = 50pF							
Num	С	Rating	Symbol	Min	Тур	Max	Unit
32	D	NOACC hold time	t _{NOH}	2			ns
33	D	IPIPO[1:0] delay time	t _{P0D}	2		7	ns
34	D	IPIPO[1:0] valid time to E rise (PW_{EL} - t_{P0D})	t _{P0V}	11			ns
35	D	IPIPO[1:0] delay time ¹ (PW _{EH} -t _{P1V})	t _{P1D}	2		25	ns
36	D	IPIPO[1:0] valid time to E fall	t _{P1V}	11			ns

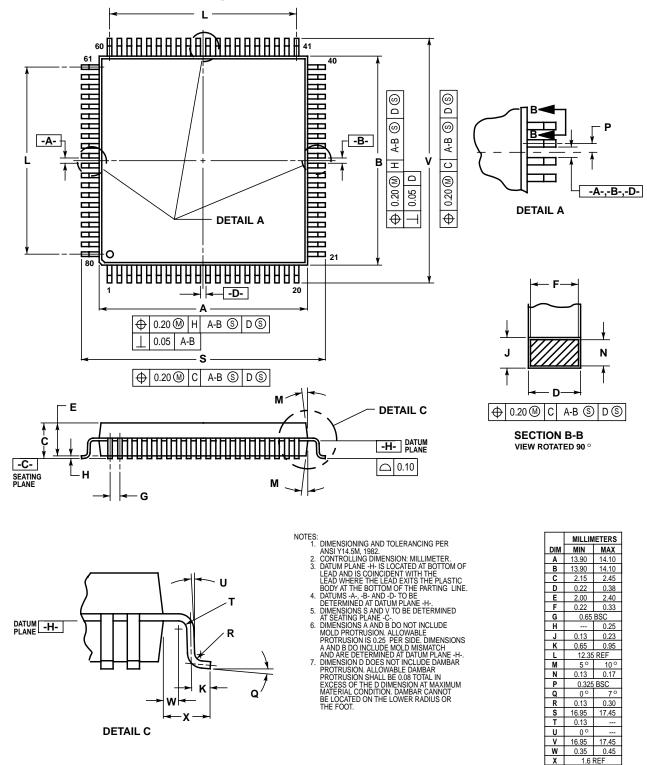
Table A-20 Expanded Bus Timing Characteristics

NOTES:

1. Affected by clock stretch: add N x t_{cyc} where N=0,1,2 or 3, depending on the number of clock stretches.

B.2 112-pin LQFP package




Figure B-1 112-pin LQFP mechanical dimensions (case no. 987)

Semiconductor, Inc.

٩

reescal

(A) MOTOROLA

B.3 80-pin QFP package